
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Masters Theses Graduate Research and Creative Practice

4-2016

Registration and Segmentation of Multimodality Images for Post Registration and Segmentation of Multimodality Images for Post

Processing of Skeleton in Preclinical Oncology Studies Processing of Skeleton in Preclinical Oncology Studies

Vineeth Radhakrishnan
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/theses

 Part of the Biomedical Engineering and Bioengineering Commons

ScholarWorks Citation ScholarWorks Citation
Radhakrishnan, Vineeth, "Registration and Segmentation of Multimodality Images for Post Processing of
Skeleton in Preclinical Oncology Studies" (2016). Masters Theses. 809.
https://scholarworks.gvsu.edu/theses/809

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at
ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/theses
https://scholarworks.gvsu.edu/grcp
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/229?utm_source=scholarworks.gvsu.edu%2Ftheses%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/809?utm_source=scholarworks.gvsu.edu%2Ftheses%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Registration and segmentation of multimodality images for post processing of skeleton in

preclinical oncology studies

Vineeth Radhakrishnan

A Thesis Submitted to the Graduate Faculty of

GRAND VALLEY STATE UNIVERSITY

In

Partial Fulfillment of the Requirements

For the Degree of

Master of Science in Engineering

Biomedical Engineering
School of Engineering

April 2016

Dedications

To my parents for the love, care and support in all my endeavors. I appreciate all the sacrifices

they made to put me through the best education possible.

To my mentor Dr. Rajesh Kannan Megalingam, who set a new standard for teaching through his

passion to nurture young talent and bring out the best in his students. He inspired me to pursue

Masters and to set higher goals in life. He taught me through his life that success comes through

hard work and perseverance.

Acknowledgements

I would like to thank Dr. Rhodes, for all the support and advice throughout the course of my

thesis work. Thanks for providing me the opportunity to work at Van Andel Institute and apply

the theoretical knowledge I learnt in your classes to solve real world problems. I would like to

thank Dr. Jeffrey Ward and Dr. Bruce Dunne in providing valuable feedback for my work.

I would like to thank Dr. Anthony Chang and all the members of Small Animal Imaging Facility

(SAIF) at Van Andel Institute (VAI) for introducing me to the world of molecular imaging and

providing me all the access to the infrastructure in order to carry out my research work.

I would like to thank my family, most notably my wife Neethu, who supported me throughout

the graduate work with unlimited love and encouragement.

I would like to thank my friends, Pradeep, Deepak and Nanda Kumar for the support and

friendship during my study at Grand Valley State University.

I am grateful to God for everything that I have in my life and giving me the strength to complete

this work.

Abstract

Advancements in medical imaging techniques provide biomedical researchers with quality

anatomical and functional information inside preclinical subjects in the fields of cancer,

osteopathic, cardiovascular, and neurodegenerative research. The throughput of the preclinical

imaging studies is a critical factor which determines the pace of small animal medical research.

The time involved in manual analysis of large amount of imaging data prior to data interpretation

by the researcher, limits the number of studies in a time frame.

In the proposed solution, an automated image segmentation method was used to segment

individual vertebrae in mice. Individual vertebrae of MOBY atlas were manually segmented and

registered to the CT data. The PET activity for L1-L5 vertebrae was measured by applying the

CT registered atlas vertebrae ROI.

The algorithm was tested on three datasets from a PET/CT bone metastasis study using 18F-NaF

radiotracer. The algorithm was found to reduce the analysis time threefold with a potential to

further reduce the automated analysis time by use of computer system with better specification to

run the algorithm. The manual analysis value can vary each time the analysis is performed and is

dependent on the individual performing the analysis. Also the error percent was recorded and

showed an increasing trend as the analysis moves down the spine from skull to caudal vertebrae.

This method can be applied to segment the rest of the bone in the CT data and act as the starting

point for the registration of the soft tissues.

Table of Contents

1. Introduction ... 10

1.1. Research Objective ... 11

2. Literature Review.. 14

2.1. Imaging Modalities .. 14

2.1.1. Computed Tomography (CT) ... 14

2.1.2. Positron Emission Tomography (PET) ... 15

2.2. Image registration ... 16

2.3. Image registration algorithms ... 16

2.3.2. Surface based registration ... 17

2.3.3. Intensity based registration techniques: .. 19

2.4. Atlases in medical imaging research .. 19

2.5. Related Work .. 22

3. Methodology ... 23

3.1. Marching cube algorithm ... 27

3.2. Iterative Closest Point Algorithm ... 33

3.2.1. Point selection ... 34

3.2.2. Point matching .. 35

3.2.3. Error metric and minimization of error metric ... 37

3.3. Manual method using MIPAV ... 40

4. Results ... 41

5. Discussion ... 49

6. Future Work .. 53

7. Appendices .. 54

7.1. Software Code: ... 54

8. References ... 85

List of Figures

Figure 3-1 Generalized block diagram for the algorithm. The segmented atlas is loaded and joints
are defined as either ball and socket or hinge joints.. ... 23

Figure 3-2 Figure showing the various anatomical joints and the joint type on the Moby. Ball and
socket joints are identified as B and hinge joints as H in the Figure on the left. 24

Figure 3-3 Figure showing the atlas regions for automatic segmentation. 25

Figure 3-4 Figure showing the application of the atlas segmentation hierarchy. 26

Figure 3-5 Figure showing the registration of the point cloud and the data cloud using the
standard ICP algorithm. .. 27

Figure 3-6 Triangulation cubes in marching cube algorithm (Lorensen and Cline 1987) 29

Figure 3-7 Figure showing the continuous surface rendering on both cubes by sharing the
vertices 1, 2, 3 and 4. .. 30

Figure 3-8 Figure showing the surface rendered µCT image of the mice using marching cube
algorithm. .. 30

Figure 3-9 Figure showing the registration of the µCT mesh and the un-segmented atlas spine.32

Figure 3-10 Figure showing the skeletal anatomy of LAC grey mouse illustrating the number of
vertebrae of each category .. 32

Figure 3-11 Figure showing the manually segmented atlas spine showing 7 Cervical, 13
Thoracic, 6 Lumbar, 4 Sacral and 5 Caudal vertebrae. ... 33

Figure 3-12 Figure showing the alignment of the CT and atlas after applying the initial input
conditions. ... 34

Figure 3-13 Figure showing K-DTree formation to find the nearest neighbor for the data point
cloud Di in the model point cloud Mi. .. 36

Figure 3-14. Figure showing (a) the registered skull atlas in 3D coordinate format (b) the
volumetric data of the registered atlas skull. .. 39

Figure 3-15. Figure showing the settings for the PET/CT registration in MIPAV tool for PET
radiotracer activity using manual method. .. 39

Figure 4-1 Figure showing the atlas prior to registration (on the left) and the atlas image after
registration on the µCT image and segmentation (on the right). .. 41

Figure 4-2 Figure showing the registered atlas and µCT data at different azimuth angles. 42

Figure 4-3 Figure showing the CT image with manually drawn ROI in MIPAV. 42

Figure 4-4 Figure showing the PET image with manually drawn ROI copied from the CT image.
... 43

Figure 4-5 Figure showing the comparison of the PET activity measured by manual and
automated method for the 1st dataset.. 44

Figure 4-6 Figure showing the comparison of the PET activity measured by manual and
automated method for the 2nd dataset. ... 44

Figure 4-7 Figure showing the comparison of the PET activity measured by manual and
automated method for the 3rd dataset. .. 45

Figure 4-8 Figure showing the error percent for all the three datasets for L1-L5 vertebrae 45

Figure 4-9 Figure showing the registered atlas vertebrae to the CT data for three different data
sets... 46

Figure 4-10 Figure showing the step by step registration of the atlas vertebrae onto the CT
dataset. .. 46

Figure 4-11. Figure showing the saturation of error metric after certain number of iterations. ... 47

Figure 4-12. Figure showing the number of iterations before the error metric becomes
significantly small. .. 47

Figure 4-13 Fluctuation in error after skull registration due to high number of iterations than
required (Reqd Iteration:70, Set value:150) .. 48

List of Tables

Table 2-1 Table showing list of rat/mouse atlases used in pre-clinical studies 21

Table 4-1 Table showing the PET radiotracer activity measured using the algorithm 43

1. Introduction

The rapid growth of computer aided diagnosis and computerized medical image analysis has

propelled the need for advanced image processing techniques in the medical field. The discovery

of X-rays by German physicist Wilhelm Conrad Roentgen in 1895 starts the timeline of medical

imaging history. Following this discovery, came the widespread application of X-rays in

medical diagnosis including the use of fluoroscopy to study the blood vessels by Dr. Francis

Henry Williams (Linton Summer 1995). The application of imaging in oncology dates back to

the 1910’s when Marie Curie published the theory of radioactivity and the investigation of X-ray

radiation on patient therapy. From then, different imaging modalities have been developed for

various clinical purposes. These imaging modalities became an integral part in oncology research

and its clinical diagnostics. Imaging modalities like the ultrasound, Computed Tomography (CT)

and Magnetic Resonance Imaging (MRI) provide the anatomical information about bones as well

as soft tissues inside human body, and the Positron Emission Tomography (PET), Single Photon

Emission Computed Tomography (SPECT) provide the functional information about the tissue

metabolic activity as it corresponds to any biologically active molecule of interest, non-

invasively. Apart from the imaging techniques, currently major research is being done to

enhance the computational speed of various algorithms used in processing these images.

The necessity for a distributed environment that provides image processing services, over

integrated service networks has previously been identified following the widespread application

of various imaging systems in the medical field. One of the early outcomes of the research in this

field of developing a software architecture to handle the image processing tools, user

applications, and the handshake protocols, involved data transfer between different software

modules and was done in the 1990’s by M. Zikos et.al (M. Zikos 1997). This described a

distributed environment that provides image processing services over integrated tele-radiology

services networks. This environment facilitated the integration of new image processing software

with the existing tools and provided scheduling mechanisms for efficient management of

computational resources. Although millions of imaging studies are conducted worldwide, there

does not exist a universal image processing algorithm for applications such as image

segmentation, as each study is specific to the imaging modality and the body part being studied

(Sharma and Aggarwal 2010). Preclinical imaging deals with visualization of living animals at

organ, tissue, cell or molecular level for research purposes such as drug development, which

involves multimodality imaging techniques at multiple time points over large number of

samples. In order to facilitate an accelerated discovery process in oncology drug development,

advanced image processing techniques play a significant role.

1.1. Research Objective

The Small Animal Imaging Facility (SAIF) at the Van Andel Research Institute (VARI) in Grand

Rapids MI, focuses on the development of imaging technologies that can provide biomedical

researchers with quality anatomical and functional information inside preclinical subjects in the

fields of cancer, osteopathic, cardiovascular, and neurodegenerative research. This research

focuses on using a technique called atlas based segmentation which was previously used at

SAIF, for analysis of [F18] FDG radiotracer uptake in soft tissues of mice in preclinical oncology

studies. The data for validating the algorithm developed for automatic registration and

segmentation in this thesis is obtained from a study focusing on using a different radiotracer [F18]

NaF, for early detection of myeloma, whose physiology closely mimics metabolic process in the

bone. The [F18] NaF absorbed is an indicator of the amount of bone formation (osteoblast) and

bone breakdown (osteoclast) activity during the metastasis of cancer cells. This research focuses

on quantification of the radiotracer activity on individual vertebrae of the spine, which was

previously accounted as a single bone structure in preclinical image segmentation (VanOss 2012)

(M. B. Artem Khmelinskii 2010). The study was conducted on 6 week old Nob-Obese Diabetic

(NOD) Severe Combined Immuno-Deficiency (SCID) mice with human multiple myeloma cell

line injected via tail vein injection procedure. F[18] NaF radiotracer was injected and the mice

was scanned at several time points in order to study the disease progression and its effect on

osseous tissue. The mice were scanned with µCT in the Feet First Prone (FFP) position and

reconstructed with a voxel size of 0.4x0.4x0.4mm for µCT and 0.46x0.46x0.46mm for PET. The

image is stored in DICOM format (Digital Imaging and Communications in Medicine), where

the information about the subject and study is stored in its header. The post processing of images

include the quantification of the radioactivity recorded in the PET data in the regions where

F[18] NaF is absorbed due to bone remodeling. This algorithm optimizes the post processing of

the images in the study which shortens the time frame required in analysis. This algorithm has

the following steps,

1) Segmentation of the spine despite varying posture of the mice during scan. To achieve this

aim:

a. Define Moby atlas skeletal hierarchy and the architecture to identify connected

bones in the skeletal system.

b. Define Moby atlas skeletal joints and apply hinge and ball & socket joints for

these skeletal joints

c. Develop the algorithm to register CT and Moby atlas by applying a smoothing

technique to the CT data, loading MOBY atlas as surface mesh using the

Marching Cube algorithm, and developing a variant of the Iterative Closest Point

(ICP) to align the atlas with the CT.

d. Skeletal segmentation and manually identifying the vertebrae joints to define joint

movements on the atlas data.

e. Apply the ICP registration algorithm to align the atlas vertebrae onto the CT for

each vertebra.

2) Measurement of PET image pixel radioactivity (in Becquerel) in the segmented bones. To

achieve this aim,

a. Register PET/CT (Segmented CT) data to measure the activity in each vertebra.

3) Evaluation of accuracy by comparing with the manual method. To achieve this aim,

a. Manually draw Region Of Interest (ROI) on the vertebrae of 3 PET/CT image to

measure the activity.

b. Identify the activity based on the automated segmentation method.

c. Statistically validate the accuracy of the automated segmentation method.

2. Literature Review

2.1. Imaging Modalities

Currently a number of Imaging modalities are available to study the anatomical as well as

functional activity in a subject. Also, in the research field, these imaging modalities are widely

used in pre-clinical imaging. Some of the major modalities are X-ray Computed Tomography,

Positron Emission Tomography (PET), Single Photon Emission Computed Tomography

(SPECT), Magnetic Resonance Imaging (MRI) and Optical Imaging.

2.1.1.Computed Tomography (CT)

X-ray Computed Tomography is one of the medical imaging procedure in which multiple 2D X-

ray are taken from different angles around the subject and reconstructed to form a 3D image of

the anatomical structure of the subject’s body. The X-ray image is formed based on the variation

in mass attenuation co-efficient of the different components of the body based on their density.

Lower density body parts like water and fat have lower attenuation coefficient compared to

dense components like bone. The 2D images are normally reconstructed by an algorithm called

the filtered back projection algorithm. Sir Godfrey Newbold Hounsfield shared the 1979 Nobel

Prize Physiology or Medicine with Allan McLeod Cormack for developing the diagnostic

technique of X-ray CT. For this contribution, the unit for quantitative measure of radio density

was named as Hounsfield Units (HU). Thus in an X-ray CT, air takes a value of -1000 HU, water

has 0 HU and the dense cortical bones has a value of +1000 HU. The resolution of the image

formed under an X-ray CT depends on many factors like the bore size of the CT machine, scan

period, X-ray energy, collimator design etc. Also, for better imaging of some of the anatomical

features like blood vessels, renal system, GI system, and the liver, contrast agents are also used.

In the United States alone, more than 50 million CT studies are performed annually, and about

50% of CT studies use intravenous iodinated contrast media such as Gastrografin, iohexol,

ioxilan, etc (Saravanan Namasivayam 2006).

Micro CT’s are CT machines designed for small animal imaging. µCT’s have significantly

higher resolution then clinical CT’s but this comes at the requirement of a reduced bore diameter.

The Small Animal Imaging Facility (SAIF) has a nanoSPECT/CT (Bioscan 2011) scanner which

is designed to scan mice and rats. Mice scans are typically reconstructed at a resolution of

200µm.

2.1.2.Positron Emission Tomography (PET)

PET images provide information about the functional activity of a specified target inside the

subject. PET imaging is based on the phenomenon of spontaneous positron emission by the

nuclei of some unstable ultra-short-lived radio nuclides (USLRs), in which the number of

protons exceeds that of neutrons (Anatoliy Granov 2013). The unstable radio nuclides are

injected into the body along with a biologically active molecule which is either metabolized by

specific regions of the body or it binds to certain target organs. The unstable nuclide emits

positrons by combining with an electron which is called annihilation. The distance travelled by

the positron through the medium, called the positron range, depends on the density of the

medium and the energy of the emitted positron. On annihilation they emit two 511KeV photons

moving approximately 180˚ apart which are detected by the detector ring of the scanner. The

detector-blocks in the ring consist of several crystals connected with a Photomultiplier tube

(PMT). The resolution of the PET image is directly affected by the positron range, the size, form

and material property of the detector blocks as well as the diameter of the ring. The signal output

from the PMTs is used to reconstruct a tomographic image of the subject.

SAIF uses a bench top µPET for animal imaging, which has a higher resolution than clinical

PET. This increased resolution is due to the smaller scintillation crystals used to detect photons

(Bioscience n.d.).

2.2. Image registration

Image registration is the process of identification of spatial correspondence (Hajnal and Hill

2001). Medical imaging is about establishing shape, structure, size, and spatial relationships of

anatomical structures, together with spatial information about function. Thus image registration

is necessary for establishing the correspondence of spatial information in medical images and

equivalent structures in the body in order to pinpoint the location of functional and structural

abnormalities. This forms the basis for image interpretation and analysis. In a clinical scenario,

images from multiple modalities may have to be fused in order to draw useful conclusions from

the data. This requires mental compensation by the interpreter or the clinician for changes in

subject position. Image registration aligns the images from these modalities and establishes

correspondences between various features seen on different imaging modalities. Also, the

registration of an atlas or computer models aids in the delineation of anatomical and pathological

structures in medical images and is considered as an important precursor to detailed analysis

(Hajnal and Hill 2001).

2.3. Image registration algorithms

Image registration algorithms can be divided into those that depend on the corresponding points

between the images, on the corresponding surfaces, and on image intensities.

2.3.1.Corresponding landmark based registration

One of the simplest methods of image registration employs what are called “fiducial markers” in

the two images. The landmark can be a physical marker or a pin attached to the surface of the

patient’s skin or which is screwed in and attached to the bones. The second method gives an

accurate registration but is highly invasive and can cause discomfort or infection to the

underlying tissues. Attaching the marker to the skin can cause error because of the skin

movement. These markers have to be attached firmly to the skin in order to reduce the error.

More than three markers are generally used as landmarks as the error reduces with the number of

markers. In this method, the algorithm involves the calculation of the centroid of each set of

points and translating the 3-D image based on the difference between the new and the old

centroid points (Hajnal and Hill 2001). This point set is then rotated along its new centroid until

the squared distances between the point pairs is minimized. The algorithm is validated based on

error parameters like the Fiducial Registration Error (FRE) or the Target registration Error (TRE)

or the more accurate and widely accepted Fiducial localization error (FLE) (Hajnal and Hill

2001).

2.3.2.Surface based registration

In surface based registration, corresponding surfaces are delineated in the two imaging

modalities and the transformation that minimizes distance between the surfaces is computed. The

two major algorithms based on identifying surface correspondences are the “head hat algorithm”

and the “Iterative Closest point algorithm”, the latter being the more widely accepted one.

2.3.2.1.Head and hat algorithm

In the “Head and Hat” algorithm, the contour of a particular surface is drawn in one modality,

which is called the ‘Head’. Then the corresponding set of points for the same surface from the

other modality is also drawn which forms the ‘Hat’. Then the algorithm tries to fit the ‘hat’ set of

points onto the ‘head’ contour and calculates the difference between the various points on the

contour through iterations for identifying the best fit. This method tends to fail when the

anatomical structures show symmetry of rotation. “Distance transform” is a method in which the

distance from every point in space to one of the points in the surface to be registered is used as

an input to the iterative computation, which can make the algorithm faster and more efficient

(Hajnal and Hill 2001).

2.3.2.2.Iterative Closest Point algorithm (ICP)

ICP refers to the use of an iterative algorithm to estimate the best alignment of two point clouds.

ICP is used in many applications like object identification in a scene, estimating motion

correction in sensor data, merging observations into a map, to name a few. The algorithm exists

in many different variants and can be tailored to use different features of the point clouds

depending on the circumstances. Several research studies have been done on ICP optimization,

thus a large number of variants are available in the literature. The basic form of ICP involves the

following steps:

1. Selection: Initially, it is good to select the appropriate model points and data points to

apply ICP. The data points refer to the cloud set which is transformed to match the

reference model set.

2. Matching: It refers to the matching of the data points and the model points using nearest

neighbor algorithms.

3. Weighting: Matched point pairs have to be weighted based on their compatibility.

4. Rejecting: Based on a statistical evaluation of the nearest neighbor distances, some of the

point pairs may be rejected.

5. Error metrics: It defines the objective function that is minimized in every iteration of

the algorithm.

6. Minimization of error metric: The error metric has to be minimized in the consecutive

iterations by improving upon the matching algorithm.

Another set of iterative image registration technique which ‘image pixel/voxel intensity’

information instead of input image landmark/surface features, to register the input set of images

are known as ‘Intensity based’ registration techniques.

2.3.3.Intensity based registration techniques:

2.3.3.1.Mutual information based registration

In this method, “information” is chosen as a registration metric. The shared information in two

images is calculated using joint entropy. This was based on the method developed by Claude

Shannon and Norbert Weiner, as a part of communication theory in 1940’s. In this method, we

calculate the amount of information in the two images combined. If these two images are totally

unrelated then their entropies are equal to the sum of the entropies of individual images. As the

images become similar, their joint entropy gets smaller. The joint entropy can be obtained

through joint histogram of the images and calculating the joint probability density function of the

two images to be registered. Mutual Information is applied to multi-modality image registration

as in (1) (Hajnal and Hill 2001)

 I(A,B) = H(A) + H(B) - H(A,B) (1)

2.4. Atlases in medical imaging research

In biomedical research, human as well as small animal atlases have been used for defining

geometric references and for making useful comparisons between anatomical structures and

physiological function. Some are organ-dedicated atlases restricted to a single organ or organ

system, while some are whole body atlases. The available clinical atlases are used in population

imaging, image segmentation, image registration, and follow up studies (M. B. Artem

Khmelinskii 2010). The main three human atlases in clinical research are the Talairach brain

atlas (Talairach, Rayport and Tournoux 1988), Visible Human Project whole body atlas (The

Visible Human Project® 2013) and the4D NCAT torso phantom (W. Paul Segars 2001). The

Talairach brain atlas provides a 3D coordinate space with labeled regions of the brain and it is

clinically used in functional neurosurgery, human brain mapping, neuroradiology, medical image

analysis and in neuroscience education. The Visible Human Project consists of MRI, CT and

cryosection images of both male and female human bodies. It is used in a wide range of

educational, diagnostic, treatment planning, and other industrial uses (The Visible Human

Project® 2013). Visible Human data set is used in projects such as BCS Grid Data Blade, a Java

applet that provides 2D views of the Visible Human male; I Voxel Browser, Java based web

browser showing voxel data, surface models, annotations, body system relationships, volume

rendering, and stereo 3D viewing, developed at University of Michigan. The 4D NCAT models

the 4D motion of the lungs, heart, diaphragm, and ribs with time as the 4th dimension. This was

modeled to study the motion artifacts during respiration in CT images.

For preclinical applications numerous other mice and rat atlas models are available derived from

various techniques with different characteristics. Many of them are made available to the public

and thoroughly defined. These atlases are enumerated in the Table 2-1 below.

Registration of an atlas to another anatomical image requires non-rigid transformation due to the

postural variation and the variation in mice size that may occur during imaging studies. There are

no standard protocols for imaging a mouse, as it can vary based on the type of study involved.

The available atlases are non-articulated and they have to be articulated by defining joint types

and degree of freedom, prior to using them for the purpose of anatomical segmentation.

Table 2-1 Table showing list of rat/mouse atlases used in pre-clinical studies

S.No Atlas Method Developed at Application

1

LONI Rat Atlas
(Arthur W. Toga
1995)

Computerized
cryomicrotome

UCLA
Laboratory of
Neuro-Imaging

Brain Mapping and
neuroscience studies

2

Edinburgh Mouse
Atlas (R.M.
Brune 1999)

Histological Imaging Biomedical
Sciences,
University of
Edinburgh

Interpretation and
understanding of spatial
data in mouse embryos

3

MRI Atlas of
Mouse
Development
(Marc Dhenain
2001)

11.7 T MR Imaging California
Institute of
Technology

Study relationships
between the
components within a
developing system.

4

Mouse Cochlea
Database (Peter
A. Santi 2008)

Orthogonal-plane
fluorescence optical
sectioning
microscopy
(OPFOS) imaging
and Amira
reconstruction

University of
Minnesota

Establish morphometric
parameters of cochlear
structures in normal and
mutant mice

5 MOBY mouse
(Segars WP 2004)

High-resolution 3-D
magnetic resonance
microscopy (MRM)

Department of
Radiology, Johns
Hopkins
University,

development of new
imaging
instrumentation, image
acquisition strategies,
and image processing
and reconstruction
methods

6

Digimouse
(Belma Dogdas
2007)

Coregistered x-ray
CT and cryosection
data

Signal and Image
Processing
Institute,
University of
Southern
California

Study of anatomy,
Computer phantom
studies to simulate
imaging systems,
labeling of anatomical
structures.

7

Sprague–
Dawley (SD) rat
atlas (Xueling Bai
2006)

Cryosection milling
imaging system

Huazhong
University of
Science and
Technology,
China

Integrative study of the
physiological and
pathological phenotype
of the rat.

2.5. Related Work

Baiker et al in 2010, have described a method for fully automated segmentation of µCT image

using an articulated MOBY mouse atlas. The joints in the atlas are given anatomically realistic

joint types and are defined in a hierarchical atlas tree (Martin Baikera 2010). It uses the ICP

algorithm and constraints on the Degrees of Freedom at the joints for local registration based on

the model tree hierarchy.

Baiker et al in 2012, described a method in which the bones from the SPECT image were

segmented and applied to an Articulated Planar Reformation (APR) algorithm (H. C. Artem

Khmelinskii 2012) for side by side change visualization and comparison. The results were shown

to be robust for even “incomplete” (large chunks of bone missing) data as can be the case in bone

metastasis studies.

Langerak et al in 2013, proposed a method where, multiple atlases are clustered together prior to

the registration to ensure robustness of the segmentation procedure (Thomas R. Langerak 2013).

Though the process reduces computation time, the authors mentioned that multi-atlas based

segmentation could reduce the accuracy of segmentation in certain applications.

3. Methodology

Figure 3-1, shows the block diagram for the registration of the MOBY atlas onto the CT image

of the mouse and the steps to quantify the radioactivity in skull and vertebrae regions. The Moby

atlas was used as a reference for the segmentation of the µCT data. The Moby atlas was chosen

over other atlas data because the articulated version of atlas developed by Baiker et al was

available online on request for research. The articulated version of the atlas has the following

anatomical segments: inside and outside skull surfaces, upper and lower forelimb, upper and

lower hind limb, front and hind paw, spine, rib, sternum, clavicle and pelvis, with a total of 21

segments. Also, the different joints were defined as either ball and socket joints, or hinge joints.

Figure 3-2, shows all the defined joint types on the Moby atlas.

Figure 3-1 Generalized block diagram for the algorithm. The segmented atlas is loaded and joints are defined as
either ball and socket or hinge joints. The spine is segmented using an anatomical reference of a 15 week old male
mouse. µCT image is converted to mesh using the marching cube algorithm. The segmented atlas skull and spine
and the µCT mesh data is registered together using the modified ICP algorithm. It generates a scalar field mask of
the atlas and applies it to the PET image to measure the activity in vertebrae.

Figure 3-2 Figure showing the various anatomical joints and the joint type on the Moby. Ball and socket joints are
identified as B and hinge joints as H in the Figure on the left.

Also, In the proposed algorithm, an architecture and nomenclature was assigned to label each

articulated segment of the atlas as shown in Figure 3-3. This was done to identify the anatomical

connection between different articulated segments on the atlas. The atlas segments were divided

into four regions - left, right, top, and bottom as shown in Figure 3-3. Also, the interconnected

segments were sequentially numbered in each region. Each segment on the atlas has a specific

name based on its position in the hierarchy as in R-T-6 for the right forepaw where, R stands for

Right, T for Top and 6 is its position in the hierarchy. Thus, in the algorithm, if a parent segment

(segment higher in the hierarchy) is moved during automatic registration, the algorithm could

automatically identify the daughter segments to be registered next. This way, the same parent

transformations can be automatically applied to the daughter segments prior to their registration,

thereby reducing user interaction and registration time.

B
B

B

B

B

H

B-Ball and
Socket Joint

H-Hinge
Joint

 Figure 3-3 Figure showing the atlas regions for automatic segmentation.

The application of the architecture is shown in Figure 3-4, where the movement of the clavicle

by a specified degree of angular measurement results in the movement of upper and lower

forelimb by the same degree in consecutive steps automatically, ending with the left paw. Thus if

the automatic registration algorithm generates a transformation R for a parent segment on the

atlas to register with the µCT, the same transformation will be applied to the interconnected

segments based on the defined hierarchy and nomenclature.

1H
2
3
4 3

4 5
6

3

4

5

6

Left Right

Top

Bottom

Prone Supine

Figure 3-4 Figure showing the application of the atlas segmentation hierarchy.

In order to test the accuracy of the ICP registration algorithm, two copies of the atlas rib was

plotted at 60 degree orientation from one another. The ICP algorithm was used to register both

the rib segments of the atlas. The ICP algorithm applies the transformation on point cloud to

register with the data cloud. Figure 3-5, shows the initial orientation and the registered states of

the two rib segments point clouds. It shows the magnified version of the registered 3D point

cloud to show the closeness on the registered points.

Figure 3-5 Figure showing the registration of the point cloud and the data cloud using the standard ICP algorithm.

3.1. Marching cube algorithm

The marching cube algorithm is currently the standard used for 3D surface reconstruction in

medical visualization industry (Kalyankar and Apte 2013). It can be used to generate 3D

structures from 2D CT scan dataset. Since 2D images cannot convey the underlying complexity

of human anatomy, we rely on 3D reconstruction for interpretation of the acquired medical

image. It allows medical professionals to properly visualize the volume and shape of features

that they are interested in analyzing, like bone metastasis and remodeling features on specific

vertebrae, or a particular tumor and its vascularization..

Rendering is a technology used in visualizing 3D datasets by displaying volumetric data as a

meaningful two dimensional image. Based on the structure and data type, several techniques are

used for rendering. Rendering is crucial for this algorithm as it uses a surface based registration

technique for registering the Moby atlas to the µCT data for segmentation. Through rendering it

creates a surface around the µCT volumetric dataset with similar properties which is later used

by Iterative Closest Point (ICP) algorithm for registration. There are two types of 3D rendering

in medical industry: namely the cross-section rendering and threshold rendering. In cross-section

rendering the volume is considered opaque and the user selects areas to render by adding new

light sources illuminating the 2D cross-sectional slices. In this algorithm, threshold rendering is

performed where the surfaces are rendered based on the tissue density selected by the user.

Various anatomy regions can be rendered based on their tissue density. Tissue density can be

obtained from CT images and the medical professional can easily use it to select the specific

region to be rendered.

In this algorithm, eight pixel values are considered from two adjacent slices of the CT image.

The density value of the tissues correspond to Hounsfield Unit (HU) in CT. Areas of the tissue

with the same HU are known as the iso-surface value for the rendering algorithm. Each of the

image pixel values are compared against the iso-surface value to determine if they are above or

below the iso-surface value. This determines if each of the pixel in 2D CT dataset falls within or

outside the rendered surface. The eight vertex forms an imaginary cube and we have to

determine how the surface intersects the cube. Since there are eight vertices and two possible

logical states (inside/outside) per vertex, there are 256 ways the surface could intersect the cube.

By triangulating the 256 possibilities the method becomes error-prone and tedious. When the

relationships of the surface values are inverted, the topology of the triangulated surface remains

the same. This means that in case 1 of Figure 3-6, the vertex under consideration can either be

inside or outside the iso-surface based on its value being higher or lower than the iso-surface

value. Both cases the topology/surface intersection looks the same. Also, there is a rotational

symmetry among some of the cases, as in case 1 of Figure 3-6, has one vertex inside/outside the

surface. The same surface intersection possibility will occur if any of the other eight vertex was

inside/outside the iso-surface, thus eliminating the possibility of 7 other cases. This reduces the

surface intersection possibilities from 256 to 14. As shown in figure 3-6, by analyzing just 8

vertices a precise surface can be expressed as a combination of 5 or less triangles.

Figure 3-6 Triangulation cubes in marching cube algorithm (Lorensen and Cline 1987)

The relation between the cubes is such that, every cube shares four vertices with the adjacent

cube to form continuous surface rendering. As shown in Figure 3-7, both the cubes share the

vertices 1, 2, 3 and 4. The marching cube algorithm was implemented in MATLAB using the

built in ‘isosurface’ function. Figure 3-8, shows the surface rendering of the µCT data of the

mice using the marching cube algorithm with iso-surface value set to the Hounsfield Unit (HU)

of the bone density, i.e. 750 HU.

Figure 3-7 Figure showing the continuous surface rendering on both cubes by sharing the vertices 1, 2, 3 and 4.

Figure 3-8 Figure showing the surface rendered µCT image of the mice using marching cube algorithm.

Prior to segmentation of the atlas spine, the registration algorithm is applied to the µCT mesh

data obtained from the marching cube algorithm to register with the atlas skull and spine. The

ICP algorithm was used to register the atlas spine and the µCT spine as shown in Figure 3-9. The

1

4 3

2

output of the algorithm shows that with the un-segmented rigid atlas spine structure, only a few

regions of the cervical and caudal spine were registered. This problem was not tackled in the

current version of the software as well as current research in atlas mouse segmentation

procedure. Baiker et al, modeled the spine as a 3D curve curve between the neck and pelvis and

it was not registered or segmented from the CT (M. B. Artem Khmelinskii 2010). In the work

done by VanOss et all, the spine was segmented from the volumetric data as the 3D region

between the neck joint and the hip joint (VanOss 2012). The 3D region grown starting from the

neck to the posterior direction was segmented as the spine. This greatly depends on the static

threshold value initially set to filter the bones from the soft tissue. An error in setting the

threshold CT pixel value could affect the uptake value of spine in the results. The spine in the

MOBY mouse atlas was manually segmented based on the work by Margaret J. Cook (.Cook

1965) as shown in Figure 3-11. To segment each atlas vertebrae manually, each vertebrae joint

was identified. A Matlab script was written to segment every vertex between the two joints in the

axial direction of the spine and was stored as one vertebra. But few of the vertebrae as in C1-C2,

C3-C7, T1-T3, T4-T8, T9-T13 were found to be fused to one another and difficult to segment

manually. Thus these vertebrae were stored as single segment and used for registration with the

CT. Figure 3-10, shows the skeletal anatomy of a LAC grey mouse. This way the vertebrae

could be moved in the atlas to register with the µCT data.

Figure 3-9 Figure showing the registration of the µCT mesh and the un-segmented atlas spine.

Figure 3-10 Figure showing the skeletal anatomy of LAC grey mouse illustrating the number of vertebrae of each
category

Figure 3-11 Figure showing the manually segmented atlas spine showing 7 Cervical, 13 Thoracic, 6 Lumbar, 4
Sacral and 5 Caudal vertebrae.

3.2. Iterative Closest Point Algorithm

Iterative Closest Point (ICP) algorithm is used for geometric alignment of point clouds when an

estimate on their initial positions is known. The efficiency or performance of the algorithm can

be enhanced if a better estimate on the initial position is known. Several variants on the ICP

algorithm have been described that affect all phases of the algorithm namely, selection,

matching, error metric and minimization of the error metric. Here we use a variant of ICP

algorithm to increase the computational efficiency and cut down the processing time to register

the segmented spine atlas and the µCT mesh point cloud. In ICP taxonomy, the atlas point cloud

is called the data point cloud ‘D’ and the µCT mesh point cloud is the model point cloud ‘M’.

The transformation is applied on the data point cloud ‘D’ to register to the model point cloud

‘M’. The steps for the ICP algorithm include point selection to reduce the computation

complexity on each iteration, point matching to identify the nearest neighbors, calculation of

error metric and minimization to improve registration on each iteration.

3.2.1.Point selection

Initially, the points to be registered have to be selected so that they are in close proximity and

reduce the computation time over each iteration. To ensure the proximity of the vertebrae, the

skull registration is performed prior to the spine. For skull registration, the same ICP algorithm is

used with all the points from the Data and Model point clouds. The skull has a well-defined

structure which helps in fast registration compared to the vertebrae. Once the spine gets

registered, the other bones can be located close to the µCT by following the joint types and the

atlas segmentation hierarchy as shown in Figure3-2 and Figure 3-3.

Figure 3-12 Figure showing the alignment of the CT and atlas after applying the initial input conditions.

The identification of initial point of registration for the atlas skull segment to the CT is based on

the following input conditions:

a. The anterior and posterior end of the mouse is known and given as input to the algorithm.

b. Scan orientation of the mice is known and it remains the same for all the subjects in a

study. The study from which this data is collected has all the mice scanned in Feet First

Prone (FFP) position. This information can also be fetched from the DICOM header of

the image file.

c. A rough estimate of the size scale required for matching the atlas and CT is known and is

given as input.

This provides the rough alignment of the CT skull in close proximity to the atlas data as shown

in Figure 3-12. In regular cases, all the three input conditions stated above, required for initial

alignment, remains the same. This makes the “point matching” step easier, where every point in

the atlas skull is matched with another in CT data. Following the initial alignment, the nearest

neighbor for majority of the points in the atlas skull lies on the CT skull.

3.2.2.Point matching

Equation 2, shows the algorithm used for point matching.

௞ሺ௜ሻܥ ൌ min
ଵஸ௝ஸேಾ;ଵஸ௜ஸேವ

൬ቚหܯ௝ െ ௞ܶିଵܦ௜หቚ
ଶ
൰																																	ሺ2ሻ

where, k is the number of ICP iteration, Tk is the transform from the previous iteration, NM is the

number of points in the model point cloud and ND is the number of points in the data point cloud.

Euclidean distance of the points from Model cloud and the Data cloud is calculated and is used

as an error metric to determine the transformation for the next iteration.

In this step, a nearest neighbor search is performed to get the data points closest to the model

point set. A basic approach is to find out the distance between all the points in data and model

points to identify the shortest distance. This is known as the naïve approach, or brute-force

approach, or exhaustive approach. Although simple to implement, the computational complexity

scales linearly with the number of points, f (N) in the point clouds.

Figure 3-13 Figure showing K-DTree formation to find the nearest neighbor for the data point cloud Di in the model
point cloud Mi.

In this algorithm, the kDtree method was used to find the nearest neighbor for the data cloud in

the model cloud. To find the nearest neighbor using kDtree algorithm, the data point cloud, D is

split by finding the median of all the points’ first coordinates. The median point becomes the root

of the tree. The entire data point cloud is divided into kDtree, which is the preprocessing required

for this algorithm. To determine the nearest neighbor, as we move down the root, the distance of

the model point to the data point is recorded. The nearest of the two branches from the root is

determined and finally the closest branch with minimal distance is determined as the nearest

point. The computational complexity of creating a kDtree with dimension ‘k’ is no higher than

O(kNlog2N) (Friedman, Bentley and Finkel 1977), where O is the asymptotic notation or the

‘Big O’ notation used to describe the limiting behavior of a function when the arguments tend to

a particular value or infinity. This way by using the kDtree, the computational complexity of

finding the nearest neighbor in Euclidean matrix is greatly reduced.

3.2.3.Error metric and minimization of error metric

Error metric refers to the objective function that is minimized in every iteration of the algorithm.

In this algorithm, point to point minimization is performed. The sum of squared distances of data

points to model points is determined as in equation (3).

 ݂ ሺݖሻ ൌ ∑ ห|ܴ݀݅ ൅ ܶ െ݆݉|หே
௡ୀ଴

2 (2)

 Where di refers to the data cloud points and mj refers to the model cloud points.

 A closed form solution can be obtained for the point to point minimization using Singular Value

Decomposition (SVD) as shown below.

The centroids for the data and model point cloud can be defined as

݀̅ ൌ
ଵ

௣
∑݀ (3)

ഥ݉ ൌ
ଵ

௤
∑݉ .(4)

Where, p and q are the number of number of data and model point clouds. Then the point

deviation from centroid is given as,

݀௜ୀ
′ ݀௜ െ ݀̅ (5)

݉௜
′ ൌ ݉௜ െ ഥ݉ (6)

To determine the rotation matrix R and translation matrix	ሬܶሬሬԦ,

ܧ ൌ ∑ ฮܴ݀௜ ൅ ሬܶԦ െ ݉௜ฮ
ଶே

௜ୀଵ (7)

Substituting (6) & (7) in (8),

ܧ ൌ ∑ ฮܴ൫݀௜
′ ൅ ݀̅൯ ൅ ሬܶԦሺ݉௜

′ ൅ ഥ݉ሻฮ
ଶே

௜ୀଵ ൌ ∑ ฮܴ݀ప′ഥ െ݉௜
′ ൅ ሺܴ݀̅ െ ഥ݉ ൅ ሬܶԦሻฮே

௜ୀଵ
ଶ

 (8)

The error can be minimized by translating the data point centroid to the centroid of the model

point. Thus,

ሬܶԦ ൌ തݍ െ (9) ̅݌ܴ

Substituting (10) into (9) and simplifying, we can see that the error can be reduced by

maximizing 11.

ሺܴܰሻݎݐ ൌ ∑ ௜ݎ
ଷ
௜ୀଵ . ܿ௜ ൑ ∑ ‖௜‖‖ܿ௜ݎ‖

ଷ
௜ୀଵ (10)

Where, ࡺ ൌ ∑ ݀௜′
ே
௜ୀଵ .݉௜′

T

This can be achieved by considering the SVD of N=U∑VT and choosing R=VUT (Kjer and Wilm

2010). This gives the value on right hand side of (11) as tr(√்ܰܰ,	is the maximum value and it

occurs when R=VUT. Applying the transformation to the data points registers it to the model

point cloud with a minimized error	ܧ. Several iterations can be performed based on the initial

alignment of the data and model point clouds to obtain a convergence result. The registered atlas

vertebrae form the ROI for measuring the activity from the PET data. The ROI in the 3D

coordinate format is converted to volumetric data as shown in Figure 3-14. The Figure shows the

registered atlas skull and the volumetric data of the same.

(a) (b)
Figure 3-14. Figure showing (a) the registered skull atlas in 3D coordinate format (b) the volumetric data of the

registered atlas skull.

Figure 3-15. Figure showing the settings for the PET/CT registration in MIPAV tool for PET radiotracer activity

using manual method.

3.3. Manual method using MIPAV

Medical Image Processing, Analysis and Visualization (MIPAV), is a software tool developed by

National Institute of Health (NIH), to develop computational methods to analyze and quantify

biomedical data. MIPAV v7.3.0 tool was used to register the PET and CT input data and perform

manual ROI drawing on the data set. The MIPAV tool uses “Powell’s calling Brent’s” as the

nearest neighbour search algorithm and trilinear interpolation for sampling along with other

parameters as shown in Figure 3-15. The Volume Of Interest (VOI), was drawn on L1 to L5

vetebrae on the CT image as they are more visually discerable compared to the PET data. The

VOI are then opened on the registered PET image for quantization of the activity in the PET

data. MIPAV tool is used as the gold standard tool for measuring the activity on the PET data by

manual method.

4. Results

Figure 4-1(a), shows the atlas spine prior to segmentation and Figure 4-1(b), shows the

segmented atlas after registration onto the µCT. The two images show the segmented atlas spine

orientation before and after the registration algorithm has been applied to the µCT data. Figure 4-

2, shows the different azimuth orientation of registered atlas and µCT data.

Figure 4-1 Figure showing the atlas prior to registration (on the left) and the atlas image after registration on the

µCT image and segmentation (on the right).

Figure 4-2 Figure showing the registered atlas and µCT data at different azimuth angles.

The ROI was drawn on the CT image as shown in Figure 4-4 and the ROI was moved to the

registered PET data as shown in Figure 4-5.

Figure 4-3 Figure showing the CT image with manually drawn ROI in MIPAV.

Figure 4-4 Figure showing the PET image with manually drawn ROI copied from the CT image.

Table 4-1, shows the PET activity in BQML (becquerel per ml), where one Bq, is the activity of

a quantity of radioactive material in which one nucleus decays per second. Table 1.2, shows the

radiotracer activity on the L1-L5 vetebrae measured by manual method and by using the

segmentation algorithm. Error rate was calculated using (12) and recorded in Figure 4-8.

Error Rate (E)ൌ ||ெ௔௡௨௔௟௟௬	௖௔௟௖௨௟௔௧௘ௗ	௩௔௟௨௘ି஺௨௧௢௠௔௧௘ௗ	௩௔௟௨௘||

ெ௔௡௨௔௟௟௬	௖௔௟௖௨௟௔௧௘ௗ	௩௔௟௨௘
∗ 100 (12)

Table 4-1Table showing the PET radiotracer activity measured using the algorithm

Manual 9.41E+07 4.32E+07 5.11E+07 9.28E+07 1.62E+07

Algorithm 1.02E+08 4.12E+07 3.53E+07 7.56E+07 1.09E+07

Manual 5.89E+07 2.95E+07 1.82E+07 3.42E+07 2.75E+07

Algorithm 6.74E+07 2.44E+07 1.32E+07 2.52E+07 2.06E+07

Manual 1.79E+07 1.99E+07 1.49E+07 5.75E+06 5.68E+06

Algorithm 1.60E+07 1.88E+07 1.63E+07 5.90E+06 6.72E+06

Subject 1

Subject 2

Subject 3

Figure 4-5 Figure showing the comparison of the PET activity measured by manual and automated method for the
1st dataset.

Figure 4-6 Figure showing the comparison of the PET activity measured by manual and automated method for the
2nd dataset.

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

L1 Vertebrae L2 Vertebrae L3 Vertebrae L4 Vertebrae L5 Vertebrae

T
ra

ce
r

ac
ti

vi
ty

(B
qm

l)

Comparison of PET activity measured by manual Vs
automated method for subject 1

Manual Automated

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

L1 Vertebrae L2 Vertebrae L3 Vertebrae L4 Vertebrae L5 Vertebrae

T
ra

ce
r

ac
ti

vi
ty

 (
B

qm
l)

Comparison of PET activity measured by manual Vs
automated method for subject 2

Manual Automated

Figure 4-7 Figure showing the comparison of the PET activity measured by manual and automated method for the
3rd dataset.

Figure 4-8 Figure showing the error percent for all the three datasets for L1-L5 vertebrae

8.21

4.74

14

18.48
17.38

14.47

17.2

27.45
26.26

25.05

10.51

5.23

8.93

2.57

15.54

0

5

10

15

20

25

30

L1 Vertebrae L2 Vertebrae L3 Vertebrae L4 Vertebrae L5 Vertebrae

E
rr

or
 R

at
e

Subject_1

Subject_2

Subject_3

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

L1 Vertebrae L2 Vertebrae L3 Vertebrae L4 Vertebrae L5 Vertebrae

T
ra

ce
r

ac
ti

vi
ty

 (
B

qm
l)

Comparison of PET activity measured by manual Vs
automated method for subject 3

Manual Automated

Figure 4-9 Figure showing the registered atlas vertebrae to the CT data for three different data sets.

Figure 4-10 Figure showing the step by step registration of the atlas vertebrae onto the CT dataset.

Figure 4-11. Figure showing the saturation of error metric after certain number of iterations.

Figure 4-12. Figure showing the number of iterations before the error metric becomes significantly small.

Figure 4-13 Fluctuation in error after skull registration due to high number of iterations than required (Reqd

Iteration:70, Set value:150)

5. Discussion

Jadvar et. al (Jadvar, Desai and Conti 2015), performed studies on use of 18F-NaF as PET/CT

radiotracer for bone and joints osseous metabolic activity. It was found that, 18F-NaF PET/CT

was found to be diagnostically superior to other 99mTc-based bone scintigraphy for more accurate

detection of extent osseous metastatic disease in a variety of cancers such as head and neck

cancer, thyroid cancer, lung cancer, breast cancer, hepatocellular carcinoma, multiple myeloma,

bladder cancer and prostate cancer. Accurate identification of the tumor viability was useful not

only in diagnosis but also in treatment planning and follow-up.

The American Cancer Society estimates 26,850 new cases of multiple myeloma in the United

States for the year of 2015 and an estimated 11,240 deaths (Society 2015). The median age at

diagnosis is 69 and median age at death was estimated to be 75. 46.6% of the people was

estimated to survive for 5 years. High mortality rate due to multiple myeloma was attributed to

late diagnosis of the disease. Multiple myeloma causes bone metastasis which causes an

imbalance in the ratio of the osteoblast to osteoclast activity of bones. During bone metastasis the

osteoclast activity takes over osteoblast activity and causes bone erosion. Also, it was found that

5-10% of all cancer patients develop spinal metastasis during the course of their disease. Early

diagnosis of bone/spine specific metastasis can preserve/improve neurologic functionality,

achieve functional stability, optimize local tumor growth and improve the quality of life of the

patients.

At the Small Animal Imaging Facility, the study was conducted to identify the precursors for

early detection of multiple myeloma based on bone remodeling. The study was conducted on 6

week old Nob-Obese Diabetic (NOD) Severe Combined Immuno-Deficiency (SCID) mice with

human multiple myeloma cell line injected via tail vein injection procedure. 18F -NaF radiotracer

was injected and the mice were scanned at several time points in order to study the disease

progression and its effect on osseous tissue. Three image dataset from the study was used to

evaluate the accuracy and throughput of automated atlas based segmentation algorithm against

the manual method. For the manual method, MIPAV image analysis software was used to draw

ROI on individual spinal vertebrae L1-L5 on each slice and obtain the radiotracer activity value

in each vertebra. The manually obtained value and the value obtained using the algorithm was

tabulated as shown in Table 4.1. It shows the 18F-NaF radiotracer activity value in vertebrae L1-

L5. Figure 4-5 to 4-7, shows the plot of uptake value in (Bqml) in each of the vertebrae from L1-

L5 for all the three subjects.

 Vertebrae L1-L5 was selected as they are easy to identify for drawing the ROI manually. Figure

4-10 shows the sequential steps involved in registration of the whole atlas to the µCT dataset.

Initially the skull is registered, followed by Cervical, Thoracic, Lumbar, Sacral and Caudal

vertebrae. Figure 4-8, shows the percentage error in the automated method considering the

manual ROI method using MIPAV tool as gold standard. It was seen that, the error percent

varies from 2.57% on L4 of dataset 3 to 27.45% on L3 of dataset 2. Dataset 3 had the least error

percent with a minimum and maximum value of 2.57% on L4 to 15.54% on L5. Also, dataset 2

had the highest error rate with a minimum and maximum value of 14.47% on L1 and 25.05% on

L5. Also, a general trend in the variation of error percent was an increment in the error percent as

we move down the spinal column. The error rate on L1and L2 on all three dataset was found to

be less than L5 vertebra. This can be attributed to the cumulative error on each vertebrae

registration from the skull to the caudal vertebrae. An error in the registration of skull results in

an incremental error in the registration of the 1st cervical vertebrae as they are connected together

in the atlas.

The algorithm was run on a Windows 8, Intel Core 64 bit, i5 processor laptop with 12GB DDR3

RAM laptop on Matlab® R2014a. The time taken by the algorithm was measured using the ‘tic-

toc’ function in Matlab and it was found to be 1414.34 seconds or 24 minutes (approximately).

The time taken for the manual method to register the PET and CT dataset, draw the ROI on each

slice and each vertebrae takes 60-65 minutes approx. Thus the time taken for the post processing

of image dataset was reduced to one-third by automated method accelerating the image analysis

workflow. Also, the time taken by the automated method can be reduced further by using a

computer with a better configuration (eg: i7 processor with16GB RAM). Also, it was seen that

activity measured during manual method depends on the subject drawing the ROI and the values

slightly vary during each attempt. But the automated method is user independent on each attempt

of image analysis and thus more robust compared to the manual method.

An analysis on the logic to stop the iteration for the ICP algorithm was performed. A static

number of iteration, 150 was initially set to the algorithm, where algorithm attempts to register

the atlas to the CT during 150 iterations. As in Figure 4-11, the error metric was found to be

saturated after a particular number of iteration. It was observed that, the error metric saturates at

different iteration for different segments based on their initial alignment. Following this, an

arbitrary threshold of 1/1000 was set for the variation in error metric to be called as in saturated

state. The algorithm stops the iteration when the difference of error metric from the previous

iteration is less than 1/1000. Figure 4-12, shows that the registration gets completed at an early

stage than the set value of 150 iterations. Skull segment was found to have a high initial error

metric because it was the first segment to be registered. As expected, the number of iterations

required for a saturated error metric was found to be 70 iterations. The number of iterations were

found to lower for the L1-L5 segments and were in the rage of 29-38 iterations. The algorithm

stops the registration once the error metric gets saturated, reducing the registration time (in the

milli-seconds (ms) range). Since the algorithm takes 15-20 minutes from beginning till the end,

the improvement in overall throughout due of the lower number of iterations were not

significant. Also, from Figure 4-11 and 4-12, it was found that, in the case of a set number of

iterations, a slightly higher initial error metric was observed in certain segments like L2 and L5.

This can be attributed to the fluctuation in the error metric in its saturated state and when the set

value for the iteration coincides with a high fluctuation in error metric, the initial alignment for

the following segment will result in higher misalignment. Figure 4-13, shows the fluctuation in

the error metric for the skull segment in its saturated state. In this case, the required number of

iteration for registration based on the arbitrary threshold was 70 and the set value was higher at

150.

In this thesis, an automated image segmentation method was used to segment individual

vertebrae in mice. The algorithm was tested on three datasets from a PET/CT bone metastasis

study using 18F-NaF radiotracer. The algorithm was found to reduce the analysis time threefold

with a potential to further reduce the automated analysis time by use of better specification for

system to run the algorithm. The manual analysis value can vary each time the analysis is

performed is dependent on the individual performing the analysis. Also the error percent was

recorded and found that it tends to increases as the analysis moves down the spine from skull to

caudal vertebrae.

6. Future Work

The performance of the algorithm can be improved by the use of an automated method to scale

the µCT dataset to the size of atlas data instead of using a static scaling value. The software can

include an optional manual intervention to add markers to specify each vertebra, making the tool

semi-automatic and more reliable. The software can be written in another language like C++

using the ITK (Insight Segmentation and Registration Toolkit) and VTK (Visualization Toolkit)

for developing better Graphical User Interface (GUI) and image processing algorithms. The

above work can be integrated to the existing work done by VanOss et al, to segment all the bones

in the CT data. In the future work, a semi automated analysis method can be developed where

the user marks the approximate center of mass of the low contrast soft tissue and the software

completes the remaining steps in registration. A more detailed study on the degree of freedom

including the scaling of the subject data to the atlas can provide more robust registration of the

high contrast soft tissues. Thus in the future version of the software, foremost, the skull can be

registered based on the initial conditions laid out in this work or by the identification of

anteroposterior axis by Principal Component Analysis method followed by VanOss et al. The

registration of spine and sternum assists the registration of rib cage and high contrast lung soft

tissue. The registration of low contrast soft tissue like liver has to be studied by semi-automatic

method for high accuracy prior to fully automated analysis.

7. Appendices

7.1. Software Code:

Moby_icp_demo_2.m
%%Author: Vineeth Radhakrishnan
%%Data: 3/4/2016
clear all;
close all;
CT_file='AAAP_MMy-NaF_1-00_T5^^^^_CT.dcm';
PET_file='AAAP_MMy-NaF_1-00_T5^^^^_PT.dcm';
marker_init=zeros(170,170,252);
marker_array=add_marker(marker_init);
[m,n,p] = size(marker_array);
[xm,ym,zm]= meshgrid(1:m,1:n,1:p);
[fm,vm,cm] = isosurface(xm,ym,zm,marker_array,10,xm);
scale=5.0;
vm=vm.*scale;
stlwrite('Marker.stl',fm,vm,'mode','ascii');
plotct(vm,fm,cm);
marker_init_1=zeros(170,170,252);
marker_array_1=add_marker_1(marker_init_1);
[m,n,p] = size(marker_array_1);
[xm1,ym1,zm1]= meshgrid(1:m,1:n,1:p);
[fm1,vm1,cm1] = isosurface(xm1,ym1,zm1,marker_array_1,10,xm1);
vm1=vm1.*scale;
stlwrite('Marker_1.stl',fm1,vm1,'mode','ascii');
plotct(vm1,fm1,cm1);
CT_bone=threshold_bone(CT_file,-550);
CT_bone=flipdim(CT_bone,3);
[m,n,p] = size(CT_bone);
[x,y,z]= meshgrid(1:m,1:n,1:p);
[f,v,c] = isosurface(x,y,z,CT_bone,10,x);
v=v.*scale; %Scaling factor for the CT data.
filename='Skull_outside.stl';
[SkullF,SkullV,SkullC]=stl_file_read(filename);
wr=0.01;
[Ricp, Ticp, ER, t] = icp(v', SkullV',70,'Matching', 'kDtree',
'Minimize','point','Extrapolation', true,'WorstRejection',wr);
[SkullF,SkullV,SkullC]=transform_apply(filename,SkullV,Ricp, Ticp);
plotct(v,f,c);
hold on;
plot_segment(SkullF,SkullV,SkullC,filename,1,0,0);
display('C1-C2');
filename='C3-C7.stl';
[C3C7F,C3C7V,C3C7C]=transform_apply_primary(filename,Ricp,Ticp);
filename='T1-T3.stl';
[T1T3F,T1T3V,T1T3C]=transform_apply_primary(filename,Ricp,Ticp);
filename='T4-T8.stl';
[T4T8F,T4T8V,T4T8C]=transform_apply_primary(filename,Ricp,Ticp);
filename='T9-T13.stl';
[T9T13F,T9T13V,T9T13C]=transform_apply_primary(filename,Ricp,Ticp);
filename='L1.stl';
[L1F,L1V,L1C]=transform_apply_primary(filename,Ricp,Ticp);
filename='L2.stl';

[L2F,L2V,L2C]=transform_apply_primary(filename,Ricp,Ticp);
filename='L3.stl';
[L3F,L3V,L3C]=transform_apply_primary(filename,Ricp,Ticp);
filename='L4.stl';
[L4F,L4V,L4C]=transform_apply_primary(filename,Ricp,Ticp);
filename='L5.stl';
[L5F,L5V,L5C]=transform_apply_primary(filename,Ricp,Ticp);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_primary(filename,Ricp,Ticp);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_primary(filename,Ricp,Ticp);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_primary(filename,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_primary(filename,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_primary(filename,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_primary(filename,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_primary(filename,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_primary(filename,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_primary(filename,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_primary(filename,Ricp,Ticp);

filename='C1-C2.stl';
[C1C2F,C1C2V,C1C2C]=transform_apply_primary(filename,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', C1C2V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[C1C2F,C1C2V,C1C2C]=transform_apply_update(filename,C1C2V,Ricp,Ticp);
plot_segment(C1C2F,C1C2V,C1C2C,filename,1,1,0);
[v]=Update_ct(C1C2V,v);
display('C3-C7');
filename='T1-T3.stl';
[T1T3F,T1T3V,T1T3C]=transform_apply_update(filename,T1T3V,Ricp,Ticp);
filename='T4-T8.stl';
[T4T8F,T4T8V,T4T8C]=transform_apply_update(filename,T4T8V,Ricp,Ticp);
filename='T9-T13.stl';
[T9T13F,T9T13V,T9T13C]=transform_apply_update(filename,T9T13V,Ricp,Ticp);
filename='L1.stl';
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp);
filename='L2.stl';
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp);
filename='L3.stl';
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp);
filename='L4.stl';
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp);
filename='L5.stl';
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
filename='S2.stl';

[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='C3-C7.stl';
[C3C7F,C3C7V,C3C7C]=transform_apply_update(filename,C3C7V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', C3C7V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[C3C7F,C3C7V,C3C7C]=transform_apply_update(filename,C3C7V,Ricp,Ticp);
plot_segment(C3C7F,C3C7V,C3C7C,filename,0,1,1);

[v]=Update_ct(C3C7V,v);
display('T1-T3');
filename='T4-T8.stl';
[T4T8F,T4T8V,T4T8C]=transform_apply_update(filename,T4T8V,Ricp,Ticp);
filename='T9-T13.stl';
[T9T13F,T9T13V,T9T13C]=transform_apply_update(filename,T9T13V,Ricp,Ticp);
filename='L1.stl';
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp);
filename='L2.stl';
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp);
filename='L3.stl';
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp);
filename='L4.stl';
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp);
filename='L5.stl';
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';

[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='T1-T3.stl';
[T1T3F,T1T3V,T1T3C]=transform_apply_update(filename,T1T3V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', T1T3V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[T1T3F,T1T3V,T1T3C]=transform_apply_update(filename,T1T3V,Ricp,Ticp);
plot_segment(T1T3F,T1T3V,T1T3C,filename,0,0,1);

display('T4-T8');
[v]=Update_ct(T1T3V,v);
filename='T9-T13.stl';
[T9T13F,T9T13V,T9T13C]=transform_apply_update(filename,T9T13V,Ricp,Ticp);
filename='L1.stl';
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp);
filename='L2.stl';
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp);
filename='L3.stl';
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp);
filename='L4.stl';
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp);
filename='L5.stl';
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='T4-T8.stl';
[T4T8F,T4T8V,T4T8C]=transform_apply_update(filename,T4T8V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', T4T8V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[T4T8F,T4T8V,T4T8C]=transform_apply_update(filename,T4T8V,Ricp,Ticp);
plot_segment(T4T8F,T4T8V,T4T8C,filename,1,0,1);

display('T9-T13');
[v]=Update_ct(T4T8V,v);
filename='L1.stl';
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp);
filename='L2.stl';
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp);
filename='L3.stl';
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp);

filename='L4.stl';
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp);
filename='L5.stl';
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='T9-T13.stl';
[T9T13F,T9T13V,T9T13C]=transform_apply_update(filename,T9T13V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', T9T13V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[T9T13F,T9T13V,T9T13C]=transform_apply_update(filename,T9T13V,Ricp,Ticp);
plot_segment(T9T13F,T9T13V,T9T13C,filename,0,0,1);

[v]=Update_ct(T9T13V,v);
display('L1');
filename='L2.stl';
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp);
filename='L3.stl';
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp);
filename='L4.stl';
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp);
filename='L5.stl';
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);

filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='L1.stl';
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', L1V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp);
plot_segment(L1F,L1V,L1C,filename,1,1,0);

[v]=Update_ct(L1V,v);
display('L2');
filename='L3.stl';
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp);
filename='L4.stl';
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp);
filename='L5.stl';
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='L2.stl';
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', L2V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp);
plot_segment(L2F,L2V,L2C,filename,0,1,0);

[v]=Update_ct(L2V,v);
display('L3');
filename='L4.stl';
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp);
filename='L5.stl';
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
filename='S2.stl';

[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='L3.stl';
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', L3V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp);
plot_segment(L3F,L3V,L3C,filename,1,0,0);

display('L4');
[v]=Update_ct(L3V,v);
filename='L5.stl';
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='L4.stl';
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', L4V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp);
plot_segment(L4F,L4V,L4C,filename,0,1,1);

display('L5');
[v]=Update_ct(L4V,v);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);

filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='L5.stl';
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', L5V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp);
plot_segment(L5F,L5V,L5C,filename,0,0,1);

display('L6');
[v]=Update_ct(L5V,v);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='L6.stl';
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', L6V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp);
plot_segment(L6F,L6V,L6C,filename,0,1,0);

display('S1');
[v]=Update_ct(L6V,v);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
filename='S3.stl';

[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='S1.stl';
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', S1V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp);
plot_segment(S1F,S1V,S1C,filename,0,1,1);

display('S2');
[v]=Update_ct(S1V,v);
filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='S2.stl';
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', S2V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp);
plot_segment(S2F,S2V,S2C,filename,1,1,0);

display('S3');
[v]=Update_ct(S2V,v);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);

filename='S3.stl';
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', S3V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp);
plot_segment(S3F,S3V,S3C,filename,1,0,1);

display('S4');
[v]=Update_ct(S3V,v);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='S4.stl';
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', S4V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp);
plot_segment(S4F,S4V,S4C,filename,1,1,0);

display('CA1');
[v]=Update_ct(S4V,v);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='CA-1.stl';
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', CA1V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp);
plot_segment(CA1F,CA1V,CA1C,filename,1,0,1);
display('CA2');
[v]=Update_ct(CA1V,v);
filename='CA-3.stl';
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp);
filename='CA-4.stl';
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp);
filename='CA-5.stl';
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp);
filename='CA-2.stl';
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
[Ricp Ticp ER t] = icp(v', CA2V', 40,'Matching', 'kDtree',
'Minimize','point','WorstRejection',wr);
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp);
plot_segment(CA2F,CA2V,CA2C,filename,0,1,0);
stlwrite('Skull_roi.stl',SkullF,SkullV,'mode','ascii');

stlwrite('C1C2_roi.stl',C1C2F,C1C2V,'mode','ascii');
stlwrite('C3C7_roi.stl',C3C7F,C3C7V,'mode','ascii');
stlwrite('T1T3_roi.stl',T1T3F,T1T3V,'mode','ascii');
stlwrite('T4T8_roi.stl',T4T8F,T4T8V,'mode','ascii');
stlwrite('T9T13_roi.stl',T9T13F,T9T13V,'mode','ascii');
stlwrite('L1_roi.stl',L1F,L1V,'mode','ascii');
stlwrite('L2_roi.stl',L2F,L2V,'mode','ascii');
stlwrite('L3_roi.stl',L3F,L3V,'mode','ascii');
stlwrite('L4_roi.stl',L4F,L4V,'mode','ascii');
stlwrite('L5_roi.stl',L5F,L5V,'mode','ascii');
stlwrite('L6_roi.stl',L6F,L6V,'mode','ascii');
stlwrite('S1_roi.stl',S1F,S1V,'mode','ascii');
stlwrite('S2_roi.stl',S2F,S2V,'mode','ascii');
stlwrite('S3_roi.stl',S3F,S3V,'mode','ascii');
stlwrite('S4_roi.stl',S4F,S4V,'mode','ascii');
stlwrite('CA1_roi.stl',CA1F,CA1V,'mode','ascii');
stlwrite('CA2_roi.stl',CA2F,CA2V,'mode','ascii');
stlwrite('CA3_roi.stl',CA3F,CA3V,'mode','ascii');
stlwrite('CA4_roi.stl',CA4F,CA4V,'mode','ascii');
L1_list=Update_flist('L1.stl');
L2_list=Update_flist('L2.stl');
L3_list=Update_flist('L3.stl');
L4_list=Update_flist('L4.stl');
L5_list=Update_flist('L5.stl');
L6_list=Update_flist('L6.stl');
PET_PixelData=dicomread(PET_file);
PET_HeaderInformation = dicominfo(PET_file);
PET_data = ((squeeze(PET_PixelData)));
PET_PixelData = int16(PET_PixelData);
PET_data=im2double(PET_data);
sliceomatic(PET_data);
size(PET_data)

CT_bone=threshold_bone(CT_file,-550);
 [m,n,p] = size(CT_bone)
CT_bone=add_marker(CT_bone);
o1=CT_bone(:,85,:);
c=squeeze(o1);
figure(1);
imagesc(c);
hold on;
o=PET_data(:,45,:);
c1=squeeze(o);
figure(2);
imagesc(c1);

figure(3);
imshowpair(c1, c);
title('Unregistered');

[optimizer, metric]=imregconfig('multimodal');
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric);
figure(4);
imshowpair(movingRegisterDefault, c);
title('A:Default Registration');

disp(optimizer)
disp(metric)

optimizer.InitialRadius=optimizer.InitialRadius/5
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric);
figure(5);
imshowpair(movingRegisterDefault, c);
title('A:Adjusted Initial Radius Registration');

optimizer.MaximumIterations=500;
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric);
figure(6);
imshowpair(movingRegisterDefault, c);
title('A:Adjusted Initial Radius Registration, MaximumIterations=300');

optimizer.InitialRadius=optimizer.InitialRadius/1.2
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric);
figure(7);
imshowpair(movingRegisterDefault, c);
title('A:Adjusted Initial Radius Registration, MaximumIterations=300');

tformSimilarity = imregtform(c1, c,'similarity',optimizer,metric);
Rfixed = imref2d(size(c));
movingRegisteredRigid = imwarp(c1,tformSimilarity,'OutputView',Rfixed);
figure(8);
imshowpair(movingRegisteredRigid, c);
title('C: Registration based on similarity transformation model.');

movingRegisteredAffineWithIC = imregister(c1,c,'affine',optimizer,metric,...
 'InitialTransformation',tformSimilarity);
figure(9);
imshowpair(movingRegisteredAffineWithIC,c);
title('D: Registration from affine model based on similarity initial
condition.');
size(c)
size(c1)
size(movingRegisteredAffineWithIC)
size(L1_list)
L1_Vert_sq=squeeze(sum(L1_list,1));
imagesc(L1_Vert_sq);
figure(10);
imshowpair(L1_Vert_sq, movingRegisteredAffineWithIC);
size(L1_Vert_sq)
size(movingRegisteredAffineWithIC)
[moby] = VOXELISE(170,170,252,'Marker.stl','xyz');
e=double(moby);
for i=1:170
 for j=1:170
 for k=1:252
 if (e(i,j,k)==-1)
 e(i,j,k)=0;
 elseif(e(i,j,k)>0)
 e(i,j,k)=1;
 end
 end
 end

end
figure(1);
imagesc(squeeze(sum(e,1)));
colormap(gray(256));
xlabel('Z-direction');
ylabel('X-direction');
axis equal tight;

%%Manually Draw ROI on PET
PET_PixelData=dicomread(PET_file);
PET_HeaderInformation = dicominfo(PET_file);
PET_data = ((squeeze(PET_PixelData)));
PET_PixelData = int16(PET_PixelData);
PET_data=im2double(PET_data);
sliceomatic(PET_data);
size(PET_data)
CT_bone=threshold_bone(CT_file,-550);
%CT_bone=flipdim(CT_bone,3);
[m,n,p] = size(CT_bone)
CT_bone=add_marker(CT_bone);
o1=CT_bone(:,80,:);
c=squeeze(o1);
figure(1);
imagesc(c);
hold on;
o=PET_data(:,45,:);
c1=squeeze(o);
figure(2);
imagesc(c1);

figure(3);
imshowpair(c1, c);
title('Unregistered');

[optimizer, metric]=imregconfig('multimodal');
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric);
figure(4);
imshowpair(movingRegisterDefault, c);
title('A:Default Registration');

disp(optimizer)
disp(metric)

optimizer.InitialRadius=optimizer.InitialRadius/5
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric);
figure(5);
imshowpair(movingRegisterDefault, c);
title('A:Adjusted Initial Radius Registration');

optimizer.MaximumIterations=500;
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric);
figure(6);
imshowpair(movingRegisterDefault, c);
title('A:Adjusted Initial Radius Registration, MaximumIterations=300');

optimizer.InitialRadius=optimizer.InitialRadius/1.2

movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric);
figure(7);
imshowpair(movingRegisterDefault, c);
title('A:Adjusted Initial Radius Registration, MaximumIterations=300');

tformSimilarity = imregtform(c1, c,'similarity',optimizer,metric);
Rfixed = imref2d(size(c));
movingRegisteredRigid = imwarp(c1,tformSimilarity,'OutputView',Rfixed);
figure(8);
imshowpair(movingRegisteredRigid, c);
title('C: Registration based on similarity transformation model.');

movingRegisteredAffineWithIC = imregister(c1,c,'affine',optimizer,metric,...
 'InitialTransformation',tformSimilarity);
figure(9);
imshowpair(movingRegisteredAffineWithIC,c);
title('D: Registration from affine model based on similarity initial
condition.');
size(L1_list)
L1_Vert_sq=squeeze(sum(L1_list,1));
imagesc(L1_Vert_sq);
figure(10);
imshowpair(L1_Vert_sq, movingRegisteredAffineWithIC);
size(L1_Vert_sq)
size(movingRegisteredAffineWithIC)
ct_mip=MIP(CT_bone);
imshow(ct_mip);

PET_PixelData=dicomread(PET_file);
PET_HeaderInformation = dicominfo(PET_file);
PET_data=PET_PixelData*PET_HeaderInformation.RescaleSlope+PET_HeaderInformati
on.RescaleIntercept;
Reg_PET=Temp_PET(PET_file, CT_file, 30,65, L1_Vert_sq);
%Apply ROI
for i=1:n
 Reg_PET_L1(:,i,:)=squeeze(Reg_PET(:,i,:)).*im2bw(L1_Vert_sq,0.01);
end
L1_Bqml=PET_HeaderInformation.RescaleSlope*sum(sum(sum(Reg_PET_L1)))
L2_Vert_sq=squeeze(sum(L2_list,1));
for i=1:n
 Reg_PET_L2(:,i,:)=squeeze(Reg_PET(:,i,:)).*im2bw(L2_Vert_sq,0.01);
end
L2_Bqml=PET_HeaderInformation.RescaleSlope*sum(sum(sum(Reg_PET_L2)))
L3_Vert_sq=squeeze(sum(L3_list,1));
for i=1:n
 Reg_PET_L3(:,i,:)=squeeze(Reg_PET(:,i,:)).*im2bw(L3_Vert_sq,0.01);
end
L3_Bqml=PET_HeaderInformation.RescaleSlope*sum(sum(sum(Reg_PET_L3)))
L4_Vert_sq=squeeze(sum(L4_list,1));
for i=1:n
 Reg_PET_L4(:,i,:)=squeeze(Reg_PET(:,i,:)).*im2bw(L4_Vert_sq,0.01);
end
L4_Bqml=PET_HeaderInformation.RescaleSlope*sum(sum(sum(Reg_PET_L4)))
L5_Vert_sq=squeeze(sum(L5_list,1));
for i=1:n
 Reg_PET_L5(:,i,:)=squeeze(Reg_PET(:,i,:)).*im2bw(L5_Vert_sq,0.01);
end

L5_Bqml=PET_HeaderInformation.RescaleSlope*sum(sum(sum(Reg_PET_L5)))

add_marker.m
function [CT_bone] = add_marker(CT_bone)
[a,b,c]=size(CT_bone);
max(max(max(CT_bone)));
CT_bone(1:10,1:10,1:10)=1000;
CT_bone(160:170, 160:170, 1:10)=1000;
CT_bone(1:10, 160:170, 1:10)=1000;
CT_bone(160:170,1:10,1:10)=1000;
CT_bone(160:170,1:10,242:252)=1000;
CT_bone(160:170,160:170,242:252)=1000;
CT_bone(1:10,1:10,242:252)=1000;
CT_bone(1:10,160:170,242:252)=1000;
end

threshold_bone.m
function [CT_bone] = threshold_bone(filename,x)

CT=dicomread(filename);
 CT=int16(squeeze(CT));
 CT_Header=dicominfo(filename);
 Rescale_Slope=CT_Header.RescaleSlope;
 Rescale_Intercept=CT_Header.RescaleIntercept;
 CT=CT*Rescale_Slope+Rescale_Intercept;
[l,m,n]=size(CT)
 CT_bone=zeros(size(CT));
for i=1:l
 for j=1:m
 for k=1:n
 if (CT(i,j,k)>x)
 CT_bone(i,j,k)=1000;
 elseif((CT(i,j,k)<x))
 CT_bone(i,j,k)=0;
 end
 end
 end
end
CT_bone(1:l,1:40,1:n)=0;
CT_bone(100:l,1:m,1:n)=0;

Transform_apply.m
function [F,V,C]=transform_apply(filename,V,Ricp,Ticp)

 [F,V1,C]=stl_file_read(filename);
 Dicp = Ricp * V' + repmat(Ticp, 1, size(V',2));
 V=Dicp';
end

plot_segment.m
function plot_segment(F,V,C,filename,c1,c2,c3)
[F,V1,C]=stl_file_read(filename);
O = patch('faces', F, 'vertices' ,V);

set(O, 'facec', 'flat');
set(O, 'FaceVertexCData', C);
set(O, 'facealpha',.4);
set(O, 'EdgeColor',[c1 c2 c3]);
light
daspect([1 1 1])
view(3);
xlabel('X'),ylabel('Y'),zlabel('Z');
title(['Imported CAD data from ' filename]);
xlim([0 800]);
ylim([0 800]);
zlim([0 1200]);
disp(('Complete moby mouse atlas'))
pause(1);
end

transform_apply_primary.m
function [F,V,C]=transform_apply_primary(filename,Ricp,Ticp)

 [F,V,C]=stl_file_read(filename);
 Dicp = Ricp * V' + repmat(Ticp, 1, size(V',2));
 V=Dicp';

end

transform_apply_update.m
function [F,C1C2V,C]=transform_apply_update(filename,C1C2V,Ricp,Ticp);

 [F,V1,C]=stl_file_read(filename);
 Dicp = Ricp * C1C2V' + repmat(Ticp, 1, size(C1C2V',2));
 C1C2V=Dicp';
end

algo_test.m
clear all;
close all;
R_model=moby_joint; %Ribs
R_model.Heir_state=['C','C','3'];
R_model.Color_mat=[0 0 1];
R_model.filename='Ribs.stl';
R_model.parent_joint_cordinate=[0,0,100];
R_model.draw();
R_model.Vertices=R_model.Vertices';
R_model.Vertices = [R_model.Vertices(1,:); R_model.Vertices(2,:);
R_model.Vertices(3,:); ones(1,length(R_model.Vertices))];
k = tl(R_model.parent_joint_cordinate)*Rx(30)*R_model.Vertices;
set(R_model.object,'Vertices',k(1:3,:)');
drawnow;
R_model.Vertices=k(1:3,:)';

R_data=moby_joint; %Ribs

R_data.Heir_state=['C','C','3'];
R_data.Color_mat=[0 1 0];
R_data.filename='Ribs.stl';
R_data.parent_joint_cordinate=[328.8,279.5,697];

R_data.draw();

 [Ricp Ticp ER t] = icp(R_model.Vertices', R_data.Vertices', 20,'Matching',
'kDtree', 'Minimize','plane','Extrapolation', true);
 Dicp = Ricp * R_data.Vertices' + repmat(Ticp, 1,
size(R_data.Vertices',2));
 R_data.Vertices=Dicp';
 cla(R_model.object);
 R_data.object = patch('faces', R_data.Faces, 'vertices' ,R_data.Vertices)

 set(R_data.object, 'Marker','h');
 set(R_data.object, 'facec', 'flat');
 set(R_data.object, 'FaceVertexCData', R_data.Color);
 set(R_data.object, 'facealpha',.4);
 set(R_data.object, 'EdgeColor',R_data.Color_mat);
 light
 daspect([1 1 1])
 view(3);
 xlabel('X'),ylabel('Y'),zlabel('Z');
 title(['Imported CAD data from ' R_data.filename]);
 drawnow
 disp(['Complete moby mouse atlas'])
 pause(1);

Joint_define.m
%Script to assign properties of each part like its position in heirarchy,
parent joint cordinate (point of 3D rotation),
%color matrix for each part, filename of each part.
%In the heirarchy name, first alphabet refers to the part position(up-->A,
%down-->B, Center-->C), Right/left(Right-->R, Left-->L, Center-->C), joint
%location(1-->skull to 6-->paws)

%Author: Vineeth Radhakrishnan
%Date: 3/10/2014

clear all;
close all;

SI=moby_joint; %Skull Inside
SO=moby_joint; %Skull Outside
S=moby_joint; %Spine
SL=moby_joint; %Scapula left
SR=moby_joint; %Scapuka Right

R=moby_joint; %Ribs
PL=moby_joint; %Pelvis Left
PR=moby_joint; %pelvis Right
UFL=moby_joint; %Upper Forelmb Left
UFR=moby_joint; %Upper Forelimb Right
UHL=moby_joint; %Upper hindlimb Left
UHR=moby_joint; %Upper hindlimb Right
LFL=moby_joint; %Lower forelimb Left
LFR=moby_joint; %Lower forelimb Right
LHL=moby_joint; %Lower Hindlimb Left
LHR=moby_joint; %Lower Hindlimb Right
FPL=moby_joint; %Forepaw Left
FPR=moby_joint; %orepaw Right
HPL=moby_joint; %Hindpaw Left
HPR=moby_joint; %Hindpaw Right
St=moby_joint; %Sternum

Obj_array=[SI,SO,S,SL,SR,R,PL,PR,UFL,UFR,UHL,UHR,LFR,LHL,LHR,FPR,HPL,HPR,St,L
FL,FPL];
SI.Heir_state=['A','C','1'];
SI.Color_mat=[0 0 1];
SI.parent_joint_cordinate=[328.8,279.5,697];
SI.filename='Skull_inside.stl';

SO.Heir_state=['A','C','1'];
SO.Color_mat=[1 0 0];
SO.parent_joint_cordinate=[328.8,279.5,697];
SO.filename='Skull_outside.stl';

S.Heir_state=['A','C','2'];
S.Color_mat=[0 0 1];
S.parent_joint_cordinate=[328.8,279.5,697];
S.filename='Spine.stl';

SL.Heir_state=['A','L','3'];
SL.Color_mat=[1 0 0];
SL.parent_joint_cordinate=[157.1,154.6,842.2];
SL.filename='Scapula_left.stl';
SL.draw();

SR.Heir_state=['A','R','3'];
SR.Color_mat=[1 0 0];
SR.parent_joint_cordinate=[328.8,279.5,697];
SR.filename='Scapula_right.stl';

R.Heir_state=['C','C','3'];
R.Color_mat=[0 1 1];
R.filename='Ribs.stl';
R.parent_joint_cordinate=[328.8,279.5,697];

PL.Heir_state=['B','L','3'];
PL.Color_mat=[1 0 1];
PL.filename='Pelvis_left_part.stl';
PL.parent_joint_cordinate=[328.8,279.5,697];

PR.Heir_state=['B','R','3'];

PR.Color_mat=[1 0 1];
PR.filename='Pelvis_right_part.stl';
PR.parent_joint_cordinate=[328.8,279.5,697];

UFL.Heir_state=['A','L','4'];
UFL.Color_mat=[0 1 0];
UFL.filename='Upper_forelimb_left.stl';
UFL.parent_joint_cordinate=[127,221.5,869.8];
UFL.draw();

UFR.Heir_state=['A','R','4'];
UFR.Color_mat=[0 1 0];
UFR.filename='Upper_forelimb_right.stl';
UFR.parent_joint_cordinate=[328.8,279.5,697];

UHL.Heir_state=['B','L','4'];
UHL.Color_mat=[0 1 0];
UHL.filename='Upper_hindlimb_left.stl';
UHL.parent_joint_cordinate=[328.8,279.5,697];

UHR.Heir_state=['B','R','4'];
UHR.Color_mat=[0 1 0];
UHR.filename='Upper_hindlimb_right.stl';
UHR.parent_joint_cordinate=[328.8,279.5,697];

LFR.Heir_state=['A','R','5'];
LFR.Color_mat=[1 0 0];
LFR.filename='Lower_forelimb_right.stl';
LFR.parent_joint_cordinate=[328.8,279.5,697];

LHL.Heir_state=['B','L','5'];
LHL.Color_mat=[1 0 0];
LHL.filename='Lower_hindlimb_left.stl';
LHL.parent_joint_cordinate=[328.8,279.5,697];

LHR.Heir_state=['B','R','5'];
LHR.Color_mat=[1 0 0];
LHR.filename='Lower_hindlimb_right.stl';
LHR.parent_joint_cordinate=[328.8,279.5,697];

FPR.Heir_state=['A','R','6'];
FPR.Color_mat=[0 0 1];
FPR.parent_joint_type='BallnSocket';
FPR.parent_joint_cordinate=[328.8,279.5,697];
FPR.filename='Forepaw_right.stl';

HPL.Heir_state=['B','L','6'];
HPL.Color_mat=[0 0 1];
HPL.parent_joint_type='BallnSocket';
HPL.parent_joint_cordinate=[328.8,279.5,697];
HPL.filename='Hindpaw_left.stl';

HPR.Heir_state=['B','R','6'];
HPR.Color_mat=[0 0 1];
HPR.parent_joint_type='BallnSocket';

HPR.filename='Hindpaw_right.stl';
HPR.parent_joint_cordinate=[328.8,279.5,697];

LFL.Heir_state=['A','L','5'];
LFL.Color_mat=[1 0 0];
LFL.filename='Lower_forelimb_left.stl';
LFL.parent_joint_type='Hinge';
LFL.parent_joint_cordinate=[80.26,221.5,761.6];
LFL.draw();

FPL.Heir_state=['A','L','6'];
FPL.Color_mat=[0 0 1];
FPL.parent_joint_type='Hinge';
FPL.parent_joint_cordinate=[106.2,335.3,704.4];
FPL.filename='Forepaw_left.stl';
FPL.draw();

St.Heir_state=['C','C','4'];
St.Color_mat=[0 1 1];
St.filename='Sternum.stl';
St.parent_joint_cordinate=[328.8,279.5,697];

SL.rotate(Obj_array);
UFL.rotate(Obj_array);
FPL.rotate(Obj_array);
FPL.parent_joint_cordinate
LFL.rotate(Obj_array);
FPL.parent_joint_cordinate
FPL.rotate(Obj_array);
LFL.rotate(Obj_array);

Update_flist.m
function [diff_image] = Update_flist(filename)

switch filename
 case 'L1.stl'
 f_list_1 =
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
 f_list_2 =
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L2_roi.stl','L3_roi.stl','L4_roi.stl','L5
_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
 e1=Volumetric_conv(f_list_1);
 e2=Volumetric_conv(f_list_2);
 diff_image=(e1-e2);
 %size(diff_image);
 for i=1:170
 for j=1:170
 for k=1:252
 if (diff_image(i,j,k)==-1)
 diff_image(i,j,k)=0;

 elseif(diff_image(i,j,k)>0)
 diff_image(i,j,k)=1;
 end
 end
 end
 end
figure(1);
imagesc(squeeze(sum(diff_image,1)));
colormap(gray(256));
xlabel('Z-direction');
ylabel('X-direction');
axis equal tight;

 case 'L2.stl'
 f_list_1 =
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
 f_list_2 =
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L3_roi.stl','L4_roi.stl','L5
_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
 e1=Volumetric_conv(f_list_1);
 e2=Volumetric_conv(f_list_2);
 diff_image=(e1-e2);
 %size(diff_image);
 for i=1:170
 for j=1:170
 for k=1:252
 if (diff_image(i,j,k)==-1)
 diff_image(i,j,k)=0;
 end
 end
 end
 end

figure(2);
imagesc(squeeze(sum(diff_image,1)));
colormap(gray(256));
xlabel('Z-direction');
ylabel('X-direction');
axis equal tight;

 case 'L3.stl'
 f_list_1 =
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
 f_list_2 =
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L4_roi.stl','L5
_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
 e1=Volumetric_conv(f_list_1);

 e2=Volumetric_conv(f_list_2);
 diff_image=(e1-e2);
 %size(diff_image);
 for i=1:170
 for j=1:170
 for k=1:252
 if (diff_image(i,j,k)==-1)
 diff_image(i,j,k)=0;
 end
 end
 end
 end

figure(3);
imagesc(squeeze(sum(diff_image,1)));
colormap(gray(256));
xlabel('Z-direction');
ylabel('X-direction');
axis equal tight;

 case 'L4.stl'
 f_list_1 =
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
 f_list_2 =
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L5
_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
 e1=Volumetric_conv(f_list_1);
 e2=Volumetric_conv(f_list_2);
 diff_image=(e1-e2);
 %size(diff_image);
 for i=1:170
 for j=1:170
 for k=1:252
 if (diff_image(i,j,k)==-1)
 diff_image(i,j,k)=0;
 end
 end
 end
 end
figure(4);
imagesc(squeeze(sum(diff_image,1)));
colormap(gray(256));
xlabel('Z-direction');
ylabel('X-direction');
axis equal tight;

 case 'L5.stl'
 f_list_1 =
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};

 f_list_2 =
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4
_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
 e1=Volumetric_conv(f_list_1);
 e2=Volumetric_conv(f_list_2);
 diff_image=(e1-e2);
 %size(diff_image);
 for i=1:170
 for j=1:170
 for k=1:252
 if (diff_image(i,j,k)==-1)
 diff_image(i,j,k)=0;
 end
 end
 end
 end

figure(5);
imagesc(squeeze(sum(diff_image,1)));
colormap(gray(256));
xlabel('Z-direction');
ylabel('X-direction');
axis equal tight;

 case 'L6.stl'
 f_list_1 =
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
 f_list_2 =
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4
_roi.stl','L5_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};
e1=Volumetric_conv(f_list_1);
 e2=Volumetric_conv(f_list_2);
 diff_image=(e1-e2);
 %size(diff_image);
 for i=1:170
 for j=1:170
 for k=1:252
 if (diff_image(i,j,k)==-1)
 diff_image(i,j,k)=0;
 end
 end
 end
 end

figure(6);
imagesc(squeeze(sum(diff_image,1)));
colormap(gray(256));
xlabel('Z-direction');
ylabel('X-direction');
axis equal tight;

end

icp.m (Code inspired from Jakob Wilm & Hans Martin Kjer with modification (Copyright (c)
2012, Jakob Wilm & Hans Martin Kjer))
function [TR, TT, ER, t] = icp(q,p,varargin)

inp = inputParser;

inp.addRequired('q', @(x)isreal(x) && size(x,1) == 3);
inp.addRequired('p', @(x)isreal(x) && size(x,1) == 3);

inp.addOptional('iter', 10, @(x)x > 0 && x < 10^5);

inp.addParamValue('Boundary', [], @(x)size(x,1) == 1);

inp.addParamValue('EdgeRejection', false, @(x)islogical(x));

inp.addParamValue('Extrapolation', false, @(x)islogical(x));

validMatching = {'bruteForce','Delaunay','kDtree'};
inp.addParamValue('Matching', 'bruteForce',
@(x)any(strcmpi(x,validMatching)));

validMinimize = {'point','plane','lmapoint'};
inp.addParamValue('Minimize', 'point', @(x)any(strcmpi(x,validMinimize)));

inp.addParamValue('Normals', [], @(x)isreal(x) && size(x,1) == 3);

inp.addParamValue('NormalsData', [], @(x)isreal(x) && size(x,1) == 3);

inp.addParamValue('ReturnAll', false, @(x)islogical(x));

inp.addParamValue('Triangulation', [], @(x)isreal(x) && size(x,2) == 3);

inp.addParamValue('Verbose', false, @(x)islogical(x));

inp.addParamValue('Weight', @(x)ones(1,length(x)),
@(x)isa(x,'function_handle'));

inp.addParamValue('WorstRejection', 0, @(x)isscalar(x) && x > 0 && x < 1);

inp.parse(q,p,varargin{:});
arg = inp.Results;
clear('inp');

%%%
% Actual implementation

% Allocate vector for RMS of errors in every iteration.
t = zeros(arg.iter+1,1);

% Start timer
tic;

Np = size(p,2);

% Transformed data point cloud
pt = p;

% Allocate vector for RMS of errors in every iteration.
ER = zeros(arg.iter+1,1);

% Initialize temporary transform vector and matrix.
T = zeros(3,1);
R = eye(3,3);

% Initialize total transform vector(s) and rotation matric(es).
TT = zeros(3,1, arg.iter+1);
TR = repmat(eye(3,3), [1,1, arg.iter+1]);

% If Minimize == 'plane', normals are needed
if (strcmp(arg.Minimize, 'plane') && isempty(arg.Normals))
 arg.Normals = lsqnormest(q,4);
end

% If Matching == 'Delaunay', a triangulation is needed
if strcmp(arg.Matching, 'Delaunay')
 DT = DelaunayTri(transpose(q));
end

% If Matching == 'kDtree', a kD tree should be built (req. Stat. TB >= 7.3)
if strcmp(arg.Matching, 'kDtree')
 kdOBJ = KDTreeSearcher(transpose(q));
end

% If edge vertices should be rejected, find edge vertices
if arg.EdgeRejection
 if isempty(arg.Boundary)
 bdr = find_bound(q, arg.Triangulation);
 else
 bdr = arg.Boundary;
 end
end

if arg.Extrapolation
 % Initialize total transform vector (quaternion ; translation vec.)
 qq = [ones(1,arg.iter+1);zeros(6,arg.iter+1)];
 % Allocate vector for direction change and change angle.
 dq = zeros(7,arg.iter+1);
 theta = zeros(1,arg.iter+1);
end

t(1) = toc;

% Go into main iteration loop

% k=1;
% while (k<=arg.iter)
for k=1:arg.iter
 % Do matching
 switch arg.Matching
 case 'bruteForce'
 [match mindist] = match_bruteForce(q,pt);
 case 'Delaunay'
 [match mindist] = match_Delaunay(q,pt,DT);
 case 'kDtree'
 [match mindist] = match_kDtree(q,pt,kdOBJ);
 end

 % If matches to edge vertices should be rejected
 if arg.EdgeRejection
 p_idx = not(ismember(match, bdr));
 q_idx = match(p_idx);
 mindist = mindist(p_idx);
 else
 p_idx = true(1, Np);
 q_idx = match;
 end

 % If worst matches should be rejected
 if arg.WorstRejection
 edge = round((1-arg.WorstRejection)*sum(p_idx));
 pairs = find(p_idx);
 [~, idx] = sort(mindist);
 p_idx(pairs(idx(edge:end))) = false;
 q_idx = match(p_idx);
 mindist = mindist(p_idx);
 end

 if k == 1
 ER(k) = sqrt(sum(mindist.^2)/length(mindist));
 end

 switch arg.Minimize
 case 'point'
 % Determine weight vector
 weights = arg.Weight(match);
% size(match)
% size(weights)
% size(p_idx)
% size(weights(p_idx))
% sum(weights)
 [R,T] = eq_point(q(:,q_idx),pt(:,p_idx), weights(p_idx));
 case 'plane'
 weights = arg.Weight(match);
 [R,T] =
eq_plane(q(:,q_idx),pt(:,p_idx),arg.Normals(:,q_idx),weights(p_idx));
 case 'lmaPoint'
 [R,T] = eq_lmaPoint(q(:,q_idx),pt(:,p_idx));
 end

 % Add to the total transformation

 TR(:,:,k+1) = R*TR(:,:,k);
 TT(:,:,k+1) = R*TT(:,:,k)+T;

 % Apply last transformation
 pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);

 % Root mean of objective function
 ER(k+1) = rms_error(q(:,q_idx), pt(:,p_idx));

 % If Extrapolation, we might be able to move quicker
 if arg.Extrapolation
 qq(:,k+1) = [rmat2quat(TR(:,:,k+1));TT(:,:,k+1)];
 dq(:,k+1) = qq(:,k+1) - qq(:,k);
 theta(k+1) =
(180/pi)*acos(dot(dq(:,k),dq(:,k+1))/(norm(dq(:,k))*norm(dq(:,k+1))));
 if arg.Verbose
 disp(['Direction change ' num2str(theta(k+1)) ' degree in
iteration ' num2str(k)]);
 end
 if k>2 && theta(k+1) < 10 && theta(k) < 10
 d = [ER(k+1), ER(k), ER(k-1)];
 v = [0, -norm(dq(:,k+1)), -norm(dq(:,k))-norm(dq(:,k+1))];
 vmax = 25 * norm(dq(:,k+1));
 dv = extrapolate(v,d,vmax);
 if dv ~= 0
 q_mark = qq(:,k+1) + dv * dq(:,k+1)/norm(dq(:,k+1));
 q_mark(1:4) = q_mark(1:4)/norm(q_mark(1:4));
 qq(:,k+1) = q_mark;
 TR(:,:,k+1) = quat2rmat(qq(1:4,k+1));
 TT(:,:,k+1) = qq(5:7,k+1);
 % Reapply total transformation
 pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
 % Recalculate root mean of objective function
 % Note this is costly and only for fun!
 switch arg.Matching
 case 'bruteForce'
 [~, mindist] = match_bruteForce(q,pt);
 case 'Delaunay'
 [~, mindist] = match_Delaunay(q,pt,DT);
 case 'kDtree'
 [~, mindist] = match_kDtree(q,pt,kdOBJ);
 end
 ER(k+1) = sqrt(sum(mindist.^2)/length(mindist));
 end
 end
 end

 if (k>1)
 diff=abs(ER(k-1)-ER(k))
 if(diff<=0.001)
 diff
 break;
 end
 t(k+1) = toc;

 end

 %k=k+1;
end
k
if not(arg.ReturnAll)
 TR = TR(:,:,end);
 TT = TT(:,:,end);
end

%%

function [match mindist] = match_kDtree(~, p, kdOBJ)
 [match mindist] = knnsearch(kdOBJ,transpose(p));
 match = transpose(match);

%%

function [R,T] = eq_point(q,p,weights)

m = size(p,2);
n = size(q,2);

% normalize weights
weights = weights ./ sum(weights);

% find data centroid and deviations from centroid
q_bar = q * transpose(weights);
q_mark = q - repmat(q_bar, 1, n);
% Apply weights
q_mark = q_mark .* repmat(weights, 3, 1);

% find data centroid and deviations from centroid
p_bar = p * transpose(weights);
p_mark = p - repmat(p_bar, 1, m);
% Apply weights
%p_mark = p_mark .* repmat(weights, 3, 1);

N = p_mark*transpose(q_mark); % taking points of q in matched order

[U,~,V] = svd(N); % singular value decomposition

R = V*diag([1 1 det(U*V')])*transpose(U);

T = q_bar - R*p_bar;

function [R,T] = eq_lmaPoint(q,p)

Rx = @(a)[1 0 0;
 0 cos(a) -sin(a);
 0 sin(a) cos(a)];

Ry = @(b)[cos(b) 0 sin(b);
 0 1 0;
 -sin(b) 0 cos(b)];

Rz = @(g)[cos(g) -sin(g) 0;
 sin(g) cos(g) 0;
 0 0 1];

Rot = @(x)Rx(x(1))*Ry(x(2))*Rz(x(3));

myfun = @(x,xdata)Rot(x(1:3))*xdata;%+repmat(x(4:6),1,length(xdata));

options = optimset('Algorithm', 'levenberg-marquardt');
x = lsqcurvefit(myfun, zeros(6,1), p, q, [], [], options);

R = Rot(x(1:3));
T = x(4:6);

%%

% Extrapolation in quaternion space. Details are found in:
%
% Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes.
% IEEE Transactions on pattern analysis and machine intelligence, 239?256.

function [dv] = extrapolate(v,d,vmax)

p1 = polyfit(v,d,1); % linear fit
p2 = polyfit(v,d,2); % parabolic fit
v1 = -p1(2)/p1(1); % linear zero crossing
v2 = -p2(2)/(2*p2(1)); % polynomial top point

if issorted([0 v2 v1 vmax]) || issorted([0 v2 vmax v1])
 disp('Parabolic update!');
 dv = v2;
elseif issorted([0 v1 v2 vmax]) || issorted([0 v1 vmax v2])...
 || (v2 < 0 && issorted([0 v1 vmax]))
 disp('Line based update!');
 dv = v1;
elseif v1 > vmax && v2 > vmax
 disp('Maximum update!');
 dv = vmax;
else
 disp('No extrapolation!');
 dv = 0;
end

%%

% Determine the RMS error between two point equally sized point clouds with
% point correspondance.
% ER = rms_error(p1,p2) where p1 and p2 are 3xn matrices.

function ER = rms_error(p1,p2)
dsq = sum(power(p1 - p2, 2),1);

ER = sqrt(mean(dsq));

%%

% Converts (orthogonal) rotation matrices R to (unit) quaternion
% representations
%
% Input: A 3x3xn matrix of rotation matrices
% Output: A 4xn matrix of n corresponding quaternions
%
% http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion

function quaternion = rmat2quat(R)

Qxx = R(1,1,:);
Qxy = R(1,2,:);
Qxz = R(1,3,:);
Qyx = R(2,1,:);
Qyy = R(2,2,:);
Qyz = R(2,3,:);
Qzx = R(3,1,:);
Qzy = R(3,2,:);
Qzz = R(3,3,:);

w = 0.5 * sqrt(1+Qxx+Qyy+Qzz);
x = 0.5 * sign(Qzy-Qyz) .* sqrt(1+Qxx-Qyy-Qzz);
y = 0.5 * sign(Qxz-Qzx) .* sqrt(1-Qxx+Qyy-Qzz);
z = 0.5 * sign(Qyx-Qxy) .* sqrt(1-Qxx-Qyy+Qzz);

quaternion = reshape([w;x;y;z],4,[]);

%%

% Converts (unit) quaternion representations to (orthogonal) rotation
matrices R
%
% Input: A 4xn matrix of n quaternions
% Output: A 3x3xn matrix of corresponding rotation matrices
%
%
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#From_a_quaterni
on_to_an_orthogonal_matrix

function R = quat2rmat(quaternion)
q0(1,1,:) = quaternion(1,:);
qx(1,1,:) = quaternion(2,:);
qy(1,1,:) = quaternion(3,:);
qz(1,1,:) = quaternion(4,:);

R = [q0.^2+qx.^2-qy.^2-qz.^2 2*qx.*qy-2*q0.*qz 2*qx.*qz+2*q0.*qy;
 2*qx.*qy+2*q0.*qz q0.^2-qx.^2+qy.^2-qz.^2 2*qy.*qz-2*q0.*qx;
 2*qx.*qz-2*q0.*qy 2*qy.*qz+2*q0.*qx q0.^2-qx.^2-qy.^2+qz.^2];

%%

% Least squares normal estimation from point clouds using PCA
%
% H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
% Surface reconstruction from unorganized points.
% In Proceedings of ACM Siggraph, pages 71:78, 1992.
%
% p should be a matrix containing the horizontally concatenated column
% vectors with points. k is a scalar indicating how many neighbors the
% normal estimation is based upon.
%
% Note that for large point sets, the function performs significantly
% faster if Statistics Toolbox >= v. 7.3 is installed.
%
% Jakob Wilm 2010

function n = lsqnormest(p, k)
m = size(p,2);
n = zeros(3,m);

v = ver('stats');
if str2double(v.Version) >= 7.5
 neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1));
else
 neighbors = k_nearest_neighbors(p, p, k+1);
end

for i = 1:m
 x = p(:,neighbors(2:end, i));
 p_bar = 1/k * sum(x,2);

 P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd
matrix P
 %P = 2*cov(x);

 [V,D] = eig(P);

 [~, idx] = min(diag(D)); % choses the smallest eigenvalue

 n(:,i) = V(:,idx); % returns the corresponding eigenvector
end

function bound = find_bound(pts, poly)

%Correcting polygon indices and converting datatype
poly = double(poly);
pts = double(pts);

%Calculating freeboundary points:
TR = TriRep(poly, pts(1,:)', pts(2,:)', pts(3,:)');
FF = freeBoundary(TR);

%Output
bound = FF(:,1);

%%

8. References

[1]. Cook, Margaret J. The anatomy of laboratory mouse. 1965.

[2]. Anatoliy Granov, Leonid Tiutin, Thomas Schwarz. Positron Emission Tomography.
Springer, 2013.

[3]. Artem Khmelinskii, Harald C. Groen, Martin Baiker, Marion de Jong, Boudewijn P. F.
Lelieveldt. "Segmentation and Visual Analysis of Whole-Body Mouse Skeleton
microSPECT." PLOS one 7, no. 11 (2012).

[4]. Artem Khmelinskii, Martin Baiker, Eric L. Kaijzel, Josette Chen, Johan H. C. Reiber,
Boudewijn P. F. Lelieveldt. "Articulated Whole-Body Atlases for Small Animal Image
Analysis: Construction and Applications." Molecular Imaging and Biology, 2010: 898-910.

[5]. Arthur W. Toga, Emily M. Santor!, Ron Hazani And Karen Ambach. "A 3D Digital Map of
Rat Brain." Elsevier Science Ltd 38, no. 1 (1995): 77-85.

[6]. Belma Dogdas, David Stout, Arion F Chatziioannou, and Richard M Leahy. "Digimouse: a
3D whole body mouse atlas from CT and cryosection data." Physics in Medicine and Biology
52, no. 3 (2007): 577–587.

[7]. Bioscan. NanoSPECT/CT In Vivo Preclinical Imager. Bioscan. 2011.
http://www.bioscan.com/molecular-imaging/nanospect-ct (accessed 10 13, 2013).

[8]. Bioscience, Sofie. GENISYS4: A new generation of PET. Sofie Bioscience.
http://sofiebio.com/genisys (accessed 10 13, 2013).

[9]. Friedman, Jerome, Jon Bentley, and Raphael Finkel. "An Algorithm for Finding Best
Matches in Logarithmic Expected Time." ACM Transactions on Mathematical Software
(TOMS) 3, no. 3 (1977).

[10].Hajnal, Joseph V., and Derek L.G. Hill. Medical Image Registration. Taylor and Francis,
2001.

[11].Jadvar, Hossein, Bhushan Desai, and Peter S. Conti. "Sodium 18F-Fluoride PET/CT of
Bone, Joint, and Other Disorders." Elsevier 45, no. 1 (2015): 58-65.

[12].Kalyankar, Pravin P, and S S Apte. "3D Volume Rendering Algorithm." International
Journal of Engineering and Advanced Technology (IJEAT) 2, no. 5 (2013): 268-270.

[13].Kjer, Hans M artin, and Jakob Wilm. "Evaluation of surface registration algorithm for PET
motion correction." Denmark, 2010.

[14].Linton, Otha W. "Medical Applications of X-Rays." Beamline, Summer 1995.

[15].M. Zikos, E. Kaldoudi, S. C. Orphanoudakis. "DIPE: A Distributed Environment for
Medical Image Processing." Proceedings of Medical Informatics Europe, 1997: 465 - 469.

[16].Marc Dhenain, Seth W. Ruffins, and Russell E. Jacobs. "Three-Dimensional Digital Mouse
Atlas Using High-Resolution MRI." Elsevier 232, no. 2 (2001): 458–470.

[17].Martin Baikera, Julien Milles, Jouke Dijkstra, Tobias D. Henning, Axel W. Weber, Ivo Que,
Eric L. Kaijzel, Clemens W.G.M. Löwik, Johan H.C. Reiber, Boudewijn P.F. Lelieveldt.
"Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data." Elsevier,
no. 14 (2010): 723–737.

[18].Peter A. Santi, Ian Rapson, Arne Voie. "Development of the mouse cochlea database
(MCD)." Elsevier, 2008: 11-17.

[19].R.M. Brune, 1, J.B.L. Bard, C. Dubreuil, E. Guest, W. Hill, M. Kaufman, M. Stark, D.
Davidson, R.A. Baldock. "A Three-Dimensional Model of the Mouse at Embryonic Day 9."
Elsevier Science 216, no. 2 (1999): 457–468.

[20].Saravanan Namasivayam, Mannudeep K. Kalra, William E. Torres, William C. Small.
"Adverse reactions to intravenous iodinated contrast media:a primer for radiologists." Am
Soc Emergency Radiol 12 (2006): 210–215.

[21].Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS. "Development of a 4-D digital mouse
phantom for molecular imaging research." Molecular Imaging Biology, 2004: 149-159.

[22].Sharma, Neeraj , and Lalit M Aggarwal. "Automated medical image segmentation
techniques." Journal of Medical Physics 35, no. 1 (2010): 3-14.

[23].Society, American Cancer. "Cancer Facts and Figures 2015." 2015.

[24].Talairach, Jean, Mark Rayport, and Pierre Tournoux. "Co-planar stereotaxic atlas of the
human brain: 3-dimensional proportional system: an approach to cerebral imaging." VIII,
122. Germany: Thieme [u.a.], 1988.

[25].The Visible Human Project®. U.S. National Library of Medicine. August 27, 2013.
http://www.nlm.nih.gov/research/visible/visible_human.html (accessed October 19, 2013).

[26].Thomas R. Langerak, Floris F. Berendsen, Uulke A. Van der Heide, Alexis N. T. J. Kotte,
Josien P. W. Pluim,. "Multiatlas-based segmentation with preregistration atlas selection."
American Association of Physicists in Medicine 40, no. 9 (2013).

[27].VanOss, Jeffrey Lee. "Automatic Atlas Based Analysis of Radiotracer Uptake in Bones
from Fused Nuclear Imaging/CT Data Sets of Mice." ScholarWorks GVSU, 2012.

[28].W. Paul Segars, David S. Lalush, and Benjamin M. W. Tsui. "Modeling Respiratory
Mechanics in the MCAT and Spline-B ased MCAT Phantoms ." IEEE TRANSACTIONS ON
NUCLEAR SCIENCE 48, no. 1 (2001): 89-97.

[29].Xueling Bai, Li Yu, Qian Liu, Jie Zhang, Anan Li, Dao Han, Qingming Luo and Hui Gong.
"A high-resolution anatomical rat atlas." Journal compilation: Anatomical Society of Great
Britain and Ireland 209 (2006): 707–708.

	Registration and Segmentation of Multimodality Images for Post Processing of Skeleton in Preclinical Oncology Studies
	ScholarWorks Citation

	Microsoft Word - Thesis_final_Vineeth-Radhakrishnan

