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Preface 

 

 Vegetation mapping surveys are an important part of managing invasive aquatic plants. 

They are used both to characterize the nature and extent of an infestation before designing a 

management plan and to assess the efficacy of management actions after implementation. This 

thesis research was conducted on the premise that incorporating genetics into vegetation 

mapping will improve the design and assessment of invasive aquatic plant control strategies. 

 This idea began with anecdotal reports that invasive watermilfoil had begun to show 

variation in its response to common herbicide treatments and the discovery, based on genetic 

studies, that hybrids between Eurasian and northern watermilfoil were present in many treated 

lakes. Subsequent laboratory studies showed that hybrid watermilfoil were generally less 

sensitive to the common herbicide 2,4-D. Yet hybrids exhibit so much variation in morphology 

that they are impossible to visually distinguish from pure Eurasian and northern watermilfoil. 

Based on these results, we concluded that managed watermilfoil needed to be accurately 

identified so that hybrids would be detected, if present, and that this could only be done using 

genetic methods. Currently, however, genetic methods are rarely used when evaluating 

watermilfoil infestations in managed lakes.  

 Out of the belief that genetic identifications should become an integral part of 

watermilfoil management, my adviser Dr. Ryan Thum, entrepreneur Linda Chamberlain, and I 

participated in the National Science Foundation’s Innovation Corps program (iCorps). The 

iCorps program is intended to help researchers and students begin to transfer their research 

into commercial products through the validation of its value with potential customers. For our 
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team, we needed to determine if managers saw value in using genetic identifications in 

watermilfoil assessment and treatment, and to determine why they don’t use them already. 

During the program, we interviewed 78 people from 6 states, including state regulators who 

manage invasive plants and sign off on permits for management, environmental consultants 

who manage invasive plants on behalf of their customers, and riparian land owners who assess 

the initial need for management and often hire a consultant to develop and implement the 

strategy.  

  From those interactions, we determined that most environmental managers did 

not feel confident that the information provided by genetically distinguishing hybrid from 

Eurasian watermilfoil would be worth the cost. Many felt that they could accurately identify 

hybrid watermilfoil visually and didn’t need genetic methods to accomplish the task. 

Additionally, available data did not convince them that hybrid and Eurasian watermilfoil 

differed meaningfully in their sensitivity to commonly used herbicides, because all of the 

current data came from laboratory experiments rather than field trials. Based on those 

interactions, I determined that in order for genetic monitoring of watermilfoil to be integrated 

into vegetation mapping, I would need to conduct a field study to demonstrate how genetic 

identifications could influence watermilfoil and treatment assessment. Specifically, I needed to 

determine whether the difference in herbicide sensitivity of hybrid and Eurasian watermilfoil 

found in laboratory studies also occurs in the field, and if so, how distinguishing between the 

two taxa could improve management. 

 This thesis is the summation of my research conducted on a large lake in Michigan to 

assess potential differences between hybrid and Eurasian watermilfoil in their response to 
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herbicide treatment in the field. Chapter 1 discusses broadly why cryptic invasive plants (i.e., 

invasive plants that are morphologically so similar that they cannot be reliably distinguished 

visually) are a management concern in the U.S. and how incorporation of genetics into 

management can improve their control. Chapter 2 provides additional background information 

on watermilfoil and more detailed explanations of the methods used in managing watermilfoil 

and in my thesis research. Finally, chapter 3 presents the research itself and discusses how the 

results can be used to improve management of watermilfoil and cryptic invasive plants in 

general. 
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Abstract 

 

Invasive plants are a major concern for environmental managers. Cryptic invasive taxa 

present additional challenges because of their potential to respond differently to management 

efforts. Invasive Eurasian watermilfoil (Myriophyllum spicatum) and hybrid watermilfoil 

(Myriophyllum spicatum x Myriophyllum sibiricum) cannot be reliably distinguished based on 

morphological characters and are therefore cryptic taxa. Laboratory studies show that on 

average, hybrid watermilfoil grows faster, branches more, and is less responsive to standard 

control measures developed for Eurasian watermilfoil. These laboratory results predict less 

effective control of hybrid watermilfoil in mixed populations treated uniformly with one of 

these control measures. However, to date there have been no explicit comparisons of growth 

and response of hybrid versus Eurasian watermilfoil under operational management. In this 

study, I use genetic methods to distinguish morphologically cryptic Eurasian and hybrid 

watermilfoil, and document for the first time that the two taxa exhibit divergent responses to 

treatment with 2,4-dichlorophenoxyacetic acid- amine and triclopyr under operation 

management in Houghton Lake, Michigan. Results show that treatment was much more 

effective for pure Eurasian watermilfoil than for hybrids. These findings provide a concrete 

example of how cryptic invasive taxa can impact control efficacy and how incorporating genetic 

methods into monitoring can improve treatment assessment and vegetation monitoring, 

potentially improving management. 
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Chapter 1. Introduction 

 Invasive plants are non-native plant species or biotypes that have negative impacts on 

their introduced local environment (Westbrooks 1998). They are a major concern among 

ecosystem managers in the U.S., where it is estimated that more than 5,000 invasive plant 

species have become established (Pimentel et al. 2005). Many of these were brought into the 

country intentionally.  For example, purple loosestrife (Lythrum salicaria) was imported as an 

ornamental plant but escaped and became a major threat to marsh habitats across the U.S. 

(OTA 1993, Blossey et al. 2001). Kudzu (Pueraria montana var. obate) was imported as a means 

of preventing soil erosion but has become a major threat to woodland diversity (Westbrooks 

1998). Additionally, many aquatic invasive plants were imported for aquaculture or the 

aquarium trade  

(Les and Mehrhoff 1999). However, the majority of introductions have occurred unintentionally 

via incidental transport with goods or people entering the country. OTA (1993) estimated that 

81% of invasive plants were introduced to the U.S. by “hitchhiking” in shipments of imported 

commodities or in ballast water. For example, cheat grass (Bromus tectorum) was introduced to 

the U.S. in packing material and as a contaminant in grain seed and now occurs across North 

America, reducing wheat production and increasing the frequency of wildfires in the Pacific 

Northwest (Westbrooks 1998). 

  While only about 10% of all introduced plant species become established as invasive 

populations (Barbier 2001), those that do can have severe negative impacts (Pimentel 2009, 

Charles and Dukes 2007) . For example, in non-agricultural terrestrial systems, invasive plants 

can harm or endanger native plant species, alter habitats of associated wildlife, modify nutrient 
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cycles, and cause soil erosion. In aquatic systems, invasive plants can diminish habitat, 

endanger native plants and wildlife, and alter hydrology and nutrient cycling (Perrings 2001, 

Charles and Dukes 2007). In addition to these ecological impacts, invasive plants can also cause 

heavy economic losses. In terrestrial systems, infestations can reduce crop yield through 

competition, reduce livestock yield through forage toxicity, reduce the areal extent of 

pastureland, and lower property values (Radosevish 1987, Westbrooks 1998). They can also 

hinder drainage and irrigation and reduce accessibility to many locations. In aquatic systems, 

infestations can hinder hydroelectric dams and water treatment plants and lower drinking 

water quality (Westbrooks 1998, Rockwell et al. 2003). They can also damage boating gear and 

impede swimming and navigation, sometimes resulting in lower property values and declines in 

local tourism (Rockwell et al. 2003, Zhang and Boyle 2010). Damage caused by invasive plants 

annually in the United States amounts to roughly $24 billion in agricultural systems and ranges 

from $1-$10 billion in non-agricultural and aquatic systems (Rockwell et al. 2003, Lovell and 

Stone 2005, Pimentel et al. 2009). 

 Given the negative impacts of invasive plants on ecosystems and the high cost of 

economic damages, control of invasive plants has become a major concern for environmental 

managers. There are multiple methods of control for invasive plants: cultural, physical, 

mechanical, biological, and chemical (Gettys et al. 2014). Cultural control consists of changing 

actions in order to prevent establishment and reduce established populations (Gettys et al. 

2014). These actions include setting restrictions on plant shipping and sale and using livestock 

to eat invasive populations. Physical control involves the physical removal of invasive plant 

populations (Cronk and Fuller 2001, Gettys et al. 2014). For instance, hand pulling plants or 
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placing barriers to remove or kill populations would be considered physical control methods.  

Mechanical control consists of physical removal of plants through the use of equipment such as 

mowers and harvesters (Tu et al. 2001, Gettys et al. 2014). Biological control is accomplished 

through the introduction of a second species that reduces the size of the invasive plant 

population (DiTomaso 2000, Ding et al. 2006, Louda et al. 2007, Gettys et al. 2014). Chemical 

control reduces invasive plant populations through the application of herbicides (Swanton and 

Weiss 1991, Cronk and Fuller 2001, Gettys et al. 2014).  

 Chemical control with herbicides is currently the most common method for invasive 

plant management. Herbicides can be either systemic, meaning they are taken up and 

transported throughout the plant, or contact, meaning they affect sections of the plant to 

which they are directly applied (Powels and Yu 2010, Gettys et al. 2014). For example, diquat 

(6,7-Dihydrodipyrido[1,2-a:2',1'-c]pyrazinediium dibromide) is a contact herbicide, whereas 

fluridone (1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]pyridin-4-one)  is a systemic 

herbicide (Sprecher and Netherland 1995, Breitenbach et al. 2001, Gettys et al. 2014). 

Herbicides also have different modes of action (what they actually do to the plant): some target 

functions characteristic of specific plant groups (e.g., broadleaf weeds) and therefore provide 

selective control, while others (broad spectrum herbicides) target processes that occur in all 

plant species (Powels and Yu 2010). Diquat, for example, is a broad-spectrum herbicide that 

inhibits photosynthesis and destroys cell membranes in tissues of all plant groups (Sprecher and 

Netherland 1995). In contrast, the herbicide 2,4-D (2,4-Dichorohenoxyacetic acid) is a mimic of 

a growth regulator hormone.  Dicotyledonous (broadleaf) plants tend to be more sensitive to 

this auxin mimic, allowing it to selectively control dicotyledonous plants while leaving 
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monocotyledonous plants unharmed at lower concentrations (EPA 1988, Sprecher and 

Netherland 1995, Parsons et al. 2001). There are close to 300 herbicides registered in the 

United States that are used for control of plants in terrestrial and aquatic systems (Gettys et al. 

2014). 

 Annual costs of invasive plant control are approximately $3 billion in agricultural 

systems, $1.3 billion in residential areas, and $100 million in non-agricultural and aquatic 

systems combined (OTA 1993, Lovell and Stone 2005, Pimentel et al. 2005). Despite the variety 

of control options available, management of invasive plants can become complicated when 

different populations of the same plant species respond differently to the same control 

method. For example, horseweed (Conyza canadensis) is considered an invasive weed in 

agricultural systems and is commonly managed through the use of glyphosate (VanGessel 2001, 

Feng et al. 2004, Dinelli et al. 2008). However, differences among horseweed populations in 

their glyphosate sensitivity have been widely observed, and resistant biotypes are now known 

(Lyon et al. 1989, Warwick 1991, VanGessel 2001, Patzoldt et al. 2002). Ineffective control in 

populations of such species can result in reduced predictability of management outcomes due 

to the presence of both resistant and sensitive populations, potentially wasting resources and 

allowing the continued spread of less sensitive biotypes. Thus, understanding the sources of 

variation among managed populations is a key component for determining which management 

strategies will be most effective. 

   Multiple factors may contribute to variation in response to a given management 

practice. Restricting attention to biological factors, there may be distinct biotypes within a 

species that, as a result of physiological or ecological differences, differ in their tolerance to 
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control methods without prior exposure (Heinrichs et al. 2011). For example, multiple biotypes 

of the invasive bellyache bush (Jatropha gossypiifolia) are present in the United States, and 

while biological control is preferred for this weed, the selection of control species is 

complicated by the fact that no single species works well for every biotype (Heinrichs et al. 

2011). Alternatively, different populations of a given species or biotype may have developed 

resistance to a particular control method as a direct result of repeated prior exposure (Warwick 

1991). For example, as mentioned above, some (but not all) populations of horseweed exposed 

to repeated glyphosate treatments in agricultural fields have evolved resistance to this 

herbicide, resulting in resistant and sensitive populations of the same species (Lyon et al. 1989, 

Warwick 1991, VanGessel 2001, Patzoldt et al. 2002). 

 An additional contributing biological factor, and the one on which my research is 

focused, is the presence of cryptic taxa with different sensitivities to a given management 

practice. In this thesis, cryptic taxa are defined as two or more taxa that cannot be reliably 

distinguished morphologically but are nevertheless taxonomically distinct (Pfenninger and 

Schwenk 2007). As with other taxa, cryptic taxa can differ in the way they respond to a given 

management practice. While a population’s sensitivity to a particular treatment strategy 

directly determines how effective control will be, the presence of cryptic taxa can lead to 

ambiguity regarding which taxon is being targeted and thus potentially lead to unpredictable 

management outcomes. Cryptic taxa can occur as a “group of species” such as Asian Yew (Taxus 

spp.), which in comprised of several closely related species that are difficult to distinguish 

morphologically (Lui et al. 2011). They can also occur as distinct biotypes of the same species. 

For example, hydrilla (Hydrilla verticillata) (Michel et al. 2004, Arias et al. 2005), common reed 
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(Phragmites australis) (Saltonstall 2002, Holdredge et al. 2010), and variable leaf watermilfoil 

(Myriophyllum heterophyllum) (Thum et al. 2011) are species that are composed of multiple 

biotypes that can’t be reliably distinguished morphologically but vary in their invasive 

characteristics and response to management. Finally, cryptic taxa can also result from 

hybridization events between closely related species. Smooth cordgrass (Spartina alterniflora x 

S. foliosa) (Daehler and Strong 1997), hybrid salt cedar (Tamarix ramosissima x T. canariensis or 

T. gallica) (Gaskin and Schaal 2002), bohemian knotweed (Fallopia x bohemica) (Walls 2010), 

and hybrid cattail (Typha x glauca) (Woo and Zedler 2002, Holdredge et al. 2010) are examples 

of cryptic hybrids that vary in invasiveness and response to management efforts compared to 

their pure parental taxa.  

 While recognition of cryptic taxa is increasing in non-plant species and in agricultural 

systems (Pfenninger and Scheenk 2007), less is known about the prevalence of cryptic plant 

taxa in natural terrestrial systems and even less in aquatic systems. Genetic techniques have 

therefore become a necessary tool for population assessment to determine if cryptic taxa are 

present (Carlton 1996, Bastos et al. 2011) and to determine if their response to management 

could influence the overall response of an invasive population. For example, the monoecious 

hydrilla biotype can contain a point mutation resulting in one of three amino acid substitutions 

in the phytoene desaturase (PDS) gene (Michel et al. 2004, Arias et al. 2006). Each potential 

amino acid substitution can confer a different level of resistance to the common herbicide 

fluridone. Determining the presence of that single mutation through genetic analysis indicates 

whether the population in question is at least partially composed of a herbicide resistant 

hydrilla biotype (Arias et al. 2006). 
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  In addition to determining the presence of cryptic taxa at one point in time, 

genetic tools can be employed in temporal monitoring of the proportion of each taxon and its 

response to management to help direct management efforts. Monitoring changes in the 

proportions of taxa can document within-season efficacy of management for each taxon 

individually. For instance, if only 1% of the total hydrilla population is the resistant biotype, 

then the overall control may be considered high with 99% of the population responding to 

treatment. However, if 90% of the hydrilla population is composed of the resistant biotype, 

then only 10% of the population might respond to treatment and overall control may be 

considered low. Continued taxon-specific monitoring over multiple years of management can 

show how the proportion of less sensitive plants changes over time and thus indicate whether 

changes in management strategy are necessary. Additionally, monitoring efficacy as strategies 

change over time permits comparison of different treatment types to determine which 

strategies are most effective for each individual taxon. 

 The research reported in this thesis focuses on management issues created by the 

presence of cryptic invasive plants in the particular case of Eurasian watermilfoil (Myriophyllum 

spicatum) and its interspecific hybrid  with the native northern watermilfoil (Myriophyllum 

sibiricum). Chapter 2 provides background information needed to understand the methods 

used in Chapter 3, including overviews of invasive Eurasian and hybrid watermilfoil, watermilfoil 

assessment practices, genetic assessment methods, and types of herbicides used for 

management. Chapter 3 presents the main research results, including the first rigorous 

demonstration of differential response to herbicide treatment by Eurasian and hybrid 
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watermilfoil in the field and a discussion of how genetic methods can provide insight into best 

management practices. 

References 

Arias, R. S., Netherland, M. D., Scheffler, B. E., Puri, A., Dayan, F. E. 2005. Molecular evolution of 

herbicide resistance to phytoene desaturase inhibitors in Hydrilla verticillata and its 

potential use to generate herbicide-resistant crops. Pest Management Science. 61: 258-

268. 

Arias, R. S, Dayan, F. E., Michel, A., Howell, J., Scheffler, B. E. 2006. Characterization of a higher 

plant herbicide-resistance phytoene and its use as a selectable marker. Plant 

Biotechnology Journal. 4(2): 263-273.  

Barbier, E. B. 2001. A note on the economics of biological invasions. Ecological Economics. 

39:197-202. 

Bastos, A. D., Nair, D., Taylor, P. J., Brettschneider, H., Kirsten, F., Mostert, E., von Maltitz, E., 

Lamb, J. M., van Hooft, P., Belmain, S. R., Contrafatto, G., Downs, S., Chimimba, C. T. 

2011. Genetic Monitoring detects an overlooked cryptic species and reveals the 

diversity and distribution of three invasive Rattus congeners in South Africa. BioMed 

Central Genetics. 12: 1-18. 

Blossey, B., Skinner, L. C., Taylor, J. 2001. Impact and management of purple loosestrife 

(Lythrum salicaria) in North America. Biodiversity and Conservation. 10: 1787-1807. 

Breitenbach, J., Zhu, C., Sandmann, G. 2001. Bleaching herbicide norflurazon inhibits phytoene 

desaturase by competition with the cofactors. Journal of Agricultural and Food 

Chemistry. 49: 5270-5272. 



19 

 

Carlton, J. T. 1996. Biological invasions and cryptogenic species. Ecology. 77(6): 1653-1655. 

Charles, H. and Dukes, J. S. 2007. 13 impacts of invasive species on ecosystem services. 

Ecological Studies. 193: 217-237. 

Cronk, Q. C. B. and Fuller, J. L. 2001.Plant invaders: the threat to natural ecosystems. Earthscan 

Publications Ltd. London and Sterling, VA. 

Daehler, C. C. and Strong, D. R. 1997. Hybridization between introduced smooth cordgrass 

(Spartina alterniflora; Poaceae) and native California cordgrass (S. foliosa) in San 

Fransisco Bay, California, USA. American Journal of Botany 84(5): 607-611. 

Dinelli, G., Marotti, I., Bonetti, A., Catizone, P., Urbano, J. M. and Barnes, J. 2008. Physiological 

and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. 

Weed Research, 48: 257–265. 

Ding, J., Reardon, R., Wu, Y., Zheng, H., Fu, W. 2006. Biological control of invasive plants 

through collaboration between China and the United States of America: a perspective. 

Biological Invasions. 8: 1439-1450. 

DiTomaso, J. M. 2000. Invasive weeds in rangelands: Species, impacts, and management. Weed 

Science Society of America. 48(2): 255-265. 

Environmental Protection Agency. 1988. Pesticide Fact Sheet. Registration Standard. Fact sheet 

number 94.2. 

Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., CaJacob, C. A. 2004. Investigations 

into glyphosate-resistant horseweed (Conyza Canadensis): Retention, uptake, 

translocation, and metabolism. Weed Science. 52(4): 498-505. 



20 

 

Gaskin, J. F. and Schaal, B. A. 2003. Molecular phylogenetic investigation of U.S. invasive 

tamarix. Systematic Botany. 28(1): 86-95. 

Gettys, L. A., Haller, W. T., Petty, D. G. 2014. Biology and control of aquatic plants. A best 

management practices handbook. Aquatic Ecosystem Restoration Foundation.  

Heinrichs, J., Kreier, H., Feldberg, K., Schmidt, A. R., Zhu, R., Shaw, B., Shaw, A. J., Wissemann, V. 

2011. Formalizing morphologically cryptic biological entities: New insights from DNA 

taxonomy, hybridization, and biogeography in the leafy liverwort Porella platyphylla 

(Jungermanniopsida, Porellales). American Journal of Botany. 98(8): 1252-1262. 

Holdredge, C., Bertness, M. D., von Wettberg, E., Silliman, B. R. 2010. Nutrient enrichment 

enhances hidden differences in phenotype to drive cryptic plant invasion. Oikos. 

119:1776-1784. 

Jonasson, S. 1988. Evaluation of the point intercept method for the estimation of plant 

biomass. Oikos. 52: 101-106. 

Koch, M. A., Dobes, C., Mitchell-Olds, T. 2003. Multiple hybrid formation in natural populations: 

Concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in 

North American Arabis divaricarpa (Brassicaceae). Molecular Biology and Evolution. 

20(3): 338-350. 

LaRue, E. A., Zuellig, M. P., Netherland, M. D., Heilman, M. A., and Thum, R. A. 2013. Hybrid 

watermilfoil lineages are more invasive and less sensitive to a commonly used herbicide 

than their exotic parent (Eurasian watermilfoil). Evolutionary Applications 6: 462-471. 

Les, D. H. and Mehrhoff, L. J. 1999. Introduction of nonindigenous aquatic vascular plants in 

southern New England: a historical perspective. Biological Invasions. 1: 281-300. 



21 

 

Lovell, S. J. and Stone, S. F. 2005. The economic impacts of aquatic invasive species: a review of 

the literature. National Center for Environmental Economics. Working Paper #05-02. 

Louda, S. M., Kendall, D., Simberloff, C. D. 2007. Ecological effects of an insect introduced for 

the biological control of weeds. Science. 277: 1088-1090. 

Lui, J., Moller, M., Gao, L., Zhang, D., Li, D. 2011. DNA barcoding for the discrimination of 

Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Molecular 

Ecology Resources. 11: 89-100. 

Lyon, B. R., Llewellyn, D. J., Huppatz, J. L., Dennis, E. S., Peacock, W. J. 1989. Expression of a 

bacterial gene in transgenic tobacco plants confers resistance to the herbicide 2,4-

dichlorophenoxyacetic acid. Plant Molecular Biology. 13: 533-540. 

Michel, A., Arias, R. S., Scheffler, B. E., Duke, S. O., Netherland, M., Dayan, F. E. 2004. Somatic 

mutation-mediated evolution of herbicide resistance in the nonindigenous invasive 

plant hydrilla (Hydrilla verticillata). Molecular Ecology. 13: 3229-3237. 

Office of Technology Assessment, U.S. Congress (OTA). 1993. Harmful non-indigenous species in 

the United States. OTS Publication OTA-F-565. US Government Printing office, 

Washington DC: Availability: 

http://www.wws.princeton.edu:80/~ota/disk1/1993/9325_n.html. 

Patzoldt, W. L., Tranel, P. J., Hager, A. G. 2002. Variable herbicide responses among Illinois 

waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Protection. 21: 

707-712. 



22 

 

Parsons, J. K., Hamel, K. S., Madsen, J. D., Getsinger, K. D. 2001. The use of 2,4-D for selective 

control of an early infestation of the Eurasian watermilfoil in Loon Lake, Washington. 

Journal of Aquatic Plant Management. 39: 117-125. 

Perrings, C. 2001. The economics of the biological invasions. Land Use and Water Resources 

Research. 1(3): 1-9. 

Pfenninger, M. and Schwenk, K. 2007. Cryptic animal species are homogeneously distributed 

among taxa and biographical regions. BioMed Central Evolutionary Biology. 7: 1-6 

Pimentel, D., Zuniga, R. and Morrison, D. 2005. Update on the environmental costs associated 

with alien-invasive species in the United States. Ecological Economics. 52: 273-288. 

Pimentel, D. 2009. Invasive plants: Their role in species extinctions and economic losses to 

agriculture in the USA. Management of Invasive Weeds. Chapter 1. 1-7.  

Powels, S. B. and Yu, Q. 2010. Evolution in action: Plants resistance to herbicides. Annual 

Review of Plant Biology. 61: 317-347. 

Radosevish, S. R. 1987. Methods of study interactions among crops and weeds. Weed 

Technology. 1(3): 190-198. 

Rockwell, H. W. 2003. Summary of a survey of the literature on the economic impact of aquatic 

weeds. The Economic Impact of Aquatic Weeds. 1-18. 

Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites 

australis, into North America. Proceeding of the National Academy of Sciences. 99(4): 

2445-2449. 



23 

 

Sprecher, S. L. and Netherland, M. D. 1995. Methods for monitoring herbicide-induced stress in 

submersed aquatic plants: A review. Miscellaneous Paper A-95-1. U.S., Army Corps of 

Engineers Waterways Experimentation Station, Vicksburg, MS. 

Swanton, C. J. and Weiss, S. F. 1991. Integrated weed management: The rational and approach. 

Weed Science Society of America. 5(3): 657-663. 

Tu, M., Hurd, C., & Randall, J. M. (2001). Weed control methods handbook: tools & techniques 

for use in natural areas. The Nature Conservancy.  

Thum, R. A., Zuellig, M. P., Johnson, R. L., Moody, M. L. and Vossbrinck, C. 2011. Molecular 

markers reconstruct the invasion history of variable leaf watermilfoil (Myriophyllum 

heterphyllum) and distinguish it from closely related species. Biological Invasions. 13: 

1687-1709. 

VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Science. 49: 703-

705. 

Walls, R. L. 2010. Hybridization and plasticity contribute to divergence among coastal and 

wetland populations of invasive hybrid Japanese knotweed s.l. (Fallopia spp.). Estuaries 

and Coasts. 33: 902-918. 

Warwick, S. I. 1991. Herbicide Resistance in weedy plants: Physiology and population biology. 

Annual Review of Ecology and Systematics. 22: 95-114. 

Woo, I. and Zedler, J. B. 2002. Can nutrients alone shift a sedge meadow towards dominance by 

the invasive Typha x Glauca? Wetlands. 22(3): 509-521. 

Westbrooks, R. G. 1998. Invasive plants: Changing the landscape of America. Federal 

Interagency for the Department of Noxious and Exotic Weeds, All U.S. Government 



24 

 

Documents (Utah Regional Depository). Paper 490. 

http://digitalcommons.usu.edu/govdocs/490. 

Zhang, C. and Boyle, K. J. 2010. The effect of aquatic invasive species (Eurasian watermilfoil) on 

lakefront property values. Ecological Economics. 70(2): 394-404. 

  



25 

 

Chapter 2.  Background Information 

1. Overview of Eurasian watermilfoil biology and invasion 

Eurasian watermilfoil (Myriophyllm spicatum L.; EWM) is a submersed perennial aquatic 

plant. In lakes, it typically grows in water between 1 and 4 meters deep (up to ca. 12 meters), 

anchored to the lake bed by roots (Nichols 1975, Grace and Wetzel 1978). Leaves are finely 

divided and occur in groups of 3–5 (typically 4) at nodes along each stem (Aiken et al. 1979, 

Smith and Barko 1990). Most adult plants senesce in the fall, but intact stems sometimes 

overwinter (Pimentel et al. 2005). Plants typically regrow from buds on the root crowns (at the 

sediment-water interface) in the spring, producing branches and forming dense canopies at the 

surface of the water (Nichols 1975, Grace and Wetzel 1978, Nichols and Shaw 1986). 

Eurasian watermilfoil has two modes of reproduction: asexual (vegetative) and sexual 

(seeds) (Nichols 1975). Asexual reproduction by fragmentation is thought to be the main mode 

(Pimentel et al. 2005). Plants naturally produce fragments (autofragmentation) that detach and 

establish on the bottom to become independent plants (Nichols 1975). Fragments created by 

disturbance (e.g., boating) can generate new plants, as well. Transport of fragments by water 

movements and recreational gear (especially boats) is considered to be the principal means of 

spreading to new locations (Nichols and Shaw 1986, Madsen 2005). 

Watermilfoil can also reproduce sexually. Once the plants reach the water surface, flowers 

form on terminal spikes, allowing both cross- and self-pollination (Aiken et al. 1979, Madsen 

2005). Once pollinated, the terminal spikes produce seeds that fall off after maturing and settle 

on the lake bottom (Madsen 2005). Though large numbers of viable seeds are commonly 
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produced, they are generally considered to contribute little to the regrowth and spread of 

watermilfoil observed in the field (Madsen 1998). 

 Due to its dispersal ability through fragmentation and its habit of forming dense mats at 

the water surface, Eurasian watermilfoil is one of the most heavily managed aquatic plants in 

the U.S. (Bartodziej and Ludlow 1997, Moody and Les 2007). Since its introduction, it has spread 

to 46 states and 3 Canadian Provinces. As with other invasive aquatic plants, it can out compete 

native species (Madsen 1991, Westbrooks 1998), increase sedimentation, reduce fish spawning 

and shelter habitat, and alter hydrology (Rockwell et al. 2003, Lovell and Stone 2005, Pimentel 

et al. 2005). Infestations can lower property values, damage personal property such as boat 

propellers, hinder boating, swimming, and fishing, and reduce tourism in local communities 

(Rockwell et al. 2003, Madsen 2005, Zhang and Boyle 2010, Westbrooks 1998).  

Recent field studies have demonstrated the widespread occurrence of a hybrid between 

Eurasian watermilfoil and native northern watermilfoil (Myriophyllum sibiricum Komorov) 

(Moody and Les 2002, Moody and Les 2007, Sturtevant et al. 2009, Zuellig and Thum 2012). 

Laboratory studies have shown that hybrids generally grow faster and form more branches than 

the pure parental species (Danielle Grimm, unpublished data). If these characteristics are 

exhibited by field populations, they could result in more rapid spatial spread by hybrids.  

 

2. Watermilfoil Control Methods 

The most common method for treating watermilfoil infestations is through the use of auxinic 

herbicides like 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,5,6-trichloro- 2-pyridinyloxyacetic 

acid (triclopyr) (Figure 2.1) (EPA 1988, Ghassemi 1981, Netherland and Getsinger 1992, 
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Woodburn et al. 1993, Teixeira et al. 2007). 2,4-D and triclopyr are auxin mimics and thus act 

systematically to affect tissue growth (Parsons et al. 2001, Gettys et al. 2014, Harrahy et al. 

2014). The compounds accumulate at the actively growing sites of the plant, such as the 

meristematic regions of the roots and shoots (Ghassemi 1981, Walters 1999). This 

accumulation results in the stimulation of growth, rejuvenation of old cells, and overstimulation 

of young cells, leading to abnormal growth patterns and sometimes death (Walters 1999). The 

compounds are also converted into amino acid conjugates that obstruct nucleic acid 

metabolism and protein synthesis. Those conjugates alter enzyme activity, respiration, and cell 

division, resulting in inhibition of nutrient transport, malnourishment, and ultimately, death 

(EPA 1988, Walters 1999). 2,4-D and triclopyr are considered to be selective herbicides because 

dicotyledonous plants such as Eurasian watermilfoil tend to be more susceptible to them at low 

to moderate doses than are monocotyledonous plants (Parsons et al. 2001, Netherland and 

Getsinger 1992, Harrahy et al. 2014).  

 

Figure 2.1 A: Molecular Structure of 2,4-D (2,4- Dichlorophenoxyacetic acid) (Image recreated 

from: Teixeira et al. 2007). B: Molecular structure of Triclopyr (3,5,6-trichloro- 2-

pyridinyloxyacetic acid) (Image recreated from: Woodburn et al. 1993). 

A. B.  

 



28 

 

3. Variation in response to 2,4-D and Triclopyr 

The heavy use of 2,4-D and triclopyr has resulted in resistance of multiple species of weeds 

(Whitehead and Switzer 1963, Teixeira et al. 2007, Egan et al. 2011). While resistance is well 

documented in agricultural systems, evidence for differences in susceptibility in aquatic 

populations has only more recently begun to surface. There have been anecdotal reports of 

variation in watermilfoil response to 2,4-D in the field, but no previous study has rigorously 

demonstrated such variation.  The discovery of cryptic hybrid watermilfoil (see Section 4.2 

below) and its widespread occurrence (Moody and Les 2007) revealed that field populations of 

Eurasian watermilfoil are often a mixture of pure Eurasian watermilfoil and hybrids. Recent 

laboratory studies have shown that Eurasian and hybrid watermilfoil differ in sensitivity to 

auxinic herbicides, with hybrid watermilfoil being less sensitive, on average (LaRue et al. 2013, 

Schulte et al. in review). Though not yet confirmed in the field, these laboratory findings 

suggest that the presence of cryptic hybrids in populations of Eurasian watermilfoil could be a 

cause of variation in response and that distinguishing between hybrids and pure Eurasian 

watermilfoil when managing infestations in lakes could be useful in evaluating treatment 

efficacy. 

4. Watermilfoil Assessment  

4.1 Mapping watermilfoil 

 Typically, watermilfoil populations in lakes are mapped with a point-intercept (PI) survey 

(Jonasson 1988, Madsen 1999, Hauxwell et al. 2010). During a PI survey, the spatial distribution 

and abundance of watermilfoil is determined by recording presence/absence and semi-

quantitative abundance estimates at a large number of points arranged in a regular grid that 
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covers the waterbody (Madsen 1999, Hauxwell et al. 2010, Mikulyuk 2010). To collect these 

data, watermilfoil is sampled using a rake -toss method in which a two-sided rake attached to a 

rope is tossed into the water, dragged a short distance along the lake bottom to collect portions 

of any plants that might be present, and pulled back up to the surface (Thum et al. 2012, 

Hauxwell et al. 2010). Presence or absence of watermilfoil at each grid point is determined by 

whether the rake does or does not contain watermilfoil, while abundance of watermilfoil is 

estimated by the proportion of the rake it covers (Thum et al. 2012). Watermilfoil typically is 

identified during PI surveys based on morphological traits such as leaf characteristics (Moody 

and Les 2007). 

4.2 Distinguishing Watermilfoil 

Hybrid watermilfoil cannot be reliably distinguished from Eurasian and northern watermilfoil 

using traditional morphological traits. While watermilfoil taxa are most commonly identified by 

examining the leaves, leaf morphology is so variable in hybrid populations that many individuals 

exhibit morphologies identical to the pure parental taxa (Figure 2.2) (Moody and Les 2007). 

Hybrid and pure Eurasian watermilfoil are therefore morphologically cryptic. In order to 

distinguish between populations of these taxa in a waterbody so that management strategies 

can be properly planned and evaluated, genetic methods for identification are a necessary 

component of vegetation mapping.  
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Figure 2.2 Comparison on leaf morphologies of Eurasian (bottom), northern (top), and hybrid 

(middle) watermilfoil. Hybrid watermilfoil morphology can look identical to Eurasian and 

northern making it impossible to visibly distinguish from the parental taxa.  

 

 

4.3 Genetic Identification 

Multiple genetic techniques are available for reliably identifying cryptic taxa such as Eurasian 

and hybrid watermilfoil (Table 2.1; Karp et al. 1997, Willems et al. 2001, Small et al. 2004, Lowe 

et al. 2009, Abdel-Mawgood 2012). The method chosen for this thesis is DNA barcoding. DNA 

barcoding uses consistent variations in one or more target genes or sequences of an organism 

to assign it to a taxon (Hebert et al. 2004, Hebert and Gregory 2005). In order for DNA barcodes 

to be effective for detection of hybridity, they must have minimal variation to accurately and 

consistently distinguish taxa and be heritable from both parental taxa (Small et al. 2004). While 

multiple potential sequences qualify to consistently distinguish between taxa (matK, trnK, trnLF, 

rbcL, ycf1) (Moody and Les 2002, Cheng et al. 2015), nuclear ribosomal sequences are inherited 
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from both parental taxa and thus can determine if an individual is a hybrid (Bakkeren et al. 

2000).  The target gene commonly used for watermilfoil is the nuclear ribosomal internal 

transcribed spacer (ITS) (Cheng et al. 2015) and as such is used for identifying hybrid and pure 

Eurasian watermilfoil in this study.  Analysis of the ITS sequence is typically used to distinguish 

between closely related taxa of plants and fungi (Koch et al. 2003, Hebert et al. 2004). The 

utility of using the ITS sequence is thought to be due to concerted evolution in which a single 

variant of the ITS sequence becomes fixed within each taxon, in conjunction with a low 

mutation rate (Baldwin 1992). Thus, minor differences in ITS sequences can reveal the presence 

of different taxa when morphology cannot.  

 

Table 2.1 A comparison of genetic analysis methods for use in identifying hybrid and Eurasian 

watermilfoil including Internal Transcribes Spacer (ITS) digestion Amplified Fragment Length 

Polymorphisms (AFLP’s) and Single Nucleotide Polymorphisms (SNP’s).  

 
ITS 

digestion 
Sequencing AFLP’s Microsatellites SNP’s 

Time 
investment 

medium High High High Very High 

Cost Low High High High High 

Standardization High High Medium Medium Medium 

Accuracy High High High High High 

Development 
for Watermilfoil 

Ready to 
use 

Ready to 
use 

Ready to 
use 

Ready with 
some 

refinement 

A lot of 
development 

necessary 
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For watermilfoil, we perform a restriction fragment analysis of ITS (Moody and Les. 

2002, Thum et al. 2006, Moody and Les, 2007, Zuellig and Thum 2012, Grafé et al. 2015). During 

this analysis, restriction enzymes are used to cut the ITS region. The cut sites for these enzymes 

are different for each parental watermilfoil taxon, resulting in different -size fragments in each 

and thus a different banding pattern on a gel (Thum et al. 2006, Grafé et al. 2015). Since hybrid 

watermilfoil contains one copy of the ITS sequence from each parental taxon, ITS digestion of 

hybrid watermilfoil results in gene fragments that match the size of both parental taxa (Figure 

2.3).  

 

Figure 2.3  ITS gel Image of watermilfoil restriction gel with Northern (A), hybrid (B), Eurasian 

(C), and a 100 base pair reference ladder (D). Digestion of the ITS sequence results in different 

sized fragments for northern and Eurasian individuals. Since ITS is inherited from both parental 

taxa, hybrids contain fragments matching both Eurasian and northern watermilfoil.  
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5. Management Programs 

Watermilfoil is one of the most highly managed of all invasive aquatic plants, but an adaptive 

management approach has rarely been successfully implemented for it. Adaptive management 

programs use empirical data collected during the control season and rigorous statistical analysis 

of outcomes to evaluate the efficacy of treatment methods (Walters 1986, Williams 2010). In 

other words, management is viewed as an experiment and is planned, executed, and assessed 

accordingly (Figure 2.4). Evaluation through the collection and rigorous analysis of data can help 

managers determine how well each treatment method works in comparison with others and if 

new control methods are necessary. The fundamental goal of adaptive management is to 

improve control and reduce uncertainty in outcomes over time by monitoring treatment 

outcomes and adapting management practices to improve them (Williams and Brown 2012). 

Currently, Eurasian and hybrid watermilfoil are controlled using the same methods. However, if 

it turns out to be true that hybrid watermilfoil is generally less susceptible to treatment, as 

suggested by laboratory studies, then the response of these two taxa should be documented 

and monitored separately in order to evaluate what methods are most effective for the control 

of each.  
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Figure 2.4 Adaptive plant management cycle designed to help managers design each year’s 

control strategy to be as effective as possible using current knowledge while collecting data 

necessary to improve efficacy in future years (Figure recreated from: 

http://www.dfg.ca.gov/erp/adaptive_management.asp) 

 

 

Unfortunately, while managers generally agree that adaptive management programs 

are beneficial for watermilfoil control, genetic identifications is currently not an integral part of 

watermilfoil assessment. Interactions with managers have shown that even though it is 

becoming more accepted that Eurasian and hybrid watermilfoil cannot be reliably distinguished 

morphologically, managers are not convinced that differences in treatment response occur in 

the field as they do in controlled laboratory studies, and they therefore feel that distinguishing 

http://www.dfg.ca.gov/erp/adaptive_management.asp
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between the two taxa would provide limited useful information for management planning 

(Personal Communication). The fundamental problem, then, is the current lack of field 

verification of differences between Eurasian and hybrid watermilfoil in response to treatment. 

In light of that feedback, the research presented in the following chapter was aimed at 

determining if Eurasian and hybrid watermilfoil do in fact exhibit differential response to 

auxinic herbicides during an operational field treatment and thus need to be evaluated 

independently for the implementation of effective adaptive management programs.  
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Chapter 3. Thesis Research 

Introduction 

Invasive plants are a major concern for natural resource managers due to their impacts 

on ecosystem services and native biodiversity and to the economic costs associated with losses 

and control. In aquatic systems, for example, invasive plants are responsible for billions of 

dollars of damages annually by impairing boating, swimming, water movement, and nutrient 

cycling, and reducing property values, increasing sedimentation, and eliminating habitat for 

native species (Lovell and Stone 2005; Zhang and Boyle 2010; Aiken et al. 1979; Bates et al. 

1985; Smith and Barko 1990; Madsen et al. 1991; Gross and Sutfeld 1994). Moreover, the direct 

cost of managing invasive aquatic plants to mitigate these negative impacts amounts to an 

additional 100 million dollars annually in the United States alone (Rockwell 2003, Pimentel et al. 

2005).  

One complication in managing invasive plants is the fact that outcomes for a given taxon 

may vary markedly among managed sites. For example, variation in response of Conyza 

canadensis (horseweed) to herbicide control is seen in different populations across the United 

States (Szigeti et al 1996; Dinelli et al. 2008). Given the high cost of management and the 

limited financial resources available, it is important to understand the factors contributing to 

this variation in control efficacy in order to increase the predictability of management and 

improve outcomes. 

Cryptic invasive taxa are a potentially important source of variation in treatment 

outcomes for widely managed invasive species. By “cryptic invasive taxa”, I refer to those 

invasive taxa that are difficult to distinguish using traditional identification methods based on 
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morphological characters. For example, some invasive taxa are composed of multiple, distinct 

biotypes with different introduction histories and sources (e.g., monoecious versus dioecious 

Hydrilla verticillata, Madeira et al. 2004; Phragmites australis haplotypes, Saltonstall 2002; 

Myriophyllum heterophyllum, Thum et al. 2011; Conyza canadensis, Szigeti et al 1996; Tamarix 

spp, Gaskin and Schaal 2003). Similarly, invasive taxa may hybridize with closely-related and/or 

morphologically similar native (or other invasive) taxa, forming distinct parental versus hybrid 

invasive biotypes that are morphologically cryptic (Fallopia x bohemica, Walls 2010; Tamarix 

ramosissima x T. canariensis or T. gallica, Gaskin and Schaal 2003; Centaurea xpsammogena, 

Blair and Hufbauer 2010; Spartina angelica, Strong and Ayres 2013; Carpobrotus edulix x C. 

chilensis, Weber and D’Antonio 1999). 

While examples of cryptic invasive taxa have been documented, little is known about 

how common it is for distinct cryptic taxa to respond differently to management efforts 

implemented to control their distribution and abundance.  In such cases, control plans 

developed for an invasive taxon may be unknowingly applied to morphologically similar but less 

sensitive cryptic taxa, resulting in variable, and often unpredictable, control efficacy, wasted 

resources, and continued spread of the less sensitive taxon. A general understanding of the 

magnitude of impacts by cryptic invasive taxa requires that they be identified in the first place, 

and then carefully distinguished when evaluating management options to determine whether 

adjustments to management approaches are warranted for different cryptic taxa. 

An important example of managing cryptic invasive plant taxa in the United States is 

Eurasian watermilfoil sensu lato, which includes both pure parental lineages (Myriophyllum 

spicatum L.; EWM) and morphologically cryptic hybrid lineages (HWM) from crosses with native 
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northern watermilfoil (Myriophyllum sibiricum Komorov; NWM). Eurasian watermilfoil has been 

one of the most highly managed invasive aquatic weeds in the United States since the late 

1980s (Bartodziej and Ludlow, 1998). Initial management efforts appeared to be effective at 

controlling the distribution and abundance of Eurasian watermilfoil, but anecdotal accounts of 

lower treatment efficacy in some populations surfaced in the late 1990s. Subsequent genetic 

analysis of some “abnormal” Eurasian watermilfoil populations identified them as HWM 

(Moody and Les 2002; 2007, Sturtevant et al. 2009), which led to the hypothesis that 

hybridization may play an important role in the evolution of invasiveness in Eurasian 

watermilfoil (Moody and Les 2002; 2007), including the possibility that hybrids were more 

difficult to control than parental EWM. Indeed, laboratory studies have demonstrated that 

HWM genotypes exhibit higher vegetative growth and lower impacts of the commonly used 

herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)  compared to pure EWM (LaRue et al. 2013; 

Schulte et al. In review). 

While managers increasingly view EWM and HWM as distinct taxa, the two taxa are not 

routinely distinguished in management decision-making and treatment evaluations. For 

example, managers commonly conduct surveys to determine the locations of invasive aquatic 

plants within a waterbody and the quantities of herbicide(s) required to substantially reduce 

their abundance. Similarly, they use post-treatment surveys to evaluate the efficacy of 

treatments. In both types of survey, plants usually are identified using morphological 

characteristics, which is unreliable for morphologically cryptic taxa such as EWM and HWM 

(Moody and Les 2007). As a result, EWM and HWM are rarely distinguished from each other in 

practice. 



45 

 

This fact is significant for two reasons. First, it highlights the importance of knowing 

whether the two taxa respond differently to operational management actions (e.g., herbicide 

treatments) to an extent that would warrant different treatment strategies. Laboratory 

evidence suggests they do, but no field confirmation has been performed to date. And second, 

it highlights the importance of finding and using a reliable method for distinguishing the two 

taxa. Molecular genetic studies have demonstrated that HWM can be reliably and objectively 

distinguished from parental EWM and NWM (Moody and Les 2002, 2007; Sturtevant et al. 

2009; Zuellig and Thum 2012; Grafe et al. 2015), so it is possible that integrating genetic 

identification methods into aquatic plant surveys would assist treatment planning and 

evaluation, thereby informing adaptive management approaches for Eurasian watermilfoil and 

improving management outcomes in the long term. 

In this study, I integrated molecular genetic identification methods into traditional pre- 

and post-treatment watermilfoil surveys on a large lake in central Michigan undergoing 

treatment with the systemic auxinic herbicides 2,4-D and triclopyr (the two most commonly 

used systemic herbicides to control nuisance Eurasian watermilfoil). Specifically, I tested the 

hypothesis that pure parental EWM would decrease in both distribution and abundance 

significantly more than HWM during the growing season following herbicide treatment, as 

predicted by previous laboratory studies (LaRue et al. 2013; Schulte et al. unpublished). My 

study has important implications for the debate on whether morphologically cryptic EWM and 

HWM warrant different treatment strategies, as well as whether incorporating genetic 

identifications into traditional aquatic plant survey methods could improve adaptive 

management of nuisance watermilfoil by providing more accurate treatment evaluations.  
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Methods 

Study Lake 

The field study was conducted on Houghton Lake in Roscommon County, Michigan. 

Houghton Lake has a surface area of 8,112 ha, and an average depth of 2.6 m, and has been 

managed for watermilfoil since 2002. The first treatment in 2002 was a whole-lake fluridone 

treatment followed by subsequent spot treatments using a combination of 2,4-D-amine and 

triclopyr (Progressive AE, personal communication with Paul Hausler). Historical genetic data 

show that HWM was not found prior to 2012 but comprised over 50% of the samples collected 

in 2013 (see Table 3.1). In June of 2014, the main portion of the lake was spot treated with 2,4-

D-amine and triclopyr (Figure 3.1). Northern bay was left untreated due to presence of wild 

rice. Treatment areas and treatment types (concentration and 2,4-D or triclopyr) were 

determined by Progressive AE and implemented by a third party applicator. 

 

Table 3.1 Number of Eurasian watermilfoil (EWM) and Hybrid watermilfoil (HWM) samples 

collected from Houghton Lake prior the study in 2014. All samples collected were genetically 

identified to ensure accuracy.   

Year Number of Sites Sampled Number of EWM Number of HWM 

2009 2 11 0 

2010 3 16 0 

2011 7 13 0 

2012 15 8 7 

2013 28 13 27 
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Figure 3.1 2014 auxinic herbicide treatment map and point-intercept sampling locations for 

Houghton Lake, Michigan. Each point is a sample point in a 996 point intercept grid. 

 

Data collection 

Vegetation data were collected prior to treatment in June and at the end of the season 

in September. A total of 996 points were surveyed using a point intercept grid (Mikulyuk et al. 

2010) for both sampling events (Figure 3.1). At each sampling point, a rake was tossed from 

each side of the boat to pull up plants (Hauxwell et al. 2010, Thum et al. 2010). The total 
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number of points with watermilfoil present was interpreted as the areal distribution (cover). 

Based on visual assessment, the amount of watermilfoil on each rake was assigned a value of a 

5-tier semi-quantitative index, as in Thum et al. (2012b). The two values of the semi-

quantitative index at each grid point were averaged and interpreted as the local abundance. 

Watermilfoil from both tosses were then combined and one stem tip representing each distinct 

phenotype present was collected. Tissue samples were transported to the lab and genetically 

identified using an Internal Transcribed Spacer (ITS) restriction fragment analysis (Moody and 

Les. 2002, Thum et al. 2006, Moody and Les, 2007, Zuellig and Thum 2012, Grafé et al. 2015).  

 Data analysis 

Distribution and abundance measures for each watermilfoil population within Houghton Lake 

were analyzed to evaluate differences between the responses of HWM and pure EWM to 

treatment with auxinic herbicides. NWM was excluded from all statistical analyses because of 

an insufficient sample size (n=2 pre-treatment and n=0 post-treatment (Table 3.2). Within the 

main lake, data for areas treated with different herbicides and for areas treated directly versus 

indirectly (via transport of herbicide by water currents and mixing (Figure. 3.1) showed no 

statistical differences in watermilfoil reduction and therefore were combined for statistical 

analysis. Due to differences in treatment and environmental features, the untreated northern 

bay data will not be presented.  
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Table 3.2 The number of points containing each taxon in the main portion of Houghton Lake 

before and after treatment with auxinic herbicides in Houghton Lake, MI.  

 EWM HWM NWM 

Pre-Treatment 20 211 2 

Post-Treatment 0 156 0 

 

All of the statistical tests used to assess potential changes in distribution and abundance 

of watermilfoil assume that observations from different grid points are independent. Therefore, 

before performing any of these tests, I assessed the degree and statistical significance of spatial 

autocorrelation in the data using Moran’s I statistic and a permutation test for significance (Cliff 

and Ord 1981). For all watermilfoil combined and for HWM separately, I found moderate and 

statistically significant positive autocorrelation (I ≈ 0.3, p < 0.0001). Since positive 

autocorrelation would result in artificially low p values in my statistical tests for changes in 

distribution and abundance, I thinned the grid points used for these tests to increase the 

minimum distance between points.  This step substantially reduced Moran’s I for all 

components of the data (total watermilfoil, HWM, EWM; pre- and post-treatment) and 

eliminated statistical significance of spatial autocorrelation. This thinned dataset was used for 

all analyses.  

To assess the change in distribution for each taxon individually, the corresponding 

distribution data were analyzed using an exact McNemar test for dependent proportions 

(Hollander et al. 2014, pp. 506-508). The null hypothesis for a given taxon (EWM, HWM, or total 

watermilfoil) was that the proportion of grid cells changing from presence to absence following 
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treatment was the same as the proportion changing from absence to presence; the alternative 

hypothesis was that the proportion of grid cells changing from presence to absence was higher.  

Differences between pure EWM and HWM in the degree to which their areal 

distributions changed following treatment were assessed using Zelen’s exact test for a common 

odds ratio (Hollander et al. 2014, p. 527-530). The odds for population i are pi/(1 – pi), where pi 

is the success probability defined as the proportion of grid points at which population i was 

present. The odds ratio for a population is the ratio of its pre-treatment and post-treatment 

odds. The null hypothesis for Zelen’s test was that the odds ratios are the same for pure EWM 

and HWM; the alternative hypothesis was that the odds ratios differ.  

 Potential reduction in the abundance of each taxon following treatment was assessed 

by calculating the post-treatment change in abundance at each grid point and testing the null 

hypothesis that the mean change was zero against the alternative hypothesis that the mean 

change was negative. I conducted these tests using a bootstrap test (with 10,000 bootstrap 

samples) because of the numerous ties in these data and their evident non-normality.  

 Differences between EWM and HWM populations in the degree to which their 

abundances changed following treatment were assessed using a large-sample test for the 

difference between two success probabilities. The success probability for each taxon was 

defined as the proportion of grid points at which its abundance index decreased following 

treatment. The null hypothesis of no difference in success probabilities between EWM and 

HWM was tested against the one-sided alternative that the success probability of EWM was 

greater, using test statistic A defined by Hollander et al. (2014, p. 497). 
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 All statistical analyses were performed with the R language and statistical environment, 

version 3.1.0 (R Foundation for Statistical Computing, 2014). 

Results 

I was able to successfully amplify ITS and determine taxon identity for 550 pre-treatment 

samples (499 HWM and 51 EWM) from 383 points and 309 post treatment samples (299 HWM 

and 10 EWM) from 281 points. The pre-treatment survey included 368 points with HWM and 

27 points with EWM while the post-treatment survey included 279 point with HWM and 2 

points with EWM. Both EWM and HWM exhibited a statistically significant decrease in areal 

distribution following treatment (EWM: p < 0.0001, percent change = -100%; HWM: p < 0.0001, 

percent change = -26.2%; Figure 3.2). Zelen’s test on the odds ratio confirmed that the 

proportions of grid points occupied by EWM and HWM in the main lake changed by different 

amounts following treatment (p < 0.0001). 

The bootstrap test supported the alternative hypothesis that mean abundance decreased 

following treatment for both taxa in the main lake (p < 0.0001 for both EWM and HWM; Figure 

3.3). Also, a greater proportion of points with EWM exhibited a decrease in abundance 

following treatment compared to HWM (A= 3.727; p< 0.0001; percent decreasing =100% for 

EWM and 57.8% for HWM). 
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Figure 3.2 The number of points (distribution) with plants present for Eurasian watermilfoil (A 

and B) and hybrid watermilfoil (C and D) in Houghton Lake, Michigan before (left) and after 

(right) treatment with auxinic herbicides. Due to differences in treatment and environmental 

features, the untreated northern bay data will not be presented. 

A.                                                                        B.  

C.    D.  
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Figure 3.3 Abundance distributions for Eurasian (EWM) and hybrid (HWM) watermilfoil in the 

main portion of Houghton Lake before and after treatment with auxinic herbicides. Bars 

indicate the median abundance scores and the error bars indicate the inter-quartile range of 

abundance scores. 

 

Discussion 

Here, I have presented results from the first field study comparing the separate 

responses of EWM and HWM to treatment with auxinic herbicides. Specifically, I found that the 

within-season reduction in watermilfoil distribution and abundance following treatment was 

much greater for EWM than for HWM (Table 3.2). These field results corroborate previous 

laboratory studies that found comparatively higher growth of HWM than EWM in the presence 

of 2,4-D (LaRue et al. 2013; Schulte et al. Unpublished data). My results have strong 

implications for questions regarding whether HWM poses distinct management challenges 

compared to pure EWM, and I advocate integrating genetic identification methods when 

designing and evaluating nuisance watermilfoil management plans.  
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My field study explicitly demonstrates that HWM poses management challenges that 

are distinct from those of pure EWM in Houghton Lake. While the auxinic herbicide treatments 

applied in Houghton Lake provided high control of EWM (100% reduction), they did not provide 

comparable control of HWM (26.2% reduction). Given the general result from laboratory 

studies that HWM exhibits relatively higher growth than pure EWM when exposed to the 

auxinic herbicide 2,4-D, I predict that the Houghton Lake results will be applicable to other 

lakes. This study therefore provides valuable empirical support for anecdotal reports from 

aquatic plant managers that HWM are generally more difficult to control than pure EWM and 

may require new management strategies to achieve equally effective control. However, similar 

studies should be conducted on other lakes to determine the generality of my results. 

Three common, practical questions that arise for HWM management are if, when, and 

how the watermilfoil management strategy on a given lake should change. Based on the field 

results reported here, results of previous laboratory studies comparing pure EWM and HWM, 

and the fact that these taxa are morphologically cryptic, I argue that integrating genetic 

identifications into routine aquatic vegetation surveys can assist the development and 

evaluation of aquatic plant management plans. Integrating genetic identifications into pre-

treatment surveys and post-treatment evaluations would assist managers and regulators in 

determining whether a change in watermilfoil management strategy is warranted for a 

particular lake by providing objective data on the relative efficacy for pure EWM versus HWM 

control. 

For example, my Houghton Lake results show that HWM distribution and abundance 

were reduced to a much lower extent compared to EWM. In the absence of genetic 
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identifications, however, there would have been no indication that two taxa were present and 

exhibited drastically different responses to management, and the factors responsible for the 

low reduction in watermilfoil distribution in treated portions of the lake would have been 

unclear. By using genetic identifications, it was clear that one critical factor affecting within 

season efficacy of auxinic herbicide in Houghton Lake was the preponderance of HWM 

compared to pure EWM (Figure 2). Based on this information, managers may decide that an 

alternative approach to managing HWM in Houghton Lake is warranted. 

Integrating genetic identifications into aquatic plant surveys and treatment evaluations 

could also help determine when a management strategy should change, which could reduce the 

amount of wasted effort on ineffective treatments. The relative proportions of pure EWM and 

HWM may change over time, and based on the results of my study, I predict there would be a 

concomitant change in the overall efficacy of auxinic herbicide treatments. In fact, the present 

results suggest that herbicide treatments themselves may be partially responsible for changes 

in relative proportions of EWM and HWM in Houghton Lake. Previous genetic surveys of 

Houghton Lake watermilfoil were conducted annually from 2009 through 2013. While these 

surveys were not nearly as extensive as in 2014, the genetic analyses suggest that pure EWM 

was likely the dominant biotype of watermilfoil in Houghton Lake until 2012 and that HWM had 

become dominant by 2013 (Table 3.1), indicating a rapid shift toward increased HWM 

dominance since 2011. The initial discovery of hybrid presence led to increases in herbicide 

concentration. It is likely that incorporating more detailed genetic identifications into the 

aquatic plant surveys and treatment evaluations earlier would have identified the shift soon 
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after hybrid establishment and thus would have provided clear and objective data identifying a 

year prior to 2012 as a trigger point for changing management strategies.  

If/when it becomes clear that HWM requires a distinct management strategy on a given 

lake, the most important question then becomes what management strategy will be most 

effective? Increasing interest in and concern about HWM has led to proposal of numerous 

alternative management strategies (e.g., increased concentration, longer exposure, early versus 

late season timing of applications, whole lake versus spot treatment applications, herbicide 

mixtures, etc.). Regardless of which strategies are evaluated, accurate identification of taxa is 

essential and I therefore recommend integrating genetic identifications into the evaluations.  

Three limitations of my study warrant further and careful investigation. First, the 

temporal scale of my pre- and post-treatment sampling does not allow us to distinguish the 

cause(s) of reduced seasonal control efficacy of HWM compared to pure EWM. It is possible 

that the lower reduction of HWM compared to pure EWM results from lower mortality on the 

standing crop of plants to which the auxinic herbicides were applied (i.e., higher survivorship of 

HWM). It is also possible that the lower reduction of HWM results from faster re-colonization of 

treated areas. For example, HWM from untreated areas may have spread more quickly to 

recolonize treated areas and/or plants observed in the post-treatment sampling may have 

colonized from the seed bank. The alternative explanations are not mutually exclusive, given 

that laboratory studies have demonstrated lower effects of 2,4-D on HWM, faster vegetative 

growth of HWM, and greater germination of HWM compared to pure EWM (LaRue et al. 2013; 

Grimm et al. unpublished data). Future studies should use repeated temporal sampling and 

methods that can distinguish among these alternatives. Second, I recognize that although HWM 
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on average exhibit reduced 2,4-D response compared to pure EWM (LaRue et al. 2013), there is 

variation in growth and 2,4-D response among distinct hybrid genotypes (Schulte et al. 2015). 

Thus, while I do not believe the results on Houghton Lake will turn out to be unusual, it is 

possible that EWM and HWM would exhibit similar responses to each other on other lakes, 

depending on the specific genotypes present. Third, I cannot discount impacts of environmental 

factors on the reduction of each taxon. While the difference in reduction for each taxon was 

consistent with what was expected based on laboratory experiments following exposure to 

auxinic herbicides (LaRue et al. 2013), there may have been additional environmental variables 

influencing the extent of reduction for each taxon. Future studies should collect environmental 

measurements during sampling. Additionally, since it may not be feasible to find untreated 

lakes with environmental factors similar enough to managed lakes to be used as controls, 

future studies should also conduct sampling events over the span of multiple years of 

management in order to better separate the influence of the environment and the herbicide 

exposure.   

Numerous plant invasions have been determined to include multiple cryptic taxa (Szigeti 

et al 1996, Weber and D’Antonio 1999, Saltonstall 2002, Gaskin and Schaal 2003, Madeira et al. 

2004, Blair and Hufbauer 2010, Walls 2010, Thum et al. 2011, Strong and Ayres 2013). My 

results show that cryptic taxa may exhibit differential responses to common control methods. 

As with watermilfoil, knowing if and where cryptic taxa occur and monitoring them separately 

during management can provide valuable insights into whether different management 

strategies are required and, over time, which ones are more effective. Given the morphological 

similarities between cryptic taxa and the need for accurate identifications, I propose that 
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genetic methods should be incorporated into monitoring and management of invasive plants. 

Such measures will increase predictability of control outcomes and minimize the long terms 

costs of management.   
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