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Abstract 

 

 

Calculation of Load Flow distribution is an important tool in Electrical Engineering that 

involves numerical analysis applied to Power Systems. State Estimation techniques have 

been developed and applied thoroughly mainly in the levels of generation and transmission.  

Research in the distribution level remains a challenge due to the intrinsic characteristics of 

the network. Introducing line current measurements in the state estimation process constitutes 

an additional issue due to distribution networks characteristics. In order to overcome these 

difficulties, it is necessary to develop mathematical models that simulate the behavior of 

those networks. The solution of the problem of state estimation by the least squares method, 

sometimes presents a bad conditioning of the gain matrix. Solving a badly conditioned 

problem results in a proximity to the singularity of the coefficient matrix. Also, the use of 

line current measurements in the state estimation process leads to numeric and observability 

problems in the systems including the cancelation of elements in the jacobian matrix in the 

plain state, which means that those measures are useless when starting from plain state. Also, 

the non-linearity of equations causes convergence difficulties in the iterative process. 

 

The proposed work consisted of: (i) developing a state estimator for a determined radial 

network, (ii) introducing state variables of the developed method, (iii) comparing them with 

previously published work, (iv) determining the influence of estimating parameters instead of 

using measured values, and (v) verifying the validity of developed model using PowerWorld 

simulation software. 
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Chapter 1 Introduction 

 

 

1.1 Introduction 

State estimation algorithms for transport networks are based in both active and reactive 

power values. Line current measurements can be used to implement these algorithms, and 

when doing so, malfunctioning problems and non-convergence issues may occur [1]. On the 

other hand, in distribution networks the majority of available existent measurements are line 

currents and node voltages [2]. It is also found that the solution of the problem of state 

estimation by the least squares method sometimes presents a bad conditioning of the gain 

matrix. Solving a badly conditioned problem results in a proximity to the singularity of the 

coefficient matrix. 

The use of line current measurements in the state estimation process leads to numeric and 

observability problems in the systems, as for example the cancelation of elements in the 

jacobian matrix [3] in the plain state, which means that those measures are useless when 

starting from plain state. These equations are non-linear, which can cause convergence 

difficulties in the iterative process. 

In order to efficiently plan and operate electric power network, it is necessary to monitor the 

operating states of the system. With the purpose of controlling the system, state estimation is 

developed and comprises an important tool for network observation. The state of a system is 

defined generally by a vector of the bus voltage and the phase angle. This definition 

procedure is extensively used in energy control centers to provide an estimation of what is 

occurring in real-time. Forecasting loads ensures security and allows safe critical operation 

such as opening or closing of substation switches, load frequency control and dispatch. To 

process data, the state estimator uses: 

-Measurement of variables in the system 

-Model of the system  
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-Previous measurements or inputs/outputs 

The development of the state estimation theory is also motivated by the existence of smart 

grids, decentralized renewable energy production and temporary network congestions. A 

main difference between conventional load flow and state estimation is that in the 

conventional method the results are calculated with measurements that are completely 

correct. On the other hand, state estimation is done with real-time values taken in different 

places of the system and transferred to a main center that may eventually include a small 

number of incorrect values. 

There are several challenges that make state estimation need the use of redundant measures, 

from which should be mentioned that the information may not always be available from 

different measuring equipment, that is located in disperse locations, leading to errors that 

cannot be always automatically eliminated. The topology of the system is also not always 

completely defined. 

To be mentioned is also that the management of the system performs functions of automatic 

control of the generated power, security of the system, and economic dispatch, and this 

feature is achieved by means of interconnecting the electric systems. This interconnection 

increases the overall reliability of the network, and the interconnected transmission lines are 

known as tie-lines. 
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Figure 1.1: Functional diagram of energy management system [4] 

A system is subjected to disturbances, and these disturbances cause undesirable frequency 

changes. Examples of such disturbances are changes in demand, losses in lines, outages and 

system failures. Renewable energy sources also cause load fluctuations when connected to 

conventional systems.  The control operation intends to set and maintain this frequency as 

constant as possible throughout the entire electrical system. Therefore, disturbances and the 

unpredictability of renewable sources make state estimation the more important. 

The notion of security in power systems is considered with regards of the prospect for the 

system to be working under contingent situations. Security will consist of how robust the 

system is towards imminent disturbances. Such notion is based on monitoring and control 

and is expressed in terms of the system state. This state will be a description that notes key 

information once it is known, and that will express variables of importance. Security is not 

defined towards every possible contingency, as it would unnecessarily oversize the 

protections, but towards a “feasible/possible” negative conditions. A normal state would 

fulfill security requirement if all reasonable contingencies result in normal operations. If a 
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contingence brings the system towards emergency, the state is no longer secure. A system 

that has a low probability of blackout is considered safe. The goal of the system control will 

be to stay within a safe state. 

A modern-day control center is centralized and uses digital data, performing analyses. 

• Load forecasting 

• Planning 

• Maintenance scheduling 

• Monitoring  

• State estimation 

• Dispatch 

• Frequency control 

A security study is performed to verify robustness, as a typical power system is never in 

steady state as changes evolve constantly. In a restoration operation, the goal is to restore 

power after a loss, whereas in an emergency state, it is intended to decrease the pressure in 

the overcharged equipment. In order to assess the necessary measures to be taken is 

necessary to know the system states, by the placement of measurement devices on the system 

points. 

The contingency analysis is another major function of the system, modeling problems before 

they arise. It is necessary as problems in the power system arise so quickly that they could 

not be solved unless previously predicted. It is valid for outage studies and serves at indicator 

for annual investment plans. To achieve the optimum economic and safe operation, it is 

necessary to observe and control the operating states of the system. State estimation 

comprises then an important tool for this monitoring. It is traditionally described by the state 

vector of bus voltage magnitudes and phase angles, and it is used to provide an estimation of 

what occurs in the system and what will follow, based on the measurements and the model of 
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the system. State estimation will also assist the function of dispatch and load forecasting. 

Network applications need the current and voltage measurements in order to achieve an 

optimal performance, and gathering and treating data becomes of major importance due to 

the proliferation of deregulated systems in a renewable energy environment as well as smart 

grid implementation begins. The state estimator processes inputs following a particular 

algorithm, in a constant data acquisition process. The method is a modification of the original 

load flow calculations where data free from errors is used. What is more, state estimator may 

use a larger number of input data than the number of variables, which reduces the total 

number of measurements [4]. 

 

1.2 Purpose of this work 

Introducing line current measurements in the state estimation process constitutes an issue due 

to distribution networks characteristics. In order to overcome the difficulty, it is necessary to 

develop mathematical models that simulate the behavior of those networks. In a radial 

distribution network, when voltage magnitudes are available, a load flow solution always 

exists and is unique [5]. Reviewed techniques in order to solve the load flow problem based 

on radial networks include Newton –Raphson method, proposing a variable change. The 

problem appears when in the network are available, besides the voltage measurements, the 

line current magnitudes, which may lead to multiple solutions, losing then the unicity of the 

solution [6]. 

Based on Weighted Least Squares method, it will be intended to introduce alternative current 

line measurements, in order to reduce the multiplicity of available solutions and increase the 

convergence, by reducing the number of required iterations. 

 

 



14 

 

1.3 Scope of this work 

The following points have been treated throughout the present thesis work: 

- Review published articles about state estimation that use line current measurements.  

- Present several solving techniques for the WLS state estimator using the measurements.  

- Formulate new state estimation models starting from those already published, seeking 

significant improvements.  

To propose a state estimator, state variables were introduced, defining different radial 

networks, including nodes and taking measurements, intending to implement in MATLAB 

the method. Developed and previous methods were compared, also contrasting measured and 

estimated parameters. In order to solve the problem of cancelation of terms in the jacobian 

matrix, it was needed to start the estimation by non-plain profiles, or by not neglecting the 

shunt elements from the matrix in the first iteration [7]. To decrease the bad conditioning of 

the gain matrix, it was pursued numerical techniques that try to solve the problem, such using 

virtual or exact measurements. Throughout Lagrange methods or the Hachtel augmented 

matrix solutions were also pursued [8].  

WLS state estimator solutions using line current magnitudes that avoid or decrease the 

problem of bad conditioning of the matrix were also developed throughout the thesis, as well 

as the formulation of new models for simulating distribution networks. 
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1.4 Assumptions  

The studied systems will be assumed to be in a normal state, without any contingencies or 

faults already existing on the nodes. No bad data will be purposely introduced in the model. 

 

1.5 Definitions 

State conditions 

Emergency: Operating limit is violated. (Overload, under/over voltage and/or frequency) 

Restorative: Load not fulfilled, causing a partial/total blackout in the system. 

Normal: All load and operating conditions are satisfied. 

Type of measurements 

Ordinary measurements: Defined as those that come from the state variables and from a real 

physical measurement from the system, by means of a current or voltage transformer. 

Virtual measurements: Measures that are correct despite there is not a physical meter. They 

are treated as power injection measurements with small variance. 
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Chapter 2 Review of Literature 

 

 

2.1 Including current measurements in the generalized state estimation 

The inclusion of line current measurements in the generalized state estimation is discussed in 

[9], creating a methodology that allows all current measurements to be included in the model. 

The generalized state estimator is based on a detailed representation of substations to the 

physical level. There exist two models to represent the substation: the complete model, also 

known as explicit, and the implicit model. The complete model increases the number of state 

variables with power flow through all the switches. The number of conventional state 

variables is very high, as a consequence of the detailed model adopted. Such number of state 

variables is compensated in a proportional way by the topological restrictions that represent 

the state of the switches, either on or off. This leads to a very large model that is the reason 

only reduced substations are modeled with it in detail. On the other hand, the implicit model 

of the substation reduces the size of the problem significantly, allowing all substations in the 

system to be represented, and from there, to include all the available internal measurements. 

Mathematically, the complete model can be represented by equations (2.1) – (2.4): 

𝑧𝑎 = ℎ𝑎(𝑥𝑐, 𝑥𝐶𝐵, 𝑥𝑎) + 𝜀      (2.1) 

𝑐(𝑥𝑐, 𝑥𝑎) = 0       (2.2) 

𝑡(𝑥𝑐, 𝑥𝐶𝐵, 𝑥𝑎) = 0       (2.3) 

𝑐𝑎(𝑥𝑐, 𝑥𝐶𝐵 , 𝑥𝑎) = 0       (2.4) 

where: 

𝑧𝑎 : Magnitude measurements of voltage, power injections and power flows through the 

switches. 

ℎ𝑎 : Non-linear function measurements that relate 𝑧𝑎 with the state variables 𝑥. 

𝑥𝑐 : State vector composed by voltage magnitudes and phase angles. 

𝑥𝐶𝐵 : Flow through the switches 
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𝑥𝑎 : Voltage magnitudes and phase angles 

𝜀 : Error 

𝑐 : Structural restrictions 

𝑡 : Topological restrictions, (switch state on/off) 

𝑐𝑎 : Additional structural restrictions. 

For the implicit model, the main goal is to minimize the number of additional variables that 

may be included in the state vector and avoid topological restrictions and also minimize the 

number of structural restrictions that remain in a model. An automatic way of choosing a 

critical state variable from the substation model is to define the own tree, which follows the 

following rules: 

- Exclude all impedance branches different than zero. 

- Exclude as many Open Loops as possible 

- Include as many Closed Loops as possible 

- For each electrical node, one of these incident injections or a null injection branch will 

be added to the tree when necessary. 

The state vector is composed by the corresponding voltages of the tree branches and the 

power flows corresponding to the connections, excluding the lines/transformers. The extra set 

of state variables, 𝑥𝑒, added to the state vector by the implicit model it is exclusively made up 

by power injection and power flows through the switches, which are excluded from the own 

tree previously defined. Certain power measurements may be easily expressed in terms of 𝑥𝑐 

and 𝑥𝑒. On the other hand, due to the way of building the own tree, the topological 

restrictions consider 𝑥𝐶𝐵 = 0, variables that are eliminated from the model, reducing it to the 

following form in (2.5) and (2.6): 

𝑧𝑎 = ℎ𝑎(𝑥𝑐, 𝑥𝑒) + 𝜀      (2.5) 

𝑐(𝑥𝑐) = 0       (2.6) 
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In terms of minimizing the state vector, power flows (active or reactive), 𝑓𝑖𝑗, in the substation 

can be expressed as shown in (2.7): 

𝑓𝑖𝑗 = ∑ 𝑓𝐿(𝑥𝑐) + ∑ 𝑓𝑒      (2.7) 

where 𝑓𝐿 is the power flow through the regular branches with impedance different than zero, 

which is a function exclusively of the classic state variables 𝑥𝑐. 𝑓𝑒 refers to the flows through 

connections of the own tree, included in  𝑥𝑒 . 

The generalized state estimator adopts an additional change with respect to the inclusion of 

current measurements associated with branches of null impedance or unknown added to the 

model, this is the case of currents that flow through the switches and also inject in different 

nodes of the external network, none of which may be solved by the conventional state 

estimator. On the other hand, current measurements associated with the switching devices 

may be expressed as shown in (2.8): 

𝐼𝑖𝑗 =
√𝑃𝑖𝑗

2 +𝑄𝑖𝑗
2

𝑉
       (2.8) 

where 𝐼𝑖𝑗 is the current through the branch i-j inside of the substation Pij and Qij are the active 

and reactive power and 𝑉 is the voltage magnitude in the node. Note that the state variables 

can be expressed by means of (2.7). The jacobian elements can be obtained using one of the 

two methods.  

(i) If Pij and Qij are state variables, then use equations (2.9) – (2.11) as follows: 

𝜕𝐼𝑖𝑗

𝜕𝑃𝑖𝑗
=

𝑃𝑖𝑗

𝐼𝑖𝑗𝑉2       (2.9) 

𝜕𝐼𝑖𝑗

𝜕𝑄𝑖𝑗
=

𝑄𝑖𝑗

𝐼𝑖𝑗𝑉2
                (2.10) 

𝜕𝐼𝑖𝑗

𝜕𝑉
= −

𝐼𝑖𝑗

𝑉
                  (2.11) 

(ii) If Pij and Qij are not state variables, then use equations (2.12) – (2.13) as follows: 

𝜕𝐼𝑖𝑗

𝜕𝑥
=

1

𝐼𝑖𝑗𝑉2
[𝑃𝑖𝑗

𝜕𝑃𝑖𝑗

𝜕𝑥
+ 𝑄𝑖𝑗

𝜕𝑄𝑖𝑗

𝜕𝑥
]               (2.12) 
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𝜕𝐼𝑖𝑗

𝜕𝑉
=

1

𝐼𝑖𝑗𝑉2
[𝑃𝑖𝑗

𝜕𝑃𝑖𝑗

𝜕𝑉
+ 𝑄𝑖𝑗

𝜕𝑄𝑖𝑗

𝜕𝑉
] −

𝐼𝑖𝑗

𝑉
               (2.13) 

It can be observed that there exists indetermination problems in the beginning of a plane 

profile. A way to avoid this would be to take 𝐼𝑖𝑗
2 , in which case the profiles of the jacobian 

will be determined using one of the following two methods. 

(i) If Pij and Qij are state variables, then use equations (2.14) – (2.16) as follows: 

𝜕𝐼𝑖𝑗
2

𝜕𝑃𝑖𝑗
=

2𝑃𝑖𝑗

𝑉2                   (2.14) 

𝜕𝐼𝑖𝑗
2

𝜕𝑄𝑖𝑗
=

2𝑄𝑖𝑗

𝑉2                   (2.15) 

𝜕𝐼𝑖𝑗
2

𝜕𝑉
= −

2𝐼𝑖𝑗
2

𝑉
                  (2.16) 

(ii) If Pij and Qij are not state variables, then use equations (2.17) – (2.18) as follows: 

𝜕𝐼𝑖𝑗
2

𝜕𝑥
=

2

𝐼𝑖𝑗𝑉2 [𝑃𝑖𝑗
𝜕𝑃𝑖𝑗

𝜕𝑥
+ 𝑄𝑖𝑗

𝜕𝑄𝑖𝑗

𝜕𝑥
]               (2.17) 

𝜕𝐼𝑖𝑗
2

𝜕𝑉
=

2

𝐼𝑖𝑗𝑉2 [𝑃𝑖𝑗
𝜕𝑃𝑖𝑗

𝜕𝑉
+ 𝑄𝑖𝑗

𝜕𝑄𝑖𝑗

𝜕𝑉
] −

2𝐼𝑖𝑗
2

𝑉
                          (2.18) 

 

Also the injected current in the node I can be expressed as shown in (2.19): 

𝐼𝑖 =
√𝑃𝑖

2+𝑄𝑖
2

𝑉
                 (2.19) 

The previous expressions are valid and may replace 𝐼𝑖𝑗, 𝑃𝑖𝑗, 𝑄𝑖𝑗 with 𝐼𝑖, 𝑃𝑖 and 𝑄𝑖 

respectively. The model was tried on different scenarios, having generated a set of 

simulations with measurements that contain Gaussian errors, having compared the proposed 

method against the conventional method and the proposed method using current 

measurements and also using squared current measurements. The trials were made in 

presence of topological error and its behavior towards wrong data when working with exact 

measurements. The generalized state estimator showed in [10] that the inclusion of certain 

current measurements which have been neglected until now or considered in use as redundant 
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measurements present satisfactory results and reinforces the capability of detecting and 

identifying topological and analogical errors. 

 

2.2 State estimation based in a line current 

This article [11] published in parallel with [12], presented a method for the state estimation in 

which the set of available measurements, consists of voltage magnitudes in the nodes and line 

currents. The addressed problem is analyzing the observability 𝑃 − 𝜃 that may be achieved 

by providing inequality restrictions that are added to the estimating process. These 

restrictions simply indicate a sign convention of 𝑃 ≥ 0 for a generating node and 𝑃 ≤ 0 for a 

load node. The simulation results confirmed that the method could be applicable for a 

distribution network of medium size, as long as the radial network has more than just one 

feeder node. Given the mentioned available measurements, the line current measurement 

between nodes 𝑖𝑗 can be expressed as shown in (2.20) – (2.24): 

|𝐼𝑖𝑗| = |𝐴𝑉𝑖
2 + 𝐵𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗(𝐶 cos𝜃𝑖𝑗 − 𝐷 sin𝜃𝑖𝑗)|
1/2

           (2.20) 

where: 

𝐴 = 𝑔𝑖𝑗
2 + (𝑏𝑖𝑗 + 𝑏𝑠ℎ/2)2              (2.21) 

𝐵 = 𝑔𝑖𝑗
2 + 𝑏𝑖𝑗

2                  (2.22) 

𝐶 = 𝑔𝑖𝑗
2 + 𝑏𝑖𝑗(𝑏𝑖𝑗 + 𝑏𝑠ℎ/2)                (2.23) 

𝐷 = 𝑔𝑖𝑗𝑏𝑠ℎ/2               (2.24) 

 

and g and b are the line parameters. 

The observability analysis of the proposed method by this article, is intended for distribution 

networks, where the shunt parameters are neglected. Also it is necessary to know the active 

power in each node and that dependent if the node is either load or generation, can be 

assumed as positive or negative or even zero. Knowing these values may be included in the 
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estimation process in the form of inequality restrictions. The estimation problem is then 

converted into minimizing a non-linear function h subjected to non-linear inequality 

restrictions. The minimizing to non-linear statement can be mathematically expressed as 

shown in (2.25): 

𝑀𝑖𝑛 𝐽(𝑥) = [𝑧 − ℎ(𝑥)]𝑇𝑊[𝑧 − ℎ(𝑥)]                 (2.25) 

where 𝑐(𝑥) ≥ 0 

These inequalities 𝑐(𝑥) are the known active power flow equations, existing in each of the 

sides of each of the network lines. The inequality restrictions are not useful when there are 

sufficient available power flows or injections. Nevertheless, certain areas where those 

measurements do not guarantee the observability, it may be made observable by using the 

described method. It is used in the article the squared line current measurements with a 

standard deviation of twice the normal. The expression of the measured current elevated to 

the square for line ij, neglecting now the shunt parameters is the following (2.26): 

𝐼𝑖𝑗
2 = [(𝑔𝑖𝑗

2 + 𝑏𝑖𝑗
2 )(𝑉𝑖

2 − 𝑉𝑗
2 − 2𝑉𝑖𝑉𝑗cos𝜃𝑖𝑗)]                 (2.26) 

From the previous expression (2.26), knowing the voltage magnitudes and the value of the 

line current can be obtained the absolute value of phase displacement between the sides of the 

line ij, as shown in (2.27). 

𝑐𝑜𝑠 𝜃𝑖𝑗 =
𝑉𝑖

2+𝑉𝑗
2−𝐼𝑖𝑗

2 (𝑟𝑖𝑗
2 +𝑥𝑖𝑗

2 ) 

2𝑉𝑖𝑉𝑗
                     (2.27) 

The determination of the power flow directions in the lines, will determine the true sign of 

the phase angle between the line sides, with which it could be stated that two possible 

solutions exist [13]. The article determines rules for the determination of the direction of the 

power flow in the line and uses exact and real measurements. The problem is to define the 

sign of the phase angle, and with it to define the inequality restriction, but some problems are 

presented when there appear similar phase angle values in some lines and is to be solved by 

adding more restrictions or measurements so it exists more redundancy in the estimation 
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process. The second problem appears when a line is so short or it has an insignificant load so 

the phase angle is so small that is in the same order of magnitude of the convergence values. 

That would be the case of the state estimator that cannot identify the correct state of the flow 

direction. One solution is to consider it a super-node. It can be concluded in this article, that 

the proposed model provides, on top of filtering redundant measurements, a real time load 

flow. Nevertheless, in order to increase reliability, it is strongly recommended to include as 

many restrictions as possible. The augmented Lagrange method is the solution taken for the 

proposed state estimator, for optimizing power flow, with satisfactory results [14]. 

 

2.3 State estimation based in branch current for distribution systems 

In article [15] there is a three-phase state estimator for distribution networks, based on current 

line measurements. It is a method adapted to low meshed distribution networks and more 

efficient than the conventional state estimator. The proposed method introduced the real and 

imaginary components of the branch currents as state variables in place of the conventional 

variables that are voltage and phase in the nodes. The line current defines the system state 

because if the branch current is known, loads and voltages in the nodes may be determined. 

The measurement function such as the power flows and load measurements in the nodes are 

expressed as a function of this new state variables, which have a linear behavior. The line 

current measurement expression is a linear function and the voltage magnitudes are ignored, 

with the exception of the voltage measurement in the substation node that is considered as a 

reference node. The measurement function of the line current presents indetermination 

problems in the jacobian as starting the plane profile due to its nonlinear behavior, a way of 

solving this is by excluding the measurements in the first iterations and then introducing them 

in the subsequent measurements. The article considers that the proposed method is 

computationally efficient due to the decoupling of phases and also given that the gain matrix 
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is independent from the line parameters. The observability analysis, in the numerical 

observability method is necessary to ensure that the gain matrix is not singular and that is 

insured by the available sufficient measurements in the LU factorization. 

 

2.4 Multiple solution detection in state estimation in presence of line current 

measurements 

Article [16] is based on the problem of observability when the networks contain line current 

measurement magnitudes. The use of current measurements may lead to multiple solutions, 

and also the unique observability of the network may be lost for specific measurement 

configurations. A simple method based on the residues covariance matrix is considered, that 

intends to detect the possibility of multiple solutions for a determined set of measurements. 

The method is based over the formulation of the conventional state estimator with inequality 

restrictions. The method is valid for systems that include voltage magnitudes, power flows 

and injections, and line current measurements. The use of inequality restrictions may 

guarantee that the unique observability is true. The method used indicates if such 

measurements are added or not to the calculations, as well as the use of inequality 

restrictions, or pseudo-measurements that will be added so that the given system has unique 

observability. 

The algorithms for the observability analysis are based in the supposition that the system 

solution may be found with the state estimation problem and is unique. In order to do so is 

necessary to have as available measurements the active and reactive power in order to use the 

decoupled problems. Such natural uncoupling between active and reactive measurements is 

lost when the measurements are included in the set of available measurements, the line 

current magnitudes. When line current measurements are used it may be found that the 

system is observable, but there may be multiple solutions, a complete range of the Jacobian 
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matrix does not necessarily imply that the observability of the system is unique. In this case 

the set of measurements is made up entirely by voltage magnitudes and line currents as well 

as pairs of power flow (P-Q) and power injections. The initialization of the iterative process 

in the state estimation problem is important, as when there exist multiple solutions may 

converge to the solution that is closer to the initial point, especially when the voltage 

magnitude measurements may contain errors. For the determination of the unique solution, it 

is used a numerical method based on the measurement of the residues of the covariance 

matrix. Considering the linearized measurements given by (2.28): 

∆𝑧 = 𝐻∆𝑥 + 𝑒                (2.28) 

where 𝐻 =
𝛿ℎ(𝑥)

𝛿𝑥
, ℎ(𝑥) are the non-linear measurement functions that relate z with the state 

variables x, and e represents the error measurements. Using the estimator Weighted Least 

Squares, the residues of the measurements may be related following (2.29):  

𝑟 = 𝑆𝑒                 (2.29) 

where S is as (2.30): 

𝑆 = (𝐼 − 𝐻(𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1)              (2.30) 

R: covariance matrix of the measurement errors 

𝑟 = �̂� − 𝑧 Residue of the measurements 

�̂� Estimated measurements 

The covariance matrix of the residues can be written as (2.31): 

𝐶 = 𝑐𝑜𝑣(𝑟) = 𝑆𝑅               (2.31) 

Starting from the previous expression it is presented the process to detect possible solutions. 

It is assumed that the network has a solution and the possibility of multiple solutions depends 

on the set of available measurements. The process is as follows: 

- Calculate the columns of C, corresponding on the current magnitudes. 
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- If one column k, contains an input different than zero that corresponds to a power flow 

measurement or injection, then skip that column. If not, mark the current measurement 

along with the other measurements with entries different than zero in that column as a 

component of the residue v-i capable of giving multiple solutions. If the column is 

completely zero, then indicate the current measurement as critical measurement. 

 

2.5 Line current measurement in state estimation  

From article [17] it is found the method to overcome the mathematical indetermination 

problems found when the current measurements are used in state estimation. The 

measurements used are the current measurements elevated to the square, also by modifying 

the values of the standard deviation of these measurements and the new values of the 

Jacobian are well mathematically defined for all the calculated conditions [18]. From the pi-

equivalent model, the equation that relates the current magnitude with the state variable in a 

branch connecting nodes i and j follows (2.32) – (2.35): 

|𝐼𝑖𝑗| = [𝐴𝑉𝑖
2 + 𝐵𝑉𝑗

2 − 2𝐶𝑉𝑖𝑉𝑗 cos(𝜃𝑖 − 𝜃𝑗)]
1/2

             (2.32) 

where: 

𝐴 = (𝑔𝑖𝑗 + 𝑔𝑠𝑖)
2 + (𝑏𝑖𝑗 + 𝑏𝑠𝑖)

2               (2.33) 

𝐵 = 𝑔𝑖𝑗
2 + 𝑏𝑖𝑗

2                             (2.34) 

𝐶 = 𝑔𝑖𝑗(𝑔𝑖𝑗 + 𝑏𝑠𝑖) + 𝑏𝑖𝑗(𝑏𝑖𝑗 + 𝑏𝑠𝑖)              (2.35) 

 

By considering as a measurement of the square of the line current measurement, the terms 

corresponding to the Jacobian will be as (2.36) – (2.39): 

𝛿𝐼𝑖𝑗
2

𝛿𝑉𝑖
=  2[𝐴𝑉𝑖 − 𝐶𝑉𝑗 cos(𝜃𝑖 − 𝜃𝑗)]               (2.36) 

𝛿𝐼𝑖𝑗
2

𝛿𝑉𝑗
=  2[𝐵𝑉𝑗 − 𝐶𝑉𝑖 𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗)]                (2.37) 
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𝛿𝐼𝑖𝑗
2

𝛿𝜃𝑖
=  2[𝐶𝑉𝑖𝑉𝑗 𝑠𝑖𝑛(𝜃𝑖 − 𝜃𝑗)]                 (2.38) 

𝛿𝐼𝑖𝑗
2

𝛿𝜃𝑗
=  2[−𝐶𝑉𝑖𝑉𝑗 𝑠𝑖𝑛(𝜃𝑖 − 𝜃𝑗)]                 (2.39) 

The detailed expressions may be evaluated under plane profile conditions and do not present 

indetermination problems in the state estimation [19]. In order to use the squared value as a 

measurement, it is necessary to determine their modified variances and that are necessaries in 

the process of detection and identification of bad data [20]. It may be considered as the 

product of two random measurements 𝑧𝑘 and 𝑧𝑚 with their corresponding standard deviations 

𝜎𝑘 and 𝜎𝑚 lead to a resulting new variable 𝑧𝑛 with the standard deviation 𝜎𝑛, as (2.40): 

𝑧𝑛 ± 𝜎𝑛 = (𝑧𝑘 ± 𝜎𝑘) ∙ (𝑧𝑚 ± 𝜎𝑚)    

         =  𝑧𝑘 ∙ 𝑧𝑚 ± (𝑧𝑘 ∙ 𝜎𝑚 + 𝑧𝑚 ∙ 𝜎𝑘) + 𝜎𝑘 ∙ 𝜎𝑚            (2.40) 

 

If it is considered that both random measurements are equal and belong to a line current 

measurement, leads to 𝑧𝑘 = 𝑧𝑚 = |𝐼𝑖𝑗| and the standard deviation is 𝜎𝑘 = 𝜎𝑚 = 𝜎|𝐼𝑖𝑗|. In this 

case, from equation (2.40) it is inferred that the standard deviation to the square be as (2.41): 

𝜎
|𝐼𝑖𝑗|

2 = 2|𝐼𝑖𝑗|𝜎|𝐼𝑖𝑗| + 𝜎|𝐼𝑖𝑗|
2                (2.41) 

Simulations made in the article use equation (2.41) for the calculation of the standard 

deviation, used in the process of detecting and identifying wrong data with good results. 

Observability analysis through line currents are necessarily two measurements on each line 

and considers three possible cases that go together, such as the current flow with a flow of 

reactive flow, and lastly with a voltage magnitude [21]. Estimations done over a system 

considered as available measurements the voltage magnitudes in every node and the line 

currents, show that starting from a plane profile with correct direction of the power flow in 

the lines, the final estimated reached value is always correct. Otherwise it always converges 

to an incorrect solution, but in this case it shows higher sensitivity to the estimator, both 
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solutions make the network observable, plus the degree of redundancy of the used 

measurement set is almost minimal. The other case is presented when the available 

measurements are composed of a set of voltages, active and reactive flows, and line currents. 

The estimator led to correct results, even including incorrect measurements or even 

topological errors [22].   

 

2.6 WLS state estimator using line current measurements 

In this section it will be detailed the solution techniques for the state estimator WLS using 

line current measurements, which will be the method to be used. The solution to the 

formulation of the problem of state estimation by minimum squares, uses the normal 

equations, but in some cases it presents a bad conditioning of the gain matrix. Solving a bad 

conditioned problem results in a proximity to the singularity of their matrix of coefficients 

[23]. Bad conditioning in the gain matrix may be due to different causes, in which it could be 

mentioned: 

- Simultaneously using very high weights for the virtual measurements (transit nodes) 

and relatively low for the rest of measurements. 

- Working with networks that are incident in their nodes with very long and very short 

lines simultaneously. 

- Using as available measurements an elevated percentage of injection measurement 

instead of flow measurements. 

In large radial distribution networks, it is produced a bad conditioning when the election of 

the base power is not adequate and especially if we use line current measurement magnitudes 

[24]. To reduce that bad conditioning of a gain matrix, several numerical techniques appear 

that intend to solve the problem, between these it may be mentioned: using exact or virtual 
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measurements, implementing equality restrictions through Lagrange multipliers and by 

applying the Hachtel augmented matrix. 

 

2.6.1 Modeling of current measurements 

For a branch connected between general nodes i and j, the equation that relates the current 

magnitude with the state variables is shown in the equation (2.32) which shows a non-linear 

relationship. If shunt parameters are discarded, it is obtained (2.42): 

𝐼𝑖𝑗 = [(𝑔𝑖𝑗
2 + 𝑏𝑖𝑗

2 )(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖
2𝑉𝑗

2 cos 𝜃𝑖𝑗)]
1/2

                   (2.42) 

 

It can be observed how the term sin 𝜃𝑖𝑗  from equation (2.32) disappears, which was one of 

the main problems when using current magnitude measurements. 

 

2.6.2 Difficulties in the use of current measurements 

The use of current measurements in the process of state estimation leads to several numerical 

and/or observability issues, in which it could be mentioned that for the case of starting in the 

plain state, the elements of the jacobian that correspond to the current measurement are 

undefined if the value of 𝐼𝑖𝑗 is used directly, or else zero when it is used 𝐼𝑖𝑗
2 , which means that 

the current measurements are not useful when it is started by the plain state [25]. Therefore, 

to solve this issue it is necessary to initialize the estimation process with a non-plain profile 

or by not neglecting the shunt parameters in the first iteration [26]. The non-linearity of 𝐼𝑖𝑗 in 

the equation (2.42) causes convergence difficulties in the iterative process and is then more 

convenient to use 𝐼𝑖𝑗
2 .If current measurements are considered and there are no power 

measurements, starting by equation (2.39), the phase angles can be calculated with the 

expression (2.43):  

cos 𝜃𝑖𝑗 =
𝑉𝑖

2+𝑉𝑗
2−𝐼𝑖𝑗

2 (𝑟𝑖𝑗
2 +𝑥𝑖𝑗

2 )

2𝑉𝑖𝑉𝑗
               (2.43) 
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Starting by equation 3.2 it can be found two solutions for the displacement angle ±𝜃𝑖𝑗. This 

leads to obtaining two different solutions for the power flows, due to the presence of the term 

“sin 𝜃𝑖𝑗”. The expressions of the active and reactive power flow that neglect the shunt 

parameters are (2.44) – (2.45). 

𝑃𝑖𝑗 = 𝑉𝑖
2𝑔𝑖𝑗 − 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗)                          (2.44) 

𝑄𝑖𝑗 = −𝑉𝑖
2𝑏𝑖𝑗 − 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗)                   (2.45) 

If expressions (2.44) – (2.45) are introduced in the equation (2.43), obtaining expressions 

(2.46) – (2.47): 

𝑃𝑖𝑗 = −𝑏𝑖𝑗𝑉𝑖𝑉𝑗 sin 𝜃𝑖𝑗 +
1

2
[𝑔𝑖𝑗(𝑉𝑖

2 − 𝑉𝑗
2) + 𝐼𝑖𝑗

2 𝑟𝑖𝑗]                 (2.46) 

𝑄𝑖𝑗 = −
1

2
[𝑏𝑖𝑗(𝑉𝑖

2 − 𝑉𝑗
2) − 𝐼𝑖𝑗

2 𝑥𝑖𝑗] − 𝑔𝑖𝑗𝑉𝑖𝑉𝑗 sin 𝜃𝑖𝑗              (2.47) 

From the equations (2.46) – (2.47) it is shown the multiplicity of solutions, if only the current 

measurements are considered. A proper combination of available measurements from current 

magnitude as well as power flows allow to analyze the multiplicity of solutions problem, 

which would lead to the unique solution of the system [27]. 

 

2.7 Solution through virtual measurements 

The problem of state estimation WLS through virtual measurements, is presented as (2.48): 

Min 𝐽(𝑥) = [𝑧 − ℎ(𝑥)]𝑇𝑊(𝑥)[𝑧 − ℎ(𝑥)]                               (2.48) 

where z is formed by ordinary measurements and measurements exact or virtual, which result 

from expressing the equation (2.42) as shown in (2.49): 

𝑓(𝑥) = 𝐼𝑖𝑗
2 − [(𝑔𝑖𝑗

2 + 𝑏𝑖𝑗
2 )(𝑉𝑖

2 + 𝑉𝑗
2 − 2𝑉𝑖𝑉𝑗 cos 𝜃𝑖𝑗)]= 0              (2.49) 

 

If 𝑓(𝑥) = 0 it is considered virtual measurements. 
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If H denotes the jacobian of the ordinary measurements and C the jacobian of virtual 

measurements, in that case the gain matrix will be as (2.50): 

𝐺 = [
𝐻
𝐶

]
𝑇

[
𝑊 0
0 𝑊1

] [
𝐻
𝐶

]               (2.50) 

where: 

𝑊: Weights assigned to ordinary measurements 

𝑊1: Weights assigned to the virtual measurements, of high value. 

Then the state estimator leads to the iterative solution as following (2.51): 

[𝐺(𝑥𝑘)][∆𝑥𝑘] = [
𝐻
𝐶

]
𝑇

[
𝑊 0
0 𝑊1

] [∆𝑧𝑘]                  (2.51) 

where the incremental steps are as (2.52) – (2.53): 

∆𝑥𝑘 = 𝑥𝑘+1 − 𝑥𝑘                          (2.52) 

∆𝑧𝑘 = 𝑧 − ℎ(𝑥𝑘)                (2.53) 

 

2.8 Solution through equality restrictions 

This method is used when in the problem of state estimation, it is available a set of 

measurements that include exact values. In the case of distribution systems, it is presented the 

equation of line current magnitude as a function of the state variables and considered as an 

equality restriction, such as is the case in equation (2.49) as indicated by measure 𝑓(𝑥) = 0 

[28]. The problem of WLS state estimation with equality restrictions, is presented on (2.54) 

Min 𝐽(𝑥) =
1

2
[𝑧 − ℎ(𝑥)]𝑇𝑊(𝑥)[𝑧 − ℎ(𝑥)]                                       (2.54) 

subjected to 𝑓(𝑥) = 0 

where 𝑓(𝑥) represents the equality restrictions. 

The problem presented can be solved by building the Lagrange function, as shown in (2.55): 

ℒ = 𝐽(𝑥) − 𝜆𝑇𝑓(𝑥)                (2.55) 
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and the first order optimality conditions are obtained as (2.56) – (2.57): 

𝜕ℒ

𝜕𝑥
= 0 → 𝐻𝑇𝑊[𝑧 − ℎ(𝑥)] + 𝐶𝑇𝜆 = 0                    (2.56) 

𝜕ℒ

𝜕𝜆
= 0 → 𝑓(𝑥) = 0                  (2.57) 

where 𝐶 is the jacobian of 𝑓(𝑥) 

Applying the Gauss-Newton method, the solution of the non-linear system is obtained 

iteratively through the following linear system, as shown in (2.58): 

[𝐻𝑇𝑊𝐻 𝐶𝑇

𝐶 0
] [

∆𝑥
−𝜆

] = [
𝐻𝑇𝑊∆𝑧𝑘

−𝑓(𝑥𝑘)
]                (2.58) 

 

The solution to (2.58) presents several drawbacks when there exists a bad scaling between the 

values of the matrix coefficients 𝐻𝑇𝑊𝐻 and the coefficients of the jacobian matrix 𝐶, and, as 

a consequence, it occurs a bad conditioning. 

 

2.9 Hachtel augmented matrix 

This formulation, as compared with the previous equality restrictions case, also considers as 

equality restrictions the equations of the residues 𝑟. The optimization problem is then 

proposed in the form as (2.59) – (2.60): 

Min 𝐽(𝑥) =
1

2
𝑟𝑇𝑊(𝑥)𝑟                                         (2.59) 

subjected to 𝑓(𝑥) = 0 

𝑟 − 𝑧 + ℎ(𝑥) = 0                (2.60) 

The Lagrange function that results has two subsets of Lagrange multiplications as (2.61): 

 ℒ = 𝐽(𝑥) − 𝜆𝑇𝑐(𝑥) − 𝜇𝑇(𝑟 − 𝑧 + ℎ(𝑥))                (2.61) 

and the optimality conditions are expressed by equations (2.62) – (2.65): 

𝛿ℒ/𝛿𝑥 = 0 → 𝐶𝑇𝜆 + 𝐻𝑇𝜇 = 0               (2.62) 
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𝛿ℒ/𝛿𝜆 = 0 → 𝑓(𝑥) = 0                 (2.63)                    

𝛿ℒ/𝛿𝑟 = 0 → 𝑊𝑟 − 𝜇 = 0               (2.64) 

𝛿ℒ/𝛿𝜇 = 0 → 𝑟 − 𝑧 + ℎ(𝑥) = 0              (2.65) 

 

where 𝐶 is the jacobian of 𝑓(𝑥) (virtual measurements) and 𝐻 the jacobian of ordinary 

measurements. The equation 𝑊𝑟 − 𝜇 = 0 allows to eliminate 𝑟  (𝑟 = 𝑅𝜇) and the remainder 

of equations generates the system as shown in (2.66): 

[
𝑅 𝐻 0

𝐻𝑇 0 𝐶
0 𝐶 0

] [
𝜇

∆𝑥
𝜆

] = [
∆𝑧𝑘

0
−𝑓(𝑥𝑘)

]              (2.66) 

The coefficients of the matrix in (2.66) are denominated Hachtel augmented matrix, and it 

presents a better conditioning with regards to (2.58) if a proper scaling in between the 

coefficients of H and C are achieved [29]. 
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Chapter 3 Methodology 

3.1 Network description 

The development of the present chapter introduces a new formulation of the problem of the 

state estimation taking into account the characteristics of a distribution system. In contrast 

with the conventional state estimator that uses as state variables voltage magnitudes and 

phase angles, in the proposed model it will be used new state variables in such way that a 

linear model subjected to quadratic restrictions is obtained. The main characteristic of the 

results of this model is that a set of own measurements is used. This set are the voltage 

magnitudes in the nodes and the line current measurement in the branches. This study is 

consistent with the distribution system model developed in chapter 2. 

As an illustrative example a radial network of 5 nodes as shown in figure (3.1) will be used to 

show the new formulation of the state estimation problem. Similar studies will be done for 

larger networks with 69 and 85 nodes as shown in figure (3.2) and figure (3.3), respectively. 

 

 

Figure 3.1: 5-node radial network 
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Figure 3.2: 69-node radial network 

 

 

Figure 3.3: 85-node radial network 
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3.2 Proposed state estimation variables 

Having into account previously shown equations (2.46) – (2.47) results in (3.1) – (3.2):  

𝑃𝑖𝑗 = −𝑏𝑖𝑗𝑉𝑖𝑉𝑗 sin 𝜃𝑖𝑗 +
1

2
[𝑔𝑖𝑗(𝑉𝑖

2 − 𝑉𝑗
2) + 𝐼𝑖𝑗

2 𝑟𝑖𝑗]                    (3.1) 

𝑄𝑖𝑗 = −
1

2
[𝑏𝑖𝑗(𝑉𝑖

2 − 𝑉𝑗
2) − 𝐼𝑖𝑗

2 𝑥𝑖𝑗] − 𝑔𝑖𝑗𝑉𝑖𝑉𝑗 𝑠𝑖𝑛 𝜃𝑖𝑗           (3.2) 

 

In an electrical power distribution system, the flows of active and reactive power in the lines 

may be expressed as a function of the node voltages and the line current magnitudes, as 

shown in (3.3): 

𝐼𝑖𝑗 = [(𝑔𝑖𝑗
2 + 𝑏𝑖𝑗

2 )(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖
2𝑉𝑗

2 cos 𝜃𝑖𝑗)]
1/2

          (3.3) 

 

Equation (3.3) relates the line current magnitude with the voltage magnitude in the nodes and 

the phase angles in the sides of the line. The state estimator proposed introduces the set of 

measurements as shown in (3.4) – (3.6): 

𝑈𝑖 = 𝑉𝑖
2         (3.4) 

𝐽𝑖𝑗 = 𝐼𝑖𝑗
2                    (3.5) 

𝑊𝑖𝑗 = 𝑉𝑖𝑉𝑗 𝑠𝑖𝑛 𝜃𝑖𝑗                       (3.6) 

 

In terms of the new state variables, equations (2.46) – (2.47) can be expressed in a linear way 

for the second set of measurements as (3.7) – (3.8): 

𝑃𝑖𝑗 = −𝑏𝑖𝑗𝑊𝑖𝑗 +
1

2
[𝑔𝑖𝑗(𝑈𝑖 − 𝑈𝑗) + 𝐽𝑖𝑗𝑟𝑖𝑗]     (3.7)      

𝑄𝑖𝑗 = −
1

2
[𝑏𝑖𝑗(𝑈𝑖 − 𝑈𝑗) − 𝐽𝑖𝑗𝑥𝑖𝑗] − 𝑔𝑖𝑗𝑊𝑖𝑗    (3.8) 

On the other hand, from virtual measurements leads to (3.9): 

𝑓(𝑥) = 𝐼𝑖𝑗
2 − [(𝑔𝑖𝑗

2 + 𝑏𝑖𝑗
2 )(𝑉𝑖

2 + 𝑉𝑗
2 − 2𝑉𝑖𝑉𝑗 cos 𝜃𝑖𝑗)]      (3.9) 
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and introducing the variable changes, it leads to the quadratic expression (3.10) for each 

branch: 

𝑊𝑖𝑗
2 +

[𝑈𝑖+𝑈𝑗−𝐽𝑖𝑗𝑧𝑖𝑗
2 ]

2

4
− 𝑈𝑖𝑈𝑗 = 𝑓(𝑥) = 0               (3.10) 

It can be observed then, that using the set of state variables proposed, any available measure 

is a linear function of the state vector. In a compact way, it is obtained the model shown in 

(3.11): 

{
𝑧 = 𝐻𝑥 + 𝑒 → 𝑙𝑖𝑛𝑒𝑎𝑟

  𝑓(𝑥) = 0 → 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐
               (3.11) 

This leads to the following State Estimator WLS with equality restrictions shown in (3.12): 

 

Min 𝐽(𝑥) =
1

2
[𝑧 − 𝐻𝑥]𝑇𝑊[𝑧 − 𝐻𝑥]             (3.12) 

subjected to 𝑓(𝑥) = 0 

In the state estimator proposed, it can be observed that it is used state variables in the 

branches, and to develop that state estimation process is not necessary to have a reference 

value as it is the case with the Conventional State Estimator, that uses a phase angle as 

reference. For the solution of the problem it will be used two different techniques: Lagrange 

multipliers and virtual measurements, both techniques have been developed on chapter 1. For 

the case of solution through Lagrange multipliers, it will be obtained the first order optimality 

conditions as (3.13) – (3.14): 

𝛿ℒ/𝛿𝑥 = 0 →  𝐻𝑇𝑊[𝑧 − 𝐻𝑥] + 𝐶𝑇𝜆                        (3.13) 

𝛿ℒ/𝛿𝜆 = 0 →  𝑓(𝑥) = 0               (3.14) 

where C is the jacobian of f(x). 

Applying the Gauss-Newton method, the solution of the non-linear system (3.12), is obtained 

iteratively through the following non-linear system, shown in (3.15): 

[𝐻𝑇𝑊𝐻 𝐶𝑇

𝐶 0
] ∙ [

Δ𝑥
−𝜆

] = [
𝐻𝑇𝑊Δ𝑧𝑘

−𝑓(𝑥𝑘)
]             (3.15) 

 

where the increments are shown in (3.16) – (3.17): 
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Δ𝑥 = 𝑥𝑘+1 − 𝑥𝑘                 (3.16) 

Δ𝑧𝑘 = 𝑧 − 𝐻(𝑥𝑘)                (3.17) 

 

The structure of the equation (3.15) will be illustrated supported by a 5 nodes radial network 

as shown in figure (3.1). 

 

3.3 Iterative process description 

The measurements will be the voltage magnitudes in every node. The flows of active power 

and flows of line current will be the measurements in all the branches. Having that into 

account, the Jacobian of the measurement, will be as shown in equation (3.18): 

 

It can be observed that the Jacobian is a function only of the network parameters, as a 

consequence of the linearity of the model, and the inclusion of current measurements is 

direct. The jacobian associated to the quadratic restrictions (3.12) is obtained by applying the 

expressions shown in (3.19) – (3.22).  

𝜕𝑓(𝑥)

𝜕𝑈𝑖
=

(𝑈𝑖+𝑈𝑗−𝐽𝑖𝑗𝑧𝑖𝑗
2 )

2
− 𝑈𝑗                                     (3.19) 

𝜕𝑓(𝑥)

𝜕𝑈𝑗
=

(𝑈𝑖+𝑈𝑗−𝐽𝑖𝑗𝑧𝑖𝑗
2 )

2
− 𝑈𝑖                                      (3.20) 

𝜕𝑓(𝑥)

𝜕𝐽𝑖𝑗
=

𝑧𝑖𝑗
2 (𝑈𝑖+𝑈𝑗−𝐽𝑖𝑗𝑧𝑖𝑗

2 )

2
                                  (3.21) 
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𝜕𝑓(𝑥)

𝜕𝑊𝑖𝑗
= 2𝑊𝑖𝑗                                    (3.22) 

 

In order to initialize the iterative process, two different ways have been tried: 

1. Start as 𝑈𝑖
0 = 1, 𝐽𝑖𝑗

0 = 0; 𝑊𝑖𝑗
0 = 0 which is equivalent to the plain profile of the 

starting point in the CSE (𝜃𝑖
0 = 0,  𝑉𝑖

0 = 1). In this initialization it is obtained  

𝑓(𝑥0) = 0 and all the columns of matrix C are zero, with the exception of those that 

are associated with the state variable 𝐽𝑖𝑗  . This leads to a bad scaling of the iterative 

solution from equation (3.15) and the number of iterations to converge to the final 

estimated value is higher with respect to the CSE. 

2. If there are enough available measurements, it is possible to obtain a first solution by 

solving a linear problem by starting by the plain profile without considering the 

equality restrictions. Equation (3.15) is then simplified, resulting in (3.23): 

[𝐻𝑇𝑊𝐻][∆𝑥1] = [𝐻𝑇𝑊∆𝑧0]              (3.23) 

 

In a single iteration of the method shown in (3.23), it is obtained values that represent an 

initial state closer to the final estimated value. This option allows to decrease the number of 

iterations needed in order to get to the final solution. After applying the iterative process from 

equation (3.15) it is obtained an approximate solution. In the first obtained solution it can be 

observed how the problem of bad scaling is solved and also the convergence to the final 

estimated value is faster. 
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3.4 Description of Matlab code 

The process of creating the Matlab file will be briefly summarized in this section. The 

number of nodes will be an input, and for each one of the nodes, it will be asked whether 

there is an interaction between nodes or not. Active and reactive powers, as well as weights 

will be other inputs of the system. Voltage vector for the measured and as well for the 

calculated voltage will also be stored. Line impedances for those nodes in between which an 

interaction occurs will be required. Subsequently, admittance matrix will be calculated. 

Injected power to nodes will also be demanded to input user. Sample number were 

introduced as values for the line impedances and injected powers. The jacobian will then be 

calculated according to conventional state estimator and proposed conventional estimator. 

The jacobian matrix, altogether with the gain matrix, will lead to the state estimated solution 

and a counter for the number of iterations will be increased, indexes will be updated, and the 

number of iterations will continue increasing until the difference between the previously 

calculated iterative solution and the current last solution are smaller than an established order 

of convergence, for example error smaller than 10−2. State vector will then be calculated and 

will include all the state variables. 
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Chapter 4 Analytical and Simulation Results 

4.1 Matlab analysis 

The power flow analysis on the proposed system calculates, as intermediate result, the 

jacobian matrix. Through this jacobian matrix the final state is calculated using the Newton 

Raphson method. The mentioned matrix is described in equation (4.1) for means of 

explanation and inner matrix dimension verification.  

 

It can be explained, from what is shown in equation (4.1) that dimension will be 7x7   when n 

= 5 nodes. 2n = 10 for P, Q injections. Taking into account that the slack bus is 2(n-1), and 

then adding the PV node is equal to 2(n-1) -1, which leads to a number of variables equal to 

7. The Matlab results after first iteration are shown in table (4.1): 

Table 4.1: First iteration Matlab results 

               

 

where the solutions of required parameters are shown in (4.2) – (4.3): 
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[

𝛿2

𝛿3

𝛿4

𝛿5

] = [

−4.91
−6.95
−7.19
−3.09

]       (4.2)

    

[
𝑉2

𝑉3

𝑉4

] = [
0.9864
0.9817
0.9913

]           (4.3) 

 

The results obtains after seven iterations are shown in table (4.2): 

Table 4.2: Seventh iteration Matlab results 

        

Table 4.2 results can be detailed as shown in (4.4) – (4.5): 

[

𝛿2

𝛿3

𝛿4

𝛿5

] = [

−5.0124
−7.1322
−7.3705
−3.2014

]                 (4.4) 

 

[
𝑉2

𝑉3

𝑉4

] = [
0.9826
0.9777
0.9876

]       (4.5) 

The conventional method has to take the square voltage measurements in order to be directly 

comparable with the proposed method. It was conducted a simulation of the 5-node radial 

network from figure (3.1), using measurements with Gaussian noise in order to compare the 

PSE and the CSE, as well as to compare the two techniques from the PSE. Also, in order to 

compare by size it will be implemented as well with the 69 and 85 radial nodes, from figures 

(3.2) and (3.3), respectively. 

The results detailed in table (4.3) include:  
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Measured value: It is the value corresponding to the measurement with Gaussian noise, and 

using a maximum weight of 104. 

CSE: It is the estimated value using the Conventional State Estimator. 

PSE: It is the estimated value using the Proposed State Estimator, with equality restrictions in 

one column, and by considering virtual measurements with weights of 106, 108 and 1010 

respectively. 

Table 4.3: Estimation results for a 5-node network 

Results - 5 node network 

Measurement Measured 

values 

CSE PSE 

Equality 

Restriction 

PSE 

Weight

106 

PSE 

Weight

108 

PSE 

Weight

1010 

𝑉1 1.0355 1.0347 1.0344 1.0345 1.0346 1.0347 

𝑉2 1.0102 1.0189 1.0195 1.0186 1.0187 1.0189 

𝑉3 1.001 0.9984 0.9973 0.9983 0.9982 0.9984 

𝑉4 1.0031 1.0011 1.0023 1.0006 1.0008 1.0011 

𝑉5 1.0147 1.0114 1.0136 1.0109 1.0111 1.0113 

𝑃12 0.4424 0.4324 0.4312 0.4345 0.4335 0.4325 

𝑃13 0.2601 0.2639 0.2643 0.2629 0.2636 0.2639 

𝑃24 0.1626 0.1535 0.1541 0.1542 0.1538 0.1535 

𝑃25 0.0633 0.0716 0.0711 0.0723 0.072 0.0717 

𝑄12 0.1383 0.1395 0.1383 0.1394 0.1397 0.1395 

𝑄13 0.113 0.1109 0.1116 0.1116 0.1108 0.1109 

𝑄24 0.0463 0.0541 0.0535 0.0537 0.0543 0.0542 

𝑄25 0.0163 0.0212 0.0223 0.022 0.0214 0.0212 

𝐼12
2  0.1709 0.1928 0.1921 0.1724 0.181 0.192 

𝐼13
2  0.1011 0.0765 0.0772 0.09 0.0768 0.0764 

𝐼24
2  0.0098 0.0255 0.0248 0.0154 0.0253 0.0255 

𝐼25
2  0.0163 0.0054 0.0059 0.0113 0.0058 0.0054 

𝑃1 0.685 0.6964 0.6969 0.6973 0.697 0.6964 

𝑃2 -0.209 -0.2035 -0.2029 -0.2047 -0.2042 -0.2036 

𝑃3 -0.2711 -0.2598 -0.2621 -0.258 -0.2594 -0.2598 

𝑃4 -0.1498 -0.152 -0.1536 -0.1533 -0.1524 -0.1521 

𝑃5 -0.0851 -0.0713 -0.0721 -0.0716 -0.0716 -0.0714 

𝑄1 0.2592 0.2504 0.2521 0.251 0.2505 0.2504 

𝑄2 -0.0462 -0.0528 -0.0536 -0.0535 -0.0532 -0.0528 

𝑄3 -0.0814 -0.0938 -0.0951 -0.0916 -0.0937 -0.0938 

𝑄4 -0.0518 -0.0496 -0.051 -0.051 -0.0499 -0.0497 

𝑄5 -0.0191 -0.0203 -0.0231 -0.0201 -0.0204 -0.0203 
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Table (4.3) shows the results of the estimation after developing the simulation for the 5-node 

network, it can be noted both methods converge to the same estimated value, as can be seen 

between the PSE Equality restriction and the PSE Weight 106. There is a first difference 

between both methods, which is that the CSE needs a measurement of angle reference, (𝜃𝑖 =

0), whereas for the PSE it is not needed that measurement, as it uses branch state 

measurements. 

In table (4.3) it can be checked the problem of bad conditioning is solved when using the 

second technique of resolution. It can be compared in the last three columns the results of the 

simulation in the radial network of 5 nodes as it is being considered the virtual measurements 

with weights very high with respect to the maximum weight of the ordinary measurements 

(104), the results ar more precise as the weight of the virtual measurement is increased. This 

leads to a bad conditioning of the gain matrix. From tables (4.4) – (4.6) it can be calculated 

the errors with respect to the conventional state: 

5-node network shown in table (4.4): 

Table 4.4: Errors CSE vs PSE 5-node network 

Errors compared to Conventional State Estimator 

5-node network 

PSE 

Equality 

Restriction 

PSE 

Weight 

106 

PSE 

Weight 

108 

PSE 

Weight 

1010 

1.73% 7.23% 0.77% 0.05% 

 

 

 

 

 

 

 



44 

 

69-node network shown in table (4.5): 

Table 4.5: Errors CSE vs PSE 69-node network 

Errors compared to Conventional State Estimator 

69-node network 

PSE 

Equality 

Restriction 

PSE 

Weight 

106 

PSE 

Weight 

108 

PSE 

Weight 

1010 

1.79% 9.21% 1.23% 0.21% 

 

85-node network shown in table (4.6): 

Table 4.6: Errors CSE vs PSE 85-node network 

Errors compared to Conventional State Estimator 

85-node network 

PSE 

Equality 

Restriction 

PSE 

Weight 

106 

PSE 

Weight 

108 

PSE 

Weight 

1010 

1.89% 10.24% 1.66% 0.38% 

 

To be noted is the importance of giving a high weight to virtual measurements in order to 

have a more accurate model with small errors and values within a 0.5% error compared to the 

conventional state estimation. In order to obtain statistical results and evaluate, if the 

proposed model, on top of allowing a different set of measurements does also have a 

computational advantage, the necessary of number of iterations of both methods will be 

compared as shown in table (4.7): 

Table 4.7: Average number of iterations between methods 

  

5-node 

network 

69-node 

network 

85-node 

network 

CSE PSE CSE PSE CSE PSE 

Exact measurements 3 2 3 2 3 2 

Measurements with noise (3% distortion) 3 3 3 3 4 3 

 

A Gaussian noise is added in table (4.7) in order to compare with exact measurements. 



45 

 

The developed method that takes into account the line current measurements does indeed 

have faster convergence, leading to a computational advantage. It has also been observed in 

the simulations that the scaling problem of the PSE can be decreased by varying the value of 

the base power in the radial network of study, this allows to obtain network measurements 

values that are more adequate and that improve the conditioning of the matrix that is used in 

the solution of the state estimation problem. To check this problem, it has been performed 

several simulations over the radial network of 85 nodes with measurements of Gaussian noise 

and in table (4.7), it is shown how the number of iterations vary to arrive to the final 

estimated value if we vary the base power. To show the convergence speed of both methods, 

it has been taken the radial network of 85 nodes with Gaussian node measurements and 

compared the average results with the maximum residue in each iteration over the set of 

measurements done with the PSE and the CSE. In tables (4.5) - (4.7), it is shown the 

maximum average residues in each iteration for the radial network of 85 nodes until arriving 

to the final estimated value, using a convergence limit of 10−3, the proposed method 

converges faster and it is done in less iterations than in the conventional estimator. The 

number of iterations was also compared with regards to different base powers in tables (4.8) 

– (4.10): 

Table 4.8: Number of iterations vs base power – 5 node network 

5 node network 

Base Power 

(MVA) 
Iterations 

0.1 2 

0.5 2 

1 2 

 

 

 

 



46 

 

Table 4.9: Number of iterations vs base power – 69 node network 

69 node network 

Base Power 

(MVA) 
Iterations 

0.1 3 

0.5 3 

1 2 

 

Table 4.10: Number of iterations vs base power – 85 node network 

85 node network 

Base Power 

(MVA) 
Iterations 

0.1 4 

0.5 3 

1 2 

 

Simulations of the 85-node network were conducted using exact measurements of voltage, 

active power flows and line current magnitudes and varying the convergence limit it can be 

noted that the proposed method always converges to the exact value in two iterations, 

whereas in the conventional method it happens when the convergence limit is higher 

than 10−4, and in the double of iterations than the proposed method. When it uses the 

convergence limit of 10−3 it converges to a solution that is not the exact value. 

The remaining residues after each iteration of the method was also compared between 

methods, to determine the extent to which the new method improves the convergence in 

finding a solution, as shown in tables (4.11) – (4.13). 

Table 4.11: Maximum residues per iteration – 5 node network  

  

Maximum Residues 

Error margin  

(order of magnitude) 

5 node network 

Iteration CSE PSE 

1 101  101  

2 100   10−1 

3  10−2    10−2 
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Table 4.12: Maximum residues per iteration – 69 node network 

  

Maximum Residues  

Error margin 

(order of magnitude) 

69 node network 

Iteration CSE PSE 

1 101  101  

2 100   10−1 

3  10−2    10−2 

 

Table 4.13: Maximum residues per iteration – 85 node network  

  

Maximum Residues  

Error margin 

(order of magnitude) 

85 node network 

Iteration CSE PSE 

1 101  101  

2 100   10−1 

3  10−1    10−2 

4  10−2   10−2 

 

Finally, it will be compared how different convergence values affect the needed number of 

iterations between both methods, as shown in tables (4.14) – (4.16). It is shown how the 

proposed estimator performs equally well for stricter convergence values, whereas in the case 

of conventional estimator the number of iterations needed is augmented. 

Table 4.14: Iterations per convergence values and method – 5 node network  

Error margin 

Convergence values 

5-node network 

10−3 10−4 10−5 

Iterations 
CSE 3 3 4 

PSE 2 2 2 
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Table 4.15: Iterations per convergence values and method – 69 node network 

Error margin 

Convergence values 

69-node network 

10−3 10−4 10−5 

Iterations 
CSE 3 4 4 

PSE 2 2 2 

 

Table 4.16: Iterations per convergence values and method – 85 node network  

Error margin 

Convergence values 

85-node network 

10−3 10−4 10−5 

Iterations 
CSE 3 4 4 

PSE 2 2 2 

 

4.2 PowerWorld simulation results 

As detailed in chapter 3, a Matlab program was coded that implemented the conventional 

state estimation and the proposed state estimation with different network sizes and weights 

for virtual measurements. In order to verify that the state estimation follows a Newton 

Raphson problem solution, and is comparable with the conventional power flow study, the 

initial solution, (iteration number 1) will be compared, by means of the PowerWorld 

software. 
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The sample system from figure (4.1) will be simulated: 

 

Figure 4.1: PowerWorld NR vs SE system – 5 node system 

For means of replicating the results, the input data and characteristic parameters will be 

consistent in both Matlab and PowerWorld, and can be seen in tables (4.17) – (4.19): 

Table 4.17: Transmission Line Data NR vs SE – 5 node network  

 

Bus no. Impedance Line Charging 

1-2 0.02+j0.10 j0.03 

1-5 0.05+j0.25 j0.02 

2-3 0.04+j0.20 j0.025 

2-5 0.05+j0.25 j0.02 

3-4 0.05+j0.25 j0.02 

3-5 0.08+j0.40 j0.01 

4-5 0.10+j0.50 j0.075 
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Table 4.18: Injected Power and Loads NR vs SE – 5 node network 

 

Bus No. Generation MW Generation MVAr Load MW Load MVAr 

1 - - 0 0 

2 0 0 96 62 

3 0 0 35 14 

4 0 0 16 8 

5 48 - 24 11 

 

The graphical simulation after PowerWorld can be found on figure (4.2): 

 

Figure 4.2: PowerWorld simulation graphic for a 5 node network 

 

Table 4.19: PowerWorld results – 5 node network 
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4.3 Comparison between Matlab and PowerWorld methods 

The comparison between the Matlab and the PowerWorld results can be found in tables (4.20) 

– (4.21). 

Table 4.20: Comparison of results NR – Matlab and PowerWorld -Voltage 

  PowerWorld (V p.u.) Matlab Method (V p.u) Error (%) 

𝑉2 0.97801 0.9826 0.47 

𝑉3 0.96808 0.9777 0.99 

𝑉4 0.97306 0.9876 1.49 

 

Table 4.21: Comparison of results NR – Matlab and PowerWorld -Phase 

  PowerWorld (°) Matlab Method (°) Error (%) 

𝛿2 -4.99 -5.01 0.45 

𝛿3 -7.08 -7.13 0.74 

𝛿4 -7.27 -7.37 1.38 

𝛿5 -3.21 -3.20 0.27 

 

Comparing the solutions of voltage and delta using Matlab and PowerWorld, it shows that 

they vary with less than a 2% error. This minor difference is due to a slightly modified 

version of the Newton Raphson method used by the PowerWorld software. It is also affected 

the different number of iterations required in both methods. For the comparison studies, real 

measurements and measurements with Gaussian noise (approximate 2% variation) were used. 

This measurement with approximate values was enforced in order to simulate a more realistic 

and non-ideal network.  
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Chapter 5: Discussions and Conclusions 

 

 

This chapter presents the major contributions of this work and summarizes this work with 

discussions on the findings. It also recommends some future work on this topic. The major 

contributions of this work are: (i) developed a state estimator for a determined radial 

network, (ii) introduced state variables of the developed method, (iii) compared them with 

previously published work, (iv) determined the influence of estimating parameters instead of 

using measured values, and (v) verified the validity of developed model using PowerWorld 

simulation software. 

This work proposed a method with new state variables that allowed to incorporate a linear 

model for the line current measurements of distribution networks. Additionally, the proposed 

method allowed to incorporate the measurements to a set of quadratic restriction. The 

proposed method integrated in the model voltage magnitude measurements, and line current 

flows. These line current flows are usually available measurements in the distribution 

networks, and that was the reason that the line current variable was chosen for the developed 

method. Recurring to an appropriate initialization of the iterative process of the numerical 

solution, the proposed model showed a faster convergence with respect to the conventional 

method as shown in Tables (4.14) – (4.16). For large and bad conditioned radial networks, it 

was taken into account the selection of the base power, in order to avoid problems from bad 

scaling. An additional solution could have been using a new formulation that depended only 

on the base voltage. A problem that was considered and that must be observed is that the 

presence of measures of magnitude of line current measurements leads to multiple solutions 

of the system. This multiplicity would give as a result that the solution of the system is not 

unique and that would cause a problem that is out of the scope of this work. 

As a continuation of the work done, in future, it could be conducted a detailed analysis of the 

nature of the line current measurements that were the purpose of this work. Determining 
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which order of magnitude and sign is appropriate for each step of the iteration method that 

would improve the detection of bad measures. Also, estimating the acceptable values would 

improve the detection of bad measures and help avoid the problem of the multiplicity of 

solutions. It is also suggested to formulate a modification of the proposed model, where all 

state variables are branch variables, which would also improve the conditioning of the gain 

matrix. 
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Appendix: Matlab code 

 

 

Detailed Matlab .m code for state estimation under new variables, including data input as 

well as convergence limit is presented in this Appendix. 

%Hugo Vicente Barrera 
%Master Thesis GVSU 2016 

  
% WLS Method 

  
clc %clearing previous window 
clear %clearing previous existing variables 

  
n = input('Insert total number of nodes in the network\n'); % input total 

number of nodes 
slack = input('Slack node is node number...'); % input total number of 

nodes 
%no error checking 

  
P(1:n)=0; %creating and initializing vector for real injected power 
Q(1:n)=0; %creating and initializing vector for imaginary injected power 
sig_r(1:n)=0; %creating and initializing vector for weight of real injected 

power 
sig_y(1:n)=0; %creating and initializing vector for weight of imaginary 

injected power 

  
p(1:n,1:n)=0; %creating and initializing vector for real flowing power 

between nodes 
q(1:n,1:n)=0; %creating and initializing vector for imaginary flowing power 

between nodes 
sig_p(1:n,1:n)=0; %creating and initializing vector for weight of real 

flowing power between nodes 
sig_q(1:n,1:n)=0; %creating and initializing vector for weight of imaginary 

flowing power between nodes 

  
Vm(1:n)=1; %creating and initializing vector for given measured voltage 
V(1:n)=1; %creating and initializing vector for WLS voltage 

  
sig_v(1:n)=0; %creating and initializing vector for weight of given voltage 

  
for k=1:n 

     
fprintf('Is the voltage on node %d given? \n',k); %can be changed to input 

only instead of looping through all nodes 
aux = input('1/0 \n'); %auxiliary variable 
    if aux~= 0 
    fprintf('Insert the voltage in p.u. in node %d  \n',k); 
                Vm(k)= input(' \n'); 

                 
                fprintf('Insert the variance in p.u. associated to voltage 

measured in node %d  \n',k); 
                sig_v(k)= input(' \n'); 
    end 
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fprintf('Is there an injected power on node %d ? \n',k); %can be changed to 

input only instead of looping through all nodes 
aux = input('1/0 \n'); %auxiliary variable 
    if aux~= 0 
    fprintf('Insert the real injected power in p.u. in node %d  \n',k); 
                P(k)= input(' \n'); 
    fprintf('Insert the variance for the measurement of real injected power 

in node %d  \n',k); 
                sig_r(k)= input(' \n'); 

                 
    fprintf('Insert the imaginary injected power in p.u. in node %d  

\n',k); 
                Q(k)= input(' \n'); 
    fprintf('Insert the variance for the measurement of real injected power 

in node %d  \n',k); 
                sig_y(k)= input(' \n'); 
    end 
end 

  
th(1:n)=1; %creating and initializing vector with angle values, the slack 

is always one 

  
x(1:(2*n-1))=0; %initializing state vector 

  
int(1:n,1:n)=0; % matrix for storing if there is an interaction between 

nodes 
z(1:n,1:n)=0; % reserving memory for the impedances between nodes 
y(1:n,1:n)=0; % reserving memory for the admittance between nodes 
y_bus(1:n,1:n)=0; % reserving memory for the Y_bus matrix 

  
for ii=1:n 
    for j=1:n 
        if ii<=j %for not inputting twice the connections (1 - 2 is the 

same as 2 - 1) only upper diagonal 
            if ii~=j % to determine if there is a relationship between two 

nodes 
            fprintf('Is there a connection between nodes %d and %d ? 

\n',ii,j); 
            int(ii,j) = input('1/0 \n'); 
                if int(ii,j)~= 0 
                fprintf('Insert the real impedance (r) in p.u. between 

nodes %d and %d ? \n',ii,j); 
                aux_r= input(' \n'); 
                fprintf('Insert the imaginary impedance (x) in p.u. between 

nodes %d and %d ? \n',ii,j); 
                aux_i= input(' \n'); 
                z(ii,j)=aux_r+1i*aux_i; %composing the complex number 
                y(ii,j)= 1/z(ii,j); %inverting the impedance for the 

admittance 

                 
                %completing the lower diagonal 
                z(j,ii)=z(ii,j); 
                y(j,ii)=1/z(j,ii); 

                 

                 
                fprintf('Is there a power flow between nodes %d and %d ? 

\n',ii,j); 
                aux2 = input('1/0 \n'); 
                    if aux2~= 0 
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                    fprintf('Insert the real power flow in p.u. between 

nodes %d and %d \n',ii,j); 
                    p(ii,j)= input(' \n'); 
                    fprintf('Insert the variance for the real power flow 

between nodes %d and %d \n',ii,j); 
                    sig_p(ii,j)= input(' \n'); 

  
                    fprintf('Insert the imaginary power flow in p.u. 

between nodes %d and %d \n',ii,j); 
                    q(ii,j)= input(' \n'); 
                    fprintf('Insert the variance for the imaginary power 

flow between nodes %d and %d \n',ii,j); 
                    sig_q(ii,j)= input(' \n'); 

                     
                    end 

                
                end 
            end 

    
        end 
    end 
end 

  
%g (reactance matrix) 
g=real(y); 
%b (susceptance matrix) 
b=imag(y); 

  
for ii=1:n   %calculating the Y bus matrix (admittance between nodes 
    for j=1:n 
        aux=0; %initializing an auxiliary variable for the addition 
        if ii==j %if we are in the diagonal 
            for k=1:n 
                aux=aux+y(ii,k); %then add all the values 
            end 
            y_bus(ii,j)=aux; %passing the auxiliary value 
        end 
        if ii~=j 
            y_bus(ii,j)=-y(ii,j); %assigning the non-diagonal value 
        end 
    end 
end 

  
%calculate Jacobian terms 

  
%calculate the number of given measurements, it will be the number of rows 
%in the jacobian 
aux1=0; %counter for voltage nodes 

  
aux2=0; %counter for active injected powers  
aux3=0; %counter for reactive injected powers 

  
aux4=0; %counter for active flux powers 
aux5=0; %counter for reactive flux powers  

  
for i=1:n 

     
    if Vm(i)~=1 %if the voltage in the node is given 
    aux1=aux1+1; %increment the counter 
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    end 

     
    if P(i)~=0 %if the injected real power in the node is given 
    aux2=aux2+1; %increment the counter 
    end 

     
    if Q(i)~=0 %if the injected real power in the node is given 
    aux3=aux3+1; %increment the counter 
    end 
end 

  
%after it has been counted 

  
for ii=1:n 
    for j=1:n 

         
        if p(ii,j)~=0 
            aux4=aux4+1; %increment the counter 
        end 

         
        if q(ii,j)~=0 
            aux5=aux5+1; %increment the counter 
        end 

         
    end 
end 

  
AUX=aux1+aux2+aux3+aux4+aux5; 
H(1:AUX,1:(2*n-1))=0; %initializing the jacobian matrix with the 

appropriate size 

  
%all derivatives with respect to angles except for the slack and for all 
%the voltages from all the given values that we have been gathering 

  
H(1:AUX,1:(2*n-1))=0; 

  
%all derivatives with respect to angles except for the slack and for all 
%the voltages 
%from all the given values that we have been gathering 

  
intjac1(aux4,2)=0; %indexes for iteration in active power 
index1=1; 
for i=1:n 
    for j=1:n 

         
        if p(i,j)~=0 
            intjac1(index1,1)=i; 
            intjac1(index1,2)=j; 
            index1=index1+1; 
        end 

         
    end 
end 

  
for k=1:n %for all the angles except the slack 
    if k~=slack %if we are not in the slack angle 
        for l=1:aux4 %for as many as flow powers there exist 
            ii=intjac1(l,1); 
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            jj=intjac1(l,2); 
            %p(ii,jj)~=0 is fulfilled 

             
                        if ii==k  
                        jac=(V(ii)*V(jj))*(g(ii,jj)*sin(th(ii)-th(jj))-

b(ii,jj)*cos(th(ii)-th(jj))); 

                         
                            if k<slack %for placing properly in the matrix 
                            H(l,k)=jac; 
                            end 

                             
                            if k>slack && slack~=1 
                            H(l,k-slack+1)=jac; 
                            end 

                             
                            if k>slack && slack==1 
                            H(l,k-slack)=jac; 
                            end 

                         
                        end 

                         
                        if jj==k  
                        jac=-(V(ii)*V(jj))*(g(ii,jj)*sin(th(ii)-th(jj))-

b(ii,jj)*cos(th(ii)-th(jj))); 

                         
                            if k<slack %for placing properly in the matrix 
                            H(l,k)=jac; 
                            end 

                             
                            if k>slack && slack~=1 
                            H(l,k-slack+1)=jac; 
                            end 

                             
                            if k>slack && slack==1 
                            H(l,k-slack)=jac; 
                            end 

  
                        end 

  
        end 
    end 
end 

  
l=l+1; %updating the index 

  
intjac2(aux2)=0; 
index2=1; 
for i=1:n 
        if P(i)~=0 
            intjac2(index2)=i; 
            index2=index2+1; 
        end 
end 

  
for k=1:n %for all the angles except the slack 
    if k~=slack %if we are not in the slack angle 
        for m=l:(l+aux2-1) %for as many as flow powers there exist, minus 1 

because the advancement of index was already done 
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            ii=intjac2(m-l+1); %accesing the index 

             
            if ii==k 
                aux=0; 
                for j=1:n 
                    aux=aux+(V(ii)*V(j)*(-g(ii,j)*sin(th(ii)-

th(j))))+b(ii,j)*cos(th(ii)-th(j))-V(ii)*V(ii)*b(ii,ii); 
                end 
                jac=aux; 

                 
                            if k<slack %for placing properly in the matrix 
                            H(m,k)=jac; 
                            end 

                             
                            if k>slack && slack~=1 
                            H(m,k-slack+1)=jac; 
                            end 

                             
                            if k>slack && slack==1 
                            H(m,k-slack)=jac; 
                            end 

                 
            else 
                jac=(V(ii)*V(k)*(g(ii,k)*sin(th(ii)-th(k))))-

b(ii,k)*cos(th(ii)-th(k)); 

                             
                            if k<slack %for placing properly in the matrix 
                            H(m,k)=jac; 
                            end 

                             
                            if k>slack && slack~=1 
                            H(m,k-slack+1)=jac; 
                            end 

                             
                            if k>slack && slack==1 
                            H(m,k-slack)=jac; 
                            end 

                 
            end 

         
        end 
    end 
end 

  
l=m+1; %updating index for rows 

  
intjac3(aux5,2)=0; 
index1=1; 
for i=1:n 
    for j=1:n 

         
        if p(i,j)~=0 
            intjac3(index1,1)=i; 
            intjac3(index1,2)=j; 
            index1=index1+1; 
        end 
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    end 
end 

  
for k=1:n %for all the angles except the slack 
    if k~=slack %if we are not in the slack angle 
        for m=l:(l+aux5-1) %for as many as flow powers there exist 
            ii=intjac3(m-l+1,1); 
            jj=intjac3(m-l+1,2); 
            %q(ii,jj)~=0 is fulfilled 

             
                        if ii==k  
                        jac=-(V(ii)*V(jj))*(g(ii,jj)*cos(th(ii)-

th(jj))+b(ii,jj)*sin(th(ii)-th(jj))); 

                         
                            if k<slack %for placing properly in the matrix 
                            H(m,k)=jac; 
                            end 

                             
                            if k>slack && slack~=1 
                            H(m,k-slack+1)=jac; 
                            end 

                             
                            if k>slack && slack==1 
                            H(m,k-slack)=jac; 
                            end 

                         
                        end 

                         
                        if jj==k  
                        jac=(V(ii)*V(jj))*(g(ii,jj)*cos(th(ii)-

th(jj))+b(ii,jj)*sin(th(ii)-th(jj))); 

                         
                            if k<slack %for placing properly in the matrix 
                            H(m,k)=jac; 
                            end 

                             
                            if k>slack && slack~=1 
                            H(m,k-slack+1)=jac; 
                            end 

                             
                            if k>slack && slack==1 
                            H(m,k-slack)=jac; 
                            end 

  
                        end 

  
        end 
    end 
end 

  

  

  
l=m+1; %updating the index 

  
intjac4(aux3)=0; 
index2=1; 
for i=1:n 
        if Q(i)~=0 
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            intjac4(index2)=i; 
            index2=index2+1; 
        end 
end 

  
for k=1:n %for all the angles except the slack 
    if k~=slack %if we are not in the slack angle 
        for m=l:(l+aux3-1) %for as many as flow powers there exist, minus 1 

because the advancement of index was already done 

         
            ii=intjac4(m-l+1); %accesing the index 

             
            if ii==k 
                aux=0; 
                for j=1:n 
                    aux=aux+(V(ii)*V(j)*(g(ii,j)*cos(th(ii)-

th(j))))+b(ii,j)*sin(th(ii)-th(j))-V(ii)*V(ii)*g(ii,ii); 
                end 
                jac=aux; 

                 
                            if k<slack %for placing properly in the matrix 
                            H(m,k)=jac; 
                            end 

                             
                            if k>slack && slack~=1 
                            H(m,k-slack+1)=jac; 
                            end 

                             
                            if k>slack && slack==1 
                            H(m,k-slack)=jac; 
                            end 

                 
            else 
                jac=(V(ii)*V(j)*(-g(ii,j)*cos(th(ii)-th(j))))-

b(ii,j)*sin(th(ii)-th(j)); 

                             
                            if k<slack %for placing properly in the matrix 
                            H(m,k)=jac; 
                            end 

                             
                            if k>slack && slack~=1 
                            H(m,k-slack+1)=jac; 
                            end 

                             
                            if k>slack && slack==1 
                            H(m,k-slack)=jac; 
                            end 

                 
            end 

         
        end 
    end 
end 

  
%%%%%%%%%%%%%%%%% 

  
l=1; %reinitializing indexes 
m=1; 
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for k=1:n %for all the voltages 

     
     for l=1:aux4 %for as many as flow powers there exist 
            ii=intjac1(l,1); 
            jj=intjac1(l,2); 
            %p(ii,jj)~=0 is fulfilled 

     

      
                 if ii==k  
                 jac=-V(jj)*(g(ii,jj)*cos(th(ii)-

th(jj))+b(ii,jj)*cos(th(ii)-th(jj)))+2*(g(ii,jj))*V(ii); 

                         
                 H(l,n-1+k)=jac; 

                         
                 end 

                   
                 if jj==k 
                 jac=-V(ii)*(g(ii,jj)*cos(th(ii)-

th(jj))+b(ii,jj)*sin(th(ii)-th(jj))); 

                  
                    H(l,n-1+k)=jac; 

                  
                 end 
     end 
end 

  
l=l+1; 

  

  

  
for k=1:n %for all the voltages 
        for m=l:(l+aux2-1) %for as many as flow powers there exist, minus 1 

because the advancement of index was already done 

         
            ii=intjac2(m-l+1); %accesing the index 

             
            if ii==k 
                aux=0; 
                for j=1:n 
                    aux=aux+(V(j)*(g(ii,j)*cos(th(ii)-

th(j))))+b(ii,j)*sin(th(ii)-th(j))+V(ii)*g(ii,ii); 
                end 
                jac=aux; 

                 
                 H(m,n-1+k)=jac;           

                 
            else 
                jac=(V(ii)*(g(ii,k)*cos(th(ii)-th(k))))+b(ii,k)*sin(th(ii)-

th(k)); 

                             
                H(m,n-1+k)=jac;              

                 
            end 

         
        end 
end 
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l=m+1; %updating index for rows 

  
for k=1:n %for all the angles except the slack 
        for m=l:(l+aux5-1) %for as many as flow powers there exist 
            ii=intjac3(m-l+1,1); 
            jj=intjac3(m-l+1,2); 
            %q(ii,jj)~=0 is fulfilled 

             
                        if ii==k  
                        jac=-(V(jj))*(g(ii,jj)*sin(th(ii)-th(jj))-

b(ii,jj)*cos(th(ii)-th(jj)))-2*V(ii)*b(ii,jj); 

                         
                        H(m,n-1+k)=jac;  

                         
                        end 

                         
                        if jj==k  
                        jac=-(V(ii))*(g(ii,jj)*sin(th(ii)-th(jj))-

b(ii,jj)*cos(th(ii)-th(jj))); 

                         
                        H(m,n-1+k)=jac;  

  
                        end 

  
        end 
end 

  

  

  
l=m+1; %updating the index 
for k=1:n %for all the voltages 
        for m=l:(l+aux3-1) %for as many as flow powers there exist, minus 1 

because the advancement of index was already done 

         
            ii=intjac4(m-l+1); %accesing the index 

             
            if ii==k 
                aux=0; 
                for j=1:n 
                    aux=aux+(V(j)*(g(ii,j)*sin(th(ii)-th(j))))-

b(ii,j)*cos(th(ii)-th(j))-V(ii)*b(ii,ii); 
                end 
                jac=aux; 

                 
                H(m,n-1+k)=jac; 
            else 
                jac=(V(ii)*(g(ii,k)*sin(th(ii)-th(k))))-b(ii,k)*cos(th(ii)-

th(k)); 

                             
                H(m,n-1+k)=jac; 
            end 

         
        end 
end 
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l=m+1; %updating the index 

  
intjac5(aux1)=0; 
index=1; 
for i=1:n 
        if Vm(i)~=0 
            intjac5(index)=i; 
            index=index+1; 
        end 
end 

  

  
for m=l:(l+aux1-1) 

         
for k=1:n %for all the voltages 
        ii=intjac5(m-l+1); 

         
        if ii==k 
            H(m,n-1+k)=1; 
        end 
end 

     
end 

  
%%calculating matrix R 

  
R(AUX,AUX)=0; %allocating space for matrix 
sigma(AUX)=0; %allocating vector for sigmas 
index=1; 

  
for i=1:n %storing values for active power flows 
    for j=1:n 
        if p(i,j)~=0 
            sigma(index)=sig_p(i,j); 
            index=index+1; 
        end 
    end 
end 

  
for i=1:n %storing values for injected active power  
        if P(i)~=0 
            sigma(index)=sig_r(i); 
            index=index+1; 
        end 
end 

  
for i=1:n %storing values for reactive power flows 
    for j=1:n 
        if q(i,j)~=0 
            sigma(index)=sig_q(i,j); 
            index=index+1; 
        end 
    end 
end 

  
for i=1:n %storing values for injected reactive power  
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        if Q(i)~=0 
            sigma(index)=sig_y(i); 
            index=index+1; 
        end 
end 

  
for i=1:n %storing values for measured voltages 
        if Vm(i)~=0 
            sigma(index)=sig_v(i); 
            index=index+1; 
        end 
end 

  
ro=(1./sigma).^2; %calculating the standard deviation due to weights 

  
for i=1:AUX %setting only the diagonal value 
    R(i,i)=ro(i); 
end 

  

  
for i=1:8 
    for j=1:5 

         
        if i==3 || i==6 
            H(i,j)=-H(i,j); 
        end 
    end 

     
end 

  
G=H'*R*H; 

  
%%%%%%%%%%%%% 

  
x(2*n-1)=0; 

  
index_fi(n-1)=0; %it will store which index for voltage 
index_v(n)=0; %it will store which index for voltage 

  
aux=1; %auxiliary index 

  
for i=1:n 
    if i~=slack 
        x(aux)=th(i); 
        index_fi(aux)=i; 
        aux=aux+1; 
    end 
end 
aux2=1; 
for i=n:(2*n-1)    
    x(aux)=Vm(i-n+1); 
    index_v(aux2)=i-n+1; 
    aux=aux+1; 
    aux2=aux2+1; 
end 

  
%%%%%%%%%%%%% xcomp vector 
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xcomp(AUX)=0; 
index3=1; 

  
for i=1:n 
    if Vm(i)~=1 %if the voltage in the node is given 
    xcomp(index3)=Vm(i); %increment the counter 
    index3=index3+1; 
    end 
end 

  
for ii=1:n 
    for j=1:n 

         
        if p(ii,j)~=0 
        xcomp(index3)=p(ii,j); %increment the counter 
        index3=index3+1; 
        end 
    end 
end 

  
for ii=1:n 
    for j=1:n 

         
        if q(ii,j)~=0 
        xcomp(index3)=q(ii,j); %increment the counter 
        index3=index3+1; 
        end 
    end 
end 

  
for i=1:n 
    if P(i)~=0 %if the voltage in the node is given 
    xcomp(index3)=P(i); %increment the counter 
    index3=index3+1; 
    end 
end 

  
for i=1:n 
    if Q(i)~=0 %if the voltage in the node is given 
    xcomp(index3)=Q(i); %increment the counter 
    index3=index3+1; 
    end 
end 

  

  
%%%%%%%%%%%%%% 
%%%% 

  
x0 = x; %passing the value 

  
%%%%%%%%%%%%%%%% 

  
%solution of the system 

  
counter=0; 
z=zeros(AUX,1)'; 

  
for i=1:n 
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    if Vm(i)~=1 
        counter=counter+1; %in order to know how many voltages are known 
    end 
end 

  
pl=1; %index for storing in z vector,  

  
for i=1:aux1 

     
    z(i)=x(n-1+i)-xcomp(i);  
    pl=pl+1; 
end 

  

  

  
%Flowing active powers 
for k=1:aux4 %for all the power flows 

     
    ii=intjac1(k,1); %extracting the indexes 
    jj=intjac1(k,2); 

     
    if ii==slack 
        z(pl)=x(ii+n-1)*x(ii+n-1)*g(ii,jj)-x(ii+n-1)*x(jj+n-

1)*(g(ii,jj)*cos(0-x(jj))+b(ii,jj)*sin(0-x(jj)))-xcomp(pl); 
        pl=pl+1; 
    end 

     
    if jj==slack 
        z(pl)=x(ii+n-1)*x(ii+n-1)*g(ii,jj)-x(ii+n-1)*x(jj+n-

1)*(g(ii,jj)*cos(x(ii))+b(ii,jj)*sin(x(ii)))-xcomp(pl); 
        pl=pl+1; 
    end 

     
    if ii~=slack && jj~=slack 
        z(pl)=x(ii+n-1)*x(ii+n-1)*g(ii,jj)-x(ii+n-1)*x(jj+n-

1)*(g(ii,jj)*cos(x(ii)-x(jj))+b(ii,jj)*sin(x(ii)-x(jj)))-xcomp(pl); 
        pl=pl+1; 

  
    end 

     
end 

  
%Flowing reactive powers 
for k=1:aux5 %for all the power flows 

     
    ii=intjac3(k,1); %extracting the indexes 
    jj=intjac3(k,2); 

     

  
    if ii==slack 
        z(pl)=x(ii+n-1)*x(ii+n-1)*b(ii,jj)-(x(ii+n-1)*x(jj+n-1))*(-

b(ii,jj)*cos(-x(jj)))-xcomp(pl); 
        pl=pl+1; 
    end 

     
    if jj==slack 
        z(pl)=x(ii+n-1)*x(ii+n-1)*b(ii,jj)-(x(ii+n-1)*x(jj+n-1))*(-

b(ii,jj)*cos(x(ii)))-xcomp(pl); 
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        pl=pl+1; 
    end 

     
    if ii~=slack && jj~=slack 
        z(pl)=x(ii+n-1)*x(ii+n-1)*b(ii,jj)-(x(ii+n-1)*x(jj+n-1))*(-

b(ii,jj)*cos(x(ii)-x(jj)))-xcomp(pl); 
        pl=pl+1; 
    end 

     
end 

  

  

  
%Injected active powers 
for k=1:aux2 

     
    i=intjac2(k); %extracting the index 

     
    if i==slack  

     
    suma=0; %auxiliary index for the addition 
        for j=1:n 

         
            if j==slack 
            suma=suma+x(j+n-1)*(g(i,j)*cos(0)+b(i,j)*sin(0)); 
            else 
            suma=suma+x(j+n-1)*(g(i,j)*cos(x(j))+b(i,j)*sin(x(j))); 
            end 

         
        end 

         
        z(pl)=x(i+n-1)*suma-xcomp(pl); 
        pl=pl+1; 

         
    end 

         
    if i~=slack  

     
    suma=0; %auxiliary index for the addition 
        for j=1:n 

         
            if j==slack 
            suma=suma+x(j+n-1)*(g(i,j)*cos(x(i))+b(i,j)*sin(x(i))); 
            else 
            suma=suma+x(j+n-1)*(g(i,j)*cos(x(i)-x(j))+b(i,j)*sin(x(i)-

x(j))); 
            end 

         
        end 

         
        z(pl)=x(i+n-1)*suma-xcomp(pl); 
        pl=pl+1; 

        
    end 

     
end 
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%Injected reactive powers 

  

  
for k=1:aux3 

     
    i=intjac4(k); %extracting the index 

     
    if i==slack  

     
    suma=0; %auxiliary index for the addition 
        for j=1:n 

         
            if j==slack 
            suma=suma+x(j+n-1)*(g(i,j)*sin(0)-b(i,j)*cos(0)); 
            else 
            suma=suma+x(j+n-1)*(g(i,j)*sin(-x(j))-b(i,j)*cos(-x(j))); 
            end 

         
        end 

         
        z(pl)=x(i+n-1)*suma-xcomp(pl); 
        pl=pl+1; 

     
    end 

     

     
    if i~=slack  

     
    suma=0; %auxiliary index for the addition 
        for j=1:n 

         
            if j==slack 
            suma=suma+x(j+n-1)*(g(i,j)*sin(x(i))-b(i,j)*cos(x(i))); 
            else 
            suma=suma+x(j+n-1)*(g(i,j)*sin(x(i)-x(j))-b(i,j)*cos(x(i)-

x(j))); 
            end 

         
        end 

         
        z(pl)=x(i+n-1)*suma-xcomp(pl); 
        pl=pl+1; 

  
    end 

     
end 

  
x2=x'+((H'*R*H)^(-1))*H'*R*z'; 
xmodif=x2'; 
it=it+1; 
end 

  

  
function F = state2(x,REF) 
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n=REF(1); 
Vm=REF((2*n+1):(3*n)); 
AUX=REF(3*n+1); 
xcomp=REF((3*n+2):(3*n+AUX+1)); 
aux1=REF(3*n+AUX+2); 
aux2=REF(3*n+AUX+3); 
aux3=REF(3*n+AUX+4); 
aux4=REF(3*n+AUX+5); 
aux5=REF(3*n+AUX+6); 

  
auxintjac1=REF((3*n+AUX+7):(3*n+AUX+7+2*aux4-1)); 
intjac2=REF((3*n+AUX+7+2*aux4):(3*n+AUX+7+2*aux4+aux2-1)); 
auxintjac3=REF((3*n+AUX+7+2*aux4+aux2):(3*n+AUX+7+2*aux4+aux2+2*aux5-1)); 
intjac4=REF((3*n+AUX+7+2*aux4+aux2+2*aux5):(3*n+AUX+7+2*aux4+aux2+2*aux5+au

x3-1)); 
slack=REF(3*n+AUX+7+2*aux4+aux2+2*aux5+aux3); 
auxg=REF(3*n+AUX+7+2*aux4+aux2+2*aux5+aux3+1:3*n+AUX+7+2*aux4+aux2+2*aux5+a

ux3+n*n); 
auxb=REF(3*n+AUX+7+2*aux4+aux2+2*aux5+aux3+n*n+1:3*n+AUX+7+2*aux4+aux2+2*au

x5+aux3+2*n*n); 
counter=0; 

  
F=zeros((2*n-1),1)'; %initializing the return values of the function 

  
%%%%%%%assigning voltage x variables%%%%%%%%%%% 
V=zeros(n,1)'; 
for i=1:n 
    V(i)=x(i+n-1); 
end 

  
%%%%%%%assigning theta x variables%%%%%%%%%% 
th=zeros(n,1)'; 

  
auxs=1; %index for storing index 

  
for i=1:n 
    if i~=slack 
    th(i)=x(auxs); 
    auxs=auxs+1; 
    end 

     
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%intjac1 and intjac3 must be converted back to matrices from vectors  

  
%intjac1 
intjac1(aux4,2)=0; 
aux7=1; %auxiliary variable to advance storing index 
for i=1:aux4 
    intjac1(i,1)=auxintjac1(aux7); 
    aux7=aux7+1; 
    intjac1(i,2)=auxintjac1(aux7); 
    aux7=aux7+1;  
end 

  
%intjac3 
intjac3(aux5,2)=0; 
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aux7=1; %auxiliary variable to advance storing index 
for i=1:aux5 
    intjac3(i,1)=auxintjac3(aux7); 
    aux7=aux7+1; 
    intjac3(i,2)=auxintjac3(aux7); 
    aux7=aux7+1;  
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%g and b must be converted back to matrices from vectors 

  
%g 
g=zeros(n); 
auxs=1; 
for i=1:n 
    for j=1:n 
        g(i,j)=auxg(auxs); 
    end 
end 

  
%b 
b=zeros(n); 
auxs=1; 
for i=1:n 
    for j=1:n 
        b(i,j)=auxb(auxs); 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%5 

  

  
for i=1:n 
    if Vm(i)~=1 
        counter=counter+1; %in order to know how many voltages are known 
    end 
end 

  

  
%aux1 counter for voltage nodes (n -1) 
%aux2 %counter for active injected powers  
%aux3 %counter for reactive injected powers 

  
%aux4 %counter for active flux powers 
%aux5 %counter for reactive flux powers  

  
%%Voltages in the nodes 
Vcalc(aux1,counter)=0; 

  
for i=1:aux1 
    for j=1:counter 

     
    %Vcalc(i,j)=x(n-1+j)-xcomp(i); 

     
    end 
end 
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for i=1:aux1 
    for j=1:counter 

         
        if i==j 
        %F(i)=Vcalc(i,j); 
        end 

         
    end 
end 

  

  
pl=1; %index for placing the function, it will start with these 

measurements 

  
%Flowing active powers 
for k=1:aux4 %for all the power flows 

     
    ii=intjac1(k,1); %extracting the indexes 
    jj=intjac1(k,2); 

     
    if ii==slack 
        if pl <= (2*n-1) 
        F(pl)=x(ii+n-1)*x(ii+n-1)*g(ii,jj)-x(ii+n-1)*x(jj+n-

1)*(g(ii,jj)*cos(0-x(jj))+b(ii,jj)*sin(0-x(jj)))-xcomp(pl); 
        pl=pl+1; 
        end 
    end 

     
    if jj==slack 
        if pl <= (2*n-1) 
        F(pl)=x(ii+n-1)*x(ii+n-1)*g(ii,jj)-x(ii+n-1)*x(jj+n-

1)*(g(ii,jj)*cos(x(ii))+b(ii,jj)*sin(x(ii)))-xcomp(pl); 
        pl=pl+1; 
        end 
    end 

     
    if ii~=slack && jj~=slack 
        if pl <= (2*n-1) 
        F(pl)=x(ii+n-1)*x(ii+n-1)*g(ii,jj)-x(ii+n-1)*x(jj+n-

1)*(g(ii,jj)*cos(x(ii)-x(jj))+b(ii,jj)*sin(x(ii)-x(jj)))-xcomp(pl); 
        pl=pl+1; 
        end 
    end 

     
end 

  
%Flowing reactive powers 
for k=1:aux5 %for all the power flows 

     
    ii=intjac3(k,1); %extracting the indexes 
    jj=intjac3(k,2); 

     

  
    if ii==slack 
        if pl <= (2*n-1) 
        F(pl)=x(ii+n-1)*x(ii+n-1)*b(ii,jj)-(x(ii+n-1)*x(jj+n-1))*(-

b(ii,jj)*cos(-x(jj)))-xcomp(pl); 
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        pl=pl+1; 
        end 
    end 

     
    if jj==slack 
        if pl <= (2*n-1) 
        F(pl)=x(ii+n-1)*x(ii+n-1)*b(ii,jj)-(x(ii+n-1)*x(jj+n-1))*(-

b(ii,jj)*cos(x(ii)))-xcomp(pl); 
        pl=pl+1; 
        end 
    end 

     
    if ii~=slack && jj~=slack 
        if pl <= (2*n-1) 
        F(pl)=x(ii+n-1)*x(ii+n-1)*b(ii,jj)-(x(ii+n-1)*x(jj+n-1))*(-

b(ii,jj)*cos(x(ii)-x(jj)))-xcomp(pl); 
        pl=pl+1; 
        end 
    end 

     

     

     

     
end 

  
%Injected active powers 
for k=1:aux2 

     
    i=intjac2(k); %extracting the index 

     
    if i==slack  

     
    suma=0; %auxiliary index for the addition 
        for j=1:n 

         
            if j==slack 
            suma=suma+x(j+n-1)*(g(i,j)*cos(0)+b(i,j)*sin(0)); 
            else 
            suma=suma+x(j+n-1)*(g(i,j)*cos(x(j))+b(i,j)*sin(x(j))); 
            end 

         
        end 

         
        if pl <= (2*n-1) 
        F(pl)=x(i+n-1)*suma-xcomp(pl); 
        pl=pl+1; 
        end 

         
    end 

     

     
    if i~=slack  

     
    suma=0; %auxiliary index for the addition 
        for j=1:n 

         
            if j==slack 
            suma=suma+x(j+n-1)*(g(i,j)*cos(x(i))+b(i,j)*sin(x(i))); 
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            else 
            suma=suma+x(j+n-1)*(g(i,j)*cos(x(i)-x(j))+b(i,j)*sin(x(i)-

x(j))); 
            end 

         
        end 

         
        if pl <= (2*n-1) 
        F(pl)=x(i+n-1)*suma-xcomp(pl); 
        pl=pl+1; 
        end 

         
    end 

     

  

  
end 

  

  
%Injected reactive powers 

  

  
for k=1:aux3 

     
    i=intjac4(k); %extracting the index 

     
    if i==slack  

     
    suma=0; %auxiliary index for the addition 
        for j=1:n 

         
            if j==slack 
            suma=suma+x(j+n-1)*(g(i,j)*sin(0)-b(i,j)*cos(0)); 
            else 
            suma=suma+x(j+n-1)*(g(i,j)*sin(-x(j))-b(i,j)*cos(-x(j))); 
            end 

         
        end 

         
        if pl <= (2*n-1) 
        F(pl)=x(i+n-1)*suma-xcomp(pl); 
        pl=pl+1; 
        end 

         
    end 

     

     
    if i~=slack  

     
    suma=0; %auxiliary index for the addition 
        for j=1:n 

         
            if j==slack 
            suma=suma+x(j+n-1)*(g(i,j)*sin(x(i))-b(i,j)*cos(x(i))); 
            else 
            suma=suma+x(j+n-1)*(g(i,j)*sin(x(i)-x(j))-b(i,j)*cos(x(i)-

x(j))); 
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            end 

         
        end 

         
        if pl <= (2*n-1) 
        F(pl)=x(i+n-1)*suma-xcomp(pl); 
        pl=pl+1; 
        end 

         
    end 

     

  

  
end 
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