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Abstract 

 

Advancements in medical imaging techniques provide biomedical researchers with quality 

anatomical and functional information inside preclinical subjects in the fields of cancer, 

osteopathic, cardiovascular, and neurodegenerative research. The throughput of the preclinical 

imaging studies is a critical factor which determines the pace of small animal medical research. 

The time involved in manual analysis of large amount of imaging data prior to data interpretation 

by the researcher, limits the number of studies in a time frame.  

In the proposed solution, an automated image segmentation method was used to segment 

individual vertebrae in mice. Individual vertebrae of MOBY atlas were manually segmented and 

registered to the CT data. The PET activity for L1-L5 vertebrae was measured by applying the 

CT registered atlas vertebrae ROI.  

The algorithm was tested on three datasets from a PET/CT bone metastasis study using 18F-NaF 

radiotracer. The algorithm was found to reduce the analysis time threefold with a potential to 

further reduce the automated analysis time by use of computer system with better specification to 

run the algorithm. The manual analysis value can vary each time the analysis is performed and is 

dependent on the individual performing the analysis. Also the error percent was recorded and 

showed an increasing trend as the analysis moves down the spine from skull to caudal vertebrae. 

This method can be applied to segment the rest of the bone in the CT data and act as the starting 

point for the registration of the soft tissues.  
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1. Introduction 
 

The rapid growth of computer aided diagnosis and computerized medical image analysis has 

propelled the need for advanced image processing techniques in the medical field. The discovery 

of X-rays by German physicist Wilhelm Conrad Roentgen in 1895 starts the timeline of medical 

imaging history.  Following this discovery, came the widespread application of X-rays in 

medical diagnosis including the use of fluoroscopy to study the blood vessels by Dr. Francis 

Henry Williams (Linton Summer 1995). The application of imaging in oncology dates back to 

the 1910’s when Marie Curie published the theory of radioactivity and the investigation of X-ray 

radiation on patient therapy. From then, different imaging modalities have been developed for 

various clinical purposes. These imaging modalities became an integral part in oncology research 

and its clinical diagnostics. Imaging modalities like the ultrasound, Computed Tomography (CT) 

and Magnetic Resonance Imaging (MRI) provide the anatomical information about bones as well 

as soft tissues inside human body, and the Positron Emission Tomography (PET), Single Photon 

Emission Computed Tomography (SPECT) provide the functional information about the tissue 

metabolic activity as it corresponds to any biologically active molecule of interest, non-

invasively. Apart from the imaging techniques, currently major research is being done to 

enhance the computational speed of various algorithms used in processing these images.  

The necessity for a distributed environment that provides image processing services, over 

integrated service networks has previously been identified following the widespread application 

of various imaging systems in the medical field. One of the early outcomes of the research in this 

field of developing a software architecture to handle the image processing tools, user 

applications, and the handshake protocols, involved data transfer between different software 

modules and was done in the 1990’s by M. Zikos et.al (M. Zikos 1997). This described a 



distributed environment that provides image processing services over integrated tele-radiology 

services networks. This environment facilitated the integration of new image processing software 

with the existing tools and provided scheduling mechanisms for efficient management of 

computational resources. Although millions of imaging studies are conducted worldwide, there 

does not exist a universal image processing algorithm for applications such as image 

segmentation, as each study is specific to the imaging modality and the body part being studied 

(Sharma and Aggarwal 2010). Preclinical imaging deals with visualization of living animals at 

organ, tissue, cell or molecular level for research purposes such as drug development, which 

involves multimodality imaging techniques at multiple time points over large number of 

samples. In order to facilitate an accelerated discovery process in oncology drug development, 

advanced image processing techniques play a significant role. 

1.1. Research Objective 
 
The Small Animal Imaging Facility (SAIF) at the Van Andel Research Institute (VARI) in Grand 

Rapids MI, focuses on the development of imaging technologies that can provide biomedical 

researchers with quality anatomical and functional information inside preclinical subjects in the 

fields of cancer, osteopathic, cardiovascular, and neurodegenerative research. This research 

focuses on using a technique called atlas based segmentation which was previously used at 

SAIF, for analysis of [F18] FDG radiotracer uptake in soft tissues of mice in preclinical oncology 

studies. The data for validating the algorithm developed for automatic registration and 

segmentation in this thesis is obtained from a study focusing on using a different radiotracer [F18] 

NaF, for early detection of myeloma, whose physiology closely mimics metabolic process in the 

bone. The [F18] NaF absorbed is an indicator of the amount of bone formation (osteoblast) and 

bone breakdown (osteoclast) activity during the metastasis of cancer cells. This research focuses 



on quantification of the radiotracer activity on individual vertebrae of the spine, which was 

previously accounted as a single bone structure in preclinical image segmentation (VanOss 2012) 

(M. B. Artem Khmelinskii 2010). The study was conducted on 6 week old Nob-Obese Diabetic 

(NOD) Severe Combined Immuno-Deficiency (SCID) mice with human multiple myeloma cell 

line injected via tail vein injection procedure. F[18] NaF radiotracer was injected  and the mice 

was scanned at several time points in order to study the disease progression and its effect on 

osseous tissue. The mice were scanned with µCT in the Feet First Prone (FFP) position and 

reconstructed with a voxel size of 0.4x0.4x0.4mm for µCT and 0.46x0.46x0.46mm for PET. The 

image is stored in DICOM format (Digital Imaging and Communications in Medicine), where 

the information about the subject and study is stored in its header. The post processing of images 

include the quantification of the radioactivity recorded in the PET data in the regions where 

F[18] NaF is absorbed due to bone remodeling. This algorithm optimizes the post processing of 

the images in the study which shortens the time frame required in analysis. This algorithm has 

the following steps, 

1) Segmentation of the spine despite varying posture of the mice during scan. To achieve this 

aim:  

a. Define Moby atlas skeletal hierarchy and the architecture to identify connected 

bones in the skeletal system. 

b. Define Moby atlas skeletal joints and apply hinge and ball & socket joints for 

these skeletal joints  

c. Develop the algorithm to register CT and Moby atlas by applying a smoothing 

technique to the CT data, loading MOBY atlas as surface mesh using the 



Marching Cube algorithm, and developing a variant of the Iterative Closest Point 

(ICP) to align the atlas with the CT. 

d. Skeletal segmentation and manually identifying the vertebrae joints to define joint 

movements on the atlas data. 

e. Apply the ICP registration algorithm to align the atlas vertebrae onto the CT for 

each vertebra. 

2) Measurement of PET image pixel radioactivity (in Becquerel) in the segmented bones. To 

achieve this aim,  

a. Register PET/CT (Segmented CT) data to measure the activity in each vertebra. 

3) Evaluation of accuracy by comparing with the manual method. To achieve this aim,  

a. Manually draw Region Of Interest (ROI) on the vertebrae of 3 PET/CT image to    

measure the activity. 

b. Identify the activity based on the automated segmentation method. 

c. Statistically validate the accuracy of the automated segmentation method. 

 
 
 
 
 
 
 
 
 
 
 
 
 



2. Literature Review 
 

2.1. Imaging Modalities 
 
Currently a number of Imaging modalities are available to study the anatomical as well as 

functional activity in a subject. Also, in the research field, these imaging modalities are widely 

used in pre-clinical imaging. Some of the major modalities are X-ray Computed Tomography, 

Positron Emission Tomography (PET), Single Photon Emission Computed Tomography 

(SPECT), Magnetic Resonance Imaging (MRI) and Optical Imaging.  

2.1.1.Computed Tomography (CT) 
 
X-ray Computed Tomography is one of the medical imaging procedure in which multiple 2D X-

ray are taken from different angles around the subject and reconstructed to form a 3D image of 

the anatomical structure of the subject’s body. The X-ray image is formed based on the variation 

in mass attenuation co-efficient of the different components of the body based on their density. 

Lower density body parts like water and fat have lower attenuation coefficient compared to 

dense components like bone. The 2D images are normally reconstructed by an algorithm called 

the filtered back projection algorithm. Sir Godfrey Newbold Hounsfield shared the 1979 Nobel 

Prize Physiology or Medicine with Allan McLeod Cormack for developing the diagnostic 

technique of X-ray CT. For this contribution, the unit for quantitative measure of radio density 

was named as Hounsfield Units (HU). Thus in an X-ray CT, air takes a value of -1000 HU, water 

has 0 HU and the dense cortical bones has a value of +1000 HU. The resolution of the image 

formed under an X-ray CT depends on many factors like the bore size of the CT machine, scan 

period, X-ray energy, collimator design etc. Also, for better imaging of some of the anatomical 

features like blood vessels, renal system, GI system, and the liver, contrast agents are also used. 

In the United States alone, more than 50 million CT studies are performed annually, and about 



50% of CT studies use intravenous iodinated contrast media such as Gastrografin, iohexol, 

ioxilan, etc (Saravanan Namasivayam 2006). 

Micro CT’s are CT machines designed for small animal imaging. µCT’s have significantly 

higher resolution then clinical CT’s but this comes at the requirement of a reduced bore diameter. 

The Small Animal Imaging Facility (SAIF) has a nanoSPECT/CT (Bioscan 2011) scanner which 

is designed to scan mice and rats. Mice scans are typically reconstructed at a resolution of 

200µm. 

2.1.2.Positron Emission Tomography (PET) 
 
PET images provide information about the functional activity of a specified target inside the 

subject. PET imaging is based on the phenomenon of spontaneous positron emission by the 

nuclei of some unstable ultra-short-lived radio nuclides (USLRs), in which the number of 

protons exceeds that of neutrons (Anatoliy Granov 2013). The unstable radio nuclides are 

injected into the body along with a biologically active molecule which is either metabolized by 

specific regions of the body or it binds to certain target organs. The unstable nuclide emits 

positrons by combining with an electron which is called annihilation. The distance travelled by 

the positron through the medium, called the positron range, depends on the density of the 

medium and the energy of the emitted positron. On annihilation they emit two 511KeV photons 

moving approximately 180˚ apart which are detected by the detector ring of the scanner. The 

detector-blocks in the ring consist of several crystals connected with a Photomultiplier tube 

(PMT). The resolution of the PET image is directly affected by the positron range, the size, form 

and material property of the detector blocks as well as the diameter of the ring. The signal output 

from the PMTs is used to reconstruct a tomographic image of the subject. 



SAIF uses a bench top µPET for animal imaging, which has a higher resolution than clinical 

PET. This increased resolution is due to the smaller scintillation crystals used to detect photons 

(Bioscience n.d.). 

2.2. Image registration 
 
Image registration is the process of identification of spatial correspondence (Hajnal and Hill 

2001). Medical imaging is about establishing shape, structure, size, and spatial relationships of 

anatomical structures, together with spatial information about function. Thus image registration 

is necessary for establishing the correspondence of spatial information in medical images and 

equivalent structures in the body in order to pinpoint the location of functional and structural 

abnormalities. This forms the basis for image interpretation and analysis. In a clinical scenario, 

images from multiple modalities may have to be fused in order to draw useful conclusions from 

the data. This requires mental compensation by the interpreter or the clinician for changes in 

subject position. Image registration aligns the images from these modalities and establishes 

correspondences between various features seen on different imaging modalities. Also, the 

registration of an atlas or computer models aids in the delineation of anatomical and pathological 

structures in medical images and is considered as an important precursor to detailed analysis 

(Hajnal and Hill 2001).  

2.3. Image registration algorithms 

Image registration algorithms can be divided into those that depend on the corresponding points 

between the images, on the corresponding surfaces, and on image intensities. 

2.3.1.Corresponding landmark based registration 
 
One of the simplest methods of image registration employs what are called “fiducial markers” in 

the two images. The landmark can be a physical marker or a pin attached to the surface of the 



patient’s skin or which is screwed in and attached to the bones. The second method gives an 

accurate registration but is highly invasive and can cause discomfort or infection to the 

underlying tissues. Attaching the marker to the skin can cause error because of the skin 

movement. These markers have to be attached firmly to the skin in order to reduce the error.  

More than three markers are generally used as landmarks as the error reduces with the number of 

markers. In this method, the algorithm involves the calculation of the centroid of each set of 

points and translating the 3-D image based on the difference between the new and the old 

centroid points (Hajnal and Hill 2001). This point set is then rotated along its new centroid until 

the squared distances between the point pairs is minimized. The algorithm is validated based on 

error parameters like the Fiducial Registration Error (FRE) or the Target registration Error (TRE) 

or the more accurate and widely accepted Fiducial localization error (FLE) (Hajnal and Hill 

2001).  

2.3.2.Surface based registration 
 
In surface based registration, corresponding surfaces are delineated in the two imaging 

modalities and the transformation that minimizes distance between the surfaces is computed. The 

two major algorithms based on identifying surface correspondences are the “head hat algorithm” 

and the “Iterative Closest point algorithm”, the latter being the more widely accepted one. 

2.3.2.1.Head and hat algorithm  
 
In the “Head and Hat” algorithm, the contour of a particular surface is drawn in one modality, 

which is called the ‘Head’. Then the corresponding set of points for the same surface from the 

other modality is also drawn which forms the ‘Hat’. Then the algorithm tries to fit the ‘hat’ set of 

points onto the ‘head’ contour and calculates the difference between the various points on the 

contour through iterations for identifying the best fit. This method tends to fail when the 



anatomical structures show symmetry of rotation. “Distance transform” is a method in which the 

distance from every point in space to one of the points in the surface to be registered is used as 

an input to the iterative computation, which can make the algorithm faster and more efficient 

(Hajnal and Hill 2001).  

2.3.2.2.Iterative Closest Point algorithm (ICP) 
 
ICP refers to the use of an iterative algorithm to estimate the best alignment of two point clouds. 

ICP is used in many applications like object identification in a scene, estimating motion 

correction in sensor data, merging observations into a map, to name a few. The algorithm exists 

in many different variants and can be tailored to use different features of the point clouds 

depending on the circumstances. Several research studies have been done on ICP optimization, 

thus a large number of variants are available in the literature. The basic form of ICP involves the 

following steps:  

1. Selection: Initially, it is good to select the appropriate model points and data points to 

apply ICP. The data points refer to the cloud set which is transformed to match the 

reference model set.  

2. Matching: It refers to the matching of the data points and the model points using nearest 

neighbor algorithms. 

3. Weighting: Matched point pairs have to be weighted based on their compatibility.  

4. Rejecting: Based on a statistical evaluation of the nearest neighbor distances, some of the 

point pairs may be rejected.  

5. Error metrics: It defines the objective function that is minimized in every iteration of 

the algorithm. 



6. Minimization of error metric: The error metric has to be minimized in the consecutive 

iterations by improving upon the matching algorithm. 

Another set of iterative image registration technique which ‘image pixel/voxel intensity’ 

information instead of input image landmark/surface features, to register the input set of images 

are known as ‘Intensity based’ registration techniques. 

2.3.3.Intensity based registration techniques: 
 

2.3.3.1.Mutual information based registration 
 
In this method, “information” is chosen as a registration metric. The shared information in two 

images is calculated using joint entropy. This was based on the method developed by Claude 

Shannon and Norbert Weiner, as a part of communication theory in 1940’s. In this method, we 

calculate the amount of information in the two images combined. If these two images are totally 

unrelated then their entropies are equal to the sum of the entropies of individual images. As the 

images become similar, their joint entropy gets smaller.  The joint entropy can be obtained 

through joint histogram of the images and calculating the joint probability density function of the 

two images to be registered. Mutual Information is applied to multi-modality image registration 

as in (1) (Hajnal and Hill 2001) 

                                                              I(A,B) =  H(A) + H(B) - H(A,B)                             (1) 

2.4. Atlases in medical imaging research 

In biomedical research, human as well as small animal atlases have been used for defining 

geometric references and for making useful comparisons between anatomical structures and 

physiological function. Some are organ-dedicated atlases restricted to a single organ or organ 

system, while some are whole body atlases. The available clinical atlases are used in population 

imaging, image segmentation, image registration, and follow up studies (M. B. Artem 



Khmelinskii 2010). The main three human atlases in clinical research are the Talairach brain 

atlas (Talairach, Rayport and Tournoux 1988), Visible Human Project whole body atlas (The 

Visible Human Project® 2013) and the4D NCAT torso phantom (W. Paul Segars 2001). The 

Talairach brain atlas provides a 3D coordinate space with labeled regions of the brain and it is 

clinically used in functional neurosurgery, human brain mapping, neuroradiology, medical image 

analysis and in neuroscience education. The Visible Human Project consists of MRI, CT and 

cryosection images of both male and female human bodies. It is used in a wide range of 

educational, diagnostic, treatment planning, and other industrial uses (The Visible Human 

Project® 2013). Visible Human data set is used in projects such as BCS Grid Data Blade, a Java 

applet that provides 2D views of the Visible Human male; I Voxel Browser, Java based web 

browser showing voxel data, surface models, annotations, body system relationships, volume 

rendering, and stereo 3D viewing, developed at University of Michigan. The 4D NCAT models 

the 4D motion of the lungs, heart, diaphragm, and ribs with time as the 4th dimension. This was 

modeled to study the motion artifacts during respiration in CT images.  

For preclinical applications numerous other mice and rat atlas models are available derived from 

various techniques with different characteristics. Many of them are made available to the public 

and thoroughly defined. These atlases are enumerated in the Table 2-1 below.  

Registration of an atlas to another anatomical image requires non-rigid transformation due to the 

postural variation and the variation in mice size that may occur during imaging studies. There are 

no standard protocols for imaging a mouse, as it can vary based on the type of study involved. 

The available atlases are non-articulated and they have to be articulated by defining joint types 

and degree of freedom, prior to using them for the purpose of anatomical segmentation. 

 



Table 2-1 Table showing list of rat/mouse atlases used in pre-clinical studies 

S.No Atlas Method Developed at Application 
 
1 

LONI Rat Atlas 
(Arthur W. Toga 
1995)  

Computerized 
cryomicrotome 

UCLA 
Laboratory of 
Neuro-Imaging 

Brain Mapping and 
neuroscience studies 

 
2 

Edinburgh Mouse 
Atlas (R.M. 
Brune 1999) 

Histological Imaging Biomedical 
Sciences, 
University of 
Edinburgh 

Interpretation and 
understanding of spatial 
data in mouse embryos 

 
3 
 

MRI Atlas of 
Mouse 
Development 
(Marc Dhenain 
2001) 

11.7 T MR Imaging California 
Institute of 
Technology 

Study relationships 
between the 
components within a 
developing system. 

 
4 

Mouse Cochlea 
Database (Peter 
A. Santi 2008) 

Orthogonal-plane 
fluorescence optical 
sectioning 
microscopy 
(OPFOS) imaging 
and Amira 
reconstruction 

University of 
Minnesota 

Establish morphometric 
parameters of cochlear 
structures in normal and 
mutant mice 

5 MOBY mouse 
(Segars WP 2004) 

High-resolution 3-D 
magnetic resonance 
microscopy (MRM) 

Department of 
Radiology, Johns 
Hopkins 
University, 

development of new 
imaging 
instrumentation, image 
acquisition strategies, 
and image processing 
and reconstruction 
methods 

 
6 

Digimouse 
(Belma Dogdas 
2007) 

Coregistered x-ray 
CT and cryosection 
data 

Signal and Image 
Processing 
Institute, 
University of 
Southern 
California 

Study of anatomy, 
Computer phantom 
studies to simulate 
imaging systems, 
labeling of anatomical 
structures. 

 
7 

Sprague– 
Dawley (SD) rat 
atlas (Xueling Bai 
2006) 

Cryosection milling 
imaging system 

Huazhong 
University of 
Science and 
Technology, 
China 

Integrative study of the 
physiological and 
pathological phenotype 
of the rat.  

 

 

 

 

 



2.5. Related Work 

Baiker et al in 2010, have described a method for fully automated segmentation of µCT image 

using an articulated MOBY mouse atlas. The joints in the atlas are given anatomically realistic 

joint types and are defined in a hierarchical atlas tree (Martin Baikera 2010). It uses the ICP 

algorithm and constraints on the Degrees of Freedom at the joints for local registration based on 

the model tree hierarchy. 

Baiker et al in 2012, described a method in which the bones from the SPECT image were 

segmented and applied to an Articulated Planar Reformation (APR) algorithm (H. C. Artem 

Khmelinskii 2012) for side by side change visualization and comparison. The results were shown 

to be robust for even “incomplete” (large chunks of bone missing) data as can be the case in bone 

metastasis studies.  

Langerak et al in 2013, proposed a method where, multiple atlases are clustered together prior to 

the registration to ensure robustness of the segmentation procedure (Thomas R. Langerak 2013). 

Though the process reduces computation time, the authors mentioned that multi-atlas based 

segmentation could reduce the accuracy of segmentation in certain applications. 

 

 

 
 
 
 
 
 
 
 
 



3. Methodology 
 
Figure 3-1, shows the block diagram for the registration of the MOBY atlas onto the CT image 

of the mouse and the steps to quantify the radioactivity in skull and vertebrae regions. The Moby 

atlas was used as a reference for the segmentation of the µCT data. The Moby atlas was chosen 

over other atlas data because the articulated version of atlas developed by Baiker et al was 

available online on request for research. The articulated version of the atlas has the following 

anatomical segments: inside and outside skull surfaces, upper and lower forelimb, upper and 

lower hind limb, front and hind paw, spine, rib, sternum, clavicle and pelvis, with a total of 21 

segments. Also, the different joints were defined as either ball and socket joints, or hinge joints. 

Figure 3-2, shows all the defined joint types on the Moby atlas.  

 
Figure 3-1 Generalized block diagram for the algorithm. The segmented atlas is loaded and joints are defined as 
either ball and socket or hinge joints. The spine is segmented using an anatomical reference of a 15 week old male 
mouse. µCT image is converted to mesh using the marching cube algorithm. The segmented atlas skull and spine 
and the µCT mesh data is registered together using the modified ICP algorithm. It generates a scalar field mask of 
the atlas and applies it to the PET image to measure the activity in vertebrae. 



 

Figure 3-2 Figure showing the various anatomical joints and the joint type on the Moby. Ball and socket joints are 
identified as B and hinge joints as H in the Figure on the left.  

Also, In the proposed algorithm, an architecture and nomenclature was assigned to label each 

articulated segment of the atlas as shown in Figure 3-3. This was done to identify the anatomical 

connection between different articulated segments on the atlas. The atlas segments were divided 

into four regions - left, right, top, and bottom as shown in Figure 3-3. Also, the interconnected 

segments were sequentially numbered in each region. Each segment on the atlas has a specific 

name based on its position in the hierarchy as in R-T-6 for the right forepaw where, R stands for 

Right, T for Top and 6 is its position in the hierarchy. Thus, in the algorithm, if a parent segment 

(segment higher in the hierarchy) is moved during automatic registration, the algorithm could 

automatically identify the daughter segments to be registered next.  This way, the same parent 

transformations can be automatically applied to the daughter segments prior to their registration, 

thereby reducing user interaction and registration time.  
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 Figure 3-3 Figure showing the atlas regions for automatic segmentation. 

The application of the architecture is shown in Figure 3-4, where the movement of the clavicle 

by a specified degree of angular measurement results in the movement of upper and lower 

forelimb by the same degree in consecutive steps automatically, ending with the left paw. Thus if 

the automatic registration algorithm generates a transformation R for a parent segment on the 

atlas to register with the µCT, the same transformation will be applied to the interconnected 

segments based on the defined hierarchy and nomenclature. 

1H 
2 
3 
4 3 

4 5 
6 

3 

4 

5 

6 

Left Right 

Top 

Bottom 

Prone Supine 



 

Figure 3-4 Figure showing the application of the atlas segmentation hierarchy. 

In order to test the accuracy of the ICP registration algorithm, two copies of the atlas rib was 

plotted at 60 degree orientation from one another. The ICP algorithm was used to register both 

the rib segments of the atlas. The ICP algorithm applies the transformation on point cloud to 

register with the data cloud. Figure 3-5, shows the initial orientation and the registered states of 



the two rib segments point clouds. It shows the magnified version of the registered 3D point 

cloud to show the closeness on the registered points.  

 

Figure 3-5 Figure showing the registration of the point cloud and the data cloud using the standard ICP algorithm. 

3.1. Marching cube algorithm 
 
The marching cube algorithm is currently the standard used for 3D surface reconstruction in 

medical visualization industry (Kalyankar and Apte 2013). It can be used to generate 3D 

structures from 2D CT scan dataset.  Since 2D images cannot convey the underlying complexity 

of human anatomy, we rely on 3D reconstruction for interpretation of the acquired medical 

image. It allows medical professionals to properly visualize the volume and shape of features 

that they are interested in analyzing, like bone metastasis and remodeling features on specific 

vertebrae, or a particular tumor and its vascularization..    

Rendering is a technology used in visualizing 3D datasets by displaying volumetric data as a 

meaningful two dimensional image. Based on the structure and data type, several techniques are 

used for rendering. Rendering is crucial for this algorithm as it uses a surface based registration 

technique for registering the Moby atlas to the µCT data for segmentation. Through rendering it 



creates a surface around the µCT volumetric dataset with similar properties which is later used 

by Iterative Closest Point (ICP) algorithm for registration. There are two types of 3D rendering 

in medical industry: namely the cross-section rendering and threshold rendering. In cross-section 

rendering the volume is considered opaque and the user selects areas to render by adding new 

light sources illuminating the 2D cross-sectional slices. In this algorithm, threshold rendering is 

performed where the surfaces are rendered based on the tissue density selected by the user. 

Various anatomy regions can be rendered based on their tissue density. Tissue density can be 

obtained from CT images and the medical professional can easily use it to select the specific 

region to be rendered.  

In this algorithm, eight pixel values are considered from two adjacent slices of the CT image. 

The density value of the tissues correspond to Hounsfield Unit (HU) in CT. Areas of the tissue 

with the same HU are known as the iso-surface value for the rendering algorithm. Each of the 

image pixel values are compared against the iso-surface value to determine if they are above or 

below the iso-surface value. This determines if each of the pixel in 2D CT dataset falls within or 

outside the rendered surface. The eight vertex forms an imaginary cube and we have to 

determine how the surface intersects the cube. Since there are eight vertices and two possible 

logical states (inside/outside) per vertex, there are 256 ways the surface could intersect the cube. 

By triangulating the 256 possibilities the method becomes error-prone and tedious. When the 

relationships of the surface values are inverted, the topology of the triangulated surface remains 

the same. This means that in case 1 of Figure 3-6, the vertex under consideration can either be 

inside or outside the iso-surface based on its value being higher or lower than the iso-surface 

value. Both cases the topology/surface intersection looks the same. Also, there is a rotational 

symmetry among some of the cases, as in case 1 of Figure 3-6, has one vertex inside/outside the 



surface. The same surface intersection possibility will occur if any of the other eight vertex was 

inside/outside the iso-surface, thus eliminating the possibility of 7 other cases. This reduces the 

surface intersection possibilities from 256 to 14. As shown in figure 3-6, by analyzing just 8 

vertices a precise surface can be expressed as a combination of 5 or less triangles. 

 
Figure 3-6 Triangulation cubes in marching cube algorithm (Lorensen and Cline 1987) 

The relation between the cubes is such that, every cube shares four vertices with the adjacent 

cube to form continuous surface rendering. As shown in Figure 3-7, both the cubes share the 

vertices 1, 2, 3 and 4.  The marching cube algorithm was implemented in MATLAB using the 

built in ‘isosurface’ function. Figure 3-8, shows the surface rendering of the µCT data of the 

mice using the marching cube algorithm with iso-surface value set to the Hounsfield Unit (HU) 

of the bone density, i.e. 750 HU. 



 

Figure 3-7  Figure showing the continuous surface rendering on both cubes by sharing the vertices 1, 2, 3 and 4. 

 

Figure 3-8  Figure showing the surface rendered µCT image of the mice using marching cube algorithm. 

Prior to segmentation of the atlas spine, the registration algorithm is applied to the µCT mesh 

data obtained from the marching cube algorithm to register with the atlas skull and spine. The 

ICP algorithm was used to register the atlas spine and the µCT spine as shown in Figure 3-9. The 
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output of the algorithm shows that with the un-segmented rigid atlas spine structure, only a few 

regions of the cervical and caudal spine were registered. This problem was not tackled in the 

current version of the software as well as current research in atlas mouse segmentation 

procedure. Baiker et al, modeled the spine as a 3D curve curve between the neck and pelvis and 

it was not registered or segmented from the CT (M. B. Artem Khmelinskii 2010). In the work 

done by VanOss et all, the spine was segmented from the volumetric data as the 3D region 

between the neck joint and the hip joint (VanOss 2012). The 3D region grown starting from the 

neck to the posterior direction was segmented as the spine. This greatly depends on the static 

threshold value initially set to filter the bones from the soft tissue. An error in setting the 

threshold CT pixel value could affect the uptake value of spine in the results. The spine in the 

MOBY mouse atlas was manually segmented based on the work by Margaret J. Cook (.Cook 

1965) as shown in Figure 3-11. To segment each atlas vertebrae manually, each vertebrae joint 

was identified. A Matlab script was written to segment every vertex between the two joints in the 

axial direction of the spine and was stored as one vertebra. But few of the vertebrae as in C1-C2, 

C3-C7, T1-T3, T4-T8, T9-T13 were found to be fused to one another and difficult to segment 

manually. Thus these vertebrae were stored as single segment and used for registration with the 

CT.  Figure 3-10, shows the skeletal anatomy of a LAC grey mouse. This way the vertebrae 

could be moved in the atlas to register with the µCT data.  



 

Figure 3-9  Figure showing the registration of the µCT mesh and the un-segmented atlas spine. 

 

Figure 3-10 Figure showing the skeletal anatomy of LAC grey mouse illustrating the number of vertebrae of each 
category 



 

Figure 3-11 Figure showing the manually segmented atlas spine showing 7 Cervical, 13 Thoracic, 6 Lumbar, 4 
Sacral and 5 Caudal vertebrae. 

3.2. Iterative Closest Point Algorithm 

Iterative Closest Point (ICP) algorithm is used for geometric alignment of point clouds when an 

estimate on their initial positions is known. The efficiency or performance of the algorithm can 

be enhanced if a better estimate on the initial position is known. Several variants on the ICP 

algorithm have been described that affect all phases of the algorithm namely, selection, 

matching, error metric and minimization of the error metric. Here we use a variant of ICP 

algorithm to increase the computational efficiency and cut down the processing time to register 

the segmented spine atlas and the µCT mesh point cloud. In ICP taxonomy, the atlas point cloud 

is called the data point cloud ‘D’ and the µCT mesh point cloud is the model point cloud ‘M’. 

The transformation is applied on the data point cloud ‘D’ to register to the model point cloud 

‘M’. The steps for the ICP algorithm include point selection to reduce the computation 

complexity on each iteration, point matching to identify the nearest neighbors, calculation of 

error metric and minimization to improve registration on each iteration. 



3.2.1.Point selection 
 
Initially, the points to be registered have to be selected so that they are in close proximity and 

reduce the computation time over each iteration. To ensure the proximity of the vertebrae, the 

skull registration is performed prior to the spine. For skull registration, the same ICP algorithm is 

used with all the points from the Data and Model point clouds. The skull has a well-defined 

structure which helps in fast registration compared to the vertebrae. Once the spine gets 

registered, the other bones can be located close to the µCT by following the joint types and the 

atlas segmentation hierarchy as shown in Figure3-2 and Figure 3-3. 

 

Figure 3-12 Figure showing the alignment of the CT and atlas after applying the initial input conditions. 

The identification of initial point of registration for the atlas skull segment to the CT is based on 

the following input conditions:  

a. The anterior and posterior end of the mouse is known and given as input to the algorithm. 



b. Scan orientation of the mice is known and it remains the same for all the subjects in a 

study. The study from which this data is collected has all the mice scanned in Feet First 

Prone (FFP) position. This information can also be fetched from the DICOM header of 

the image file.  

c. A rough estimate of the size scale required for matching the atlas and CT is known and is 

given as input.  

This provides the rough alignment of the CT skull in close proximity to the atlas data as shown 

in Figure 3-12. In regular cases, all the three input conditions stated above, required for initial 

alignment, remains the same. This makes the “point matching” step easier, where every point in 

the atlas skull is matched with another in CT data. Following the initial alignment, the nearest 

neighbor for majority of the points in the atlas skull lies on the CT skull.   

3.2.2.Point matching 
 
Equation 2, shows the algorithm used for point matching.  

௞ሺ௜ሻܥ ൌ min
ଵஸ௝ஸேಾ;ଵஸ௜ஸேವ

൬ቚหܯ௝ െ ௞ܶିଵܦ௜หቚ
ଶ
൰																																	ሺ2ሻ 

where, k is the number of ICP iteration, Tk is the transform from the previous iteration, NM is the 

number of points in the model point cloud and ND is the number of points in the data point cloud. 

Euclidean distance of the points from Model cloud and the Data cloud is calculated and is used 

as an error metric to determine the transformation for the next iteration.  

In this step, a nearest neighbor search is performed to get the data points closest to the model 

point set. A basic approach is to find out the distance between all the points in data and model 

points to identify the shortest distance. This is known as the naïve approach, or brute-force 



approach, or exhaustive approach. Although simple to implement, the computational complexity 

scales linearly with the number of points, f (N) in the point clouds. 

 

Figure 3-13 Figure showing K-DTree formation to find the nearest neighbor for the data point cloud Di in the model 
point cloud Mi. 

In this algorithm, the kDtree method was used to find the nearest neighbor for the data cloud in 

the model cloud. To find the nearest neighbor using kDtree algorithm, the data point cloud, D is 

split by finding the median of all the points’ first coordinates. The median point becomes the root 

of the tree. The entire data point cloud is divided into kDtree, which is the preprocessing required 

for this algorithm. To determine the nearest neighbor, as we move down the root, the distance of 

the model point to the data point is recorded. The nearest of the two branches from the root is 

determined and finally the closest branch with minimal distance is determined as the nearest 

point. The computational complexity of creating a kDtree with dimension ‘k’ is no higher than 

O(kNlog2N) (Friedman, Bentley and Finkel 1977), where O is the asymptotic notation or the 

‘Big O’ notation used to describe the limiting behavior of a function when the arguments tend to 



a particular value or infinity. This way by using the kDtree, the computational complexity of 

finding the nearest neighbor in Euclidean matrix is greatly reduced.   

3.2.3.Error metric and minimization of error metric 
 
Error metric refers to the objective function that is minimized in every iteration of the algorithm. 

In this algorithm, point to point minimization is performed. The sum of squared distances of data 

points to model points is determined as in equation (3).  

                                                            ݂ ሺݖሻ ൌ ∑ ห|ܴ݀݅ ൅ ܶ െ݆݉|หே
௡ୀ଴

2                          (2) 

 Where di refers to the data cloud points and mj refers to the model cloud points.  

 A closed form solution can be obtained for the point to point minimization using Singular Value 

Decomposition (SVD) as shown below.  

The centroids for the data and model point cloud can be defined as  

݀̅ ൌ
ଵ

௣
∑݀              (3) 

ഥ݉ ൌ
ଵ

௤
∑݉           .(4)

Where, p and q are the number of number of data and model point clouds. Then the point 

deviation from centroid is given as,  

݀௜ୀ
′ ݀௜ െ ݀̅                     (5) 

݉௜
′ ൌ ݉௜ െ ഥ݉              (6) 

 
To determine the rotation matrix R and translation matrix	ሬܶሬሬԦ,  

ܧ ൌ ∑ ฮܴ݀௜ ൅ ሬܶԦ െ ݉௜ฮ
ଶே

௜ୀଵ                    (7) 

Substituting (6) & (7) in (8),  



ܧ ൌ ∑ ฮܴ൫݀௜
′ ൅ ݀̅൯ ൅ ሬܶԦሺ݉௜

′ ൅ ഥ݉ሻฮ
ଶே

௜ୀଵ ൌ ∑ ฮܴ݀ప′ഥ െ݉௜
′ ൅ ሺܴ݀̅ െ ഥ݉ ൅ ሬܶԦሻฮே

௜ୀଵ
ଶ

      (8) 

The error can be minimized by translating the data point centroid to the centroid of the model 

point. Thus,  

ሬܶԦ ൌ തݍ െ  (9)               ̅݌ܴ

Substituting (10) into (9) and simplifying, we can see that the error can be reduced by 

maximizing 11. 
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Where,  ࡺ ൌ ∑ ݀௜′
ே
௜ୀଵ .݉௜′

T 

This can be achieved by considering the SVD of N=U∑VT and choosing R=VUT (Kjer and Wilm 

2010). This gives the value on right hand side of (11) as tr(√்ܰܰ,	is the maximum value and it 

occurs when R=VUT. Applying the transformation to the data points registers it to the model 

point cloud with a minimized error	ܧ. Several iterations can be performed based on the initial 

alignment of the data and model point clouds to obtain a convergence result.  The registered atlas 

vertebrae form the ROI for measuring the activity from the PET data. The ROI in the 3D 

coordinate format is converted to volumetric data as shown in Figure 3-14. The Figure shows the 

registered atlas skull and the volumetric data of the same. 

 



 

(a)                                                                           (b) 
Figure 3-14. Figure showing (a) the registered skull atlas in 3D coordinate format (b) the volumetric data of the 

registered atlas skull. 

 
Figure 3-15. Figure showing the settings for the PET/CT registration in MIPAV tool for PET radiotracer activity 

using manual method. 

 
 



3.3. Manual method using MIPAV 

Medical Image Processing, Analysis and Visualization (MIPAV), is a software tool developed by 

National Institute of Health (NIH), to develop computational methods to analyze and quantify 

biomedical data. MIPAV v7.3.0 tool was used to register the PET and CT input data and perform 

manual ROI drawing on the data set. The MIPAV tool uses “Powell’s calling Brent’s” as the 

nearest neighbour search algorithm and trilinear interpolation for sampling along with other 

parameters as shown in Figure 3-15. The Volume Of Interest (VOI), was drawn on L1 to L5 

vetebrae on the CT image as they are more visually discerable compared to the PET data. The 

VOI are then opened on the registered PET image for quantization of the activity in the PET 

data. MIPAV tool is used as the gold standard tool for measuring the activity on the PET data by 

manual method. 

    



4. Results 
 
Figure 4-1(a), shows the atlas spine prior to segmentation and Figure 4-1(b), shows the 

segmented atlas after registration onto the µCT. The two images show the segmented atlas spine 

orientation before and after the registration algorithm has been applied to the µCT data. Figure 4-

2, shows the different azimuth orientation of registered atlas and µCT data. 

 

 
Figure 4-1 Figure showing the atlas prior to registration (on the left) and the atlas image after registration on the 

µCT image and segmentation (on the right). 

 

  



 
Figure 4-2 Figure showing the registered atlas and µCT data at different azimuth angles. 

The ROI was drawn on the CT image as shown in Figure 4-4 and the ROI was moved to the 

registered PET data as shown in Figure 4-5. 

 
Figure 4-3 Figure showing the CT image with manually drawn ROI in MIPAV. 



 

Figure 4-4 Figure showing the PET image with manually drawn ROI copied from the CT image. 

Table 4-1, shows the PET activity in BQML (becquerel per ml), where one Bq, is the activity of 

a quantity of radioactive material in which one nucleus decays per second. Table 1.2, shows the 

radiotracer activity on the L1-L5 vetebrae measured by manual method and by using the 

segmentation algorithm. Error rate was calculated using (12) and recorded in Figure 4-8. 

Error Rate (E)ൌ ||ெ௔௡௨௔௟௟௬	௖௔௟௖௨௟௔௧௘ௗ	௩௔௟௨௘ି஺௨௧௢௠௔௧௘ௗ	௩௔௟௨௘||

ெ௔௡௨௔௟௟௬	௖௔௟௖௨௟௔௧௘ௗ	௩௔௟௨௘
∗ 100   (12) 

 

Table 4-1Table showing the PET radiotracer activity measured using the algorithm 

Manual  9.41E+07 4.32E+07 5.11E+07 9.28E+07 1.62E+07

Algorithm 1.02E+08 4.12E+07 3.53E+07 7.56E+07 1.09E+07

Manual 5.89E+07 2.95E+07 1.82E+07 3.42E+07 2.75E+07

Algorithm 6.74E+07 2.44E+07 1.32E+07 2.52E+07 2.06E+07

Manual 1.79E+07 1.99E+07 1.49E+07 5.75E+06 5.68E+06

Algorithm 1.60E+07 1.88E+07 1.63E+07 5.90E+06 6.72E+06

Subject 1

Subject 2

Subject 3  
 

 

 

 

 

 

 



 

 

 

 
 

 
 

 

 

 

 

 

 

 

 
 
 

Figure 4-5 Figure showing the comparison of the PET activity measured by manual and automated method for the 
1st dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6 Figure showing the comparison of the PET activity measured by manual and automated method for the 
2nd dataset. 
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Figure 4-7 Figure showing the comparison of the PET activity measured by manual and automated method for the 
3rd dataset. 

 

 
Figure 4-8 Figure showing the error percent for all the three datasets for L1-L5 vertebrae 
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Figure 4-9 Figure showing the registered atlas vertebrae to the CT data for three different data sets. 

 

Figure 4-10 Figure showing the step by step registration of the atlas vertebrae onto the CT dataset. 

 
 



 
Figure 4-11. Figure showing the saturation of error metric after certain number of iterations. 

 
 

 
Figure 4-12. Figure showing the number of iterations before the error metric becomes significantly small. 



 
Figure 4-13 Fluctuation in error after skull registration due to high number of iterations than required (Reqd 

Iteration:70, Set value:150) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. Discussion      
 
Jadvar et. al (Jadvar, Desai and Conti 2015), performed studies on use of 18F-NaF as PET/CT 

radiotracer for bone and joints osseous metabolic activity.  It was found that, 18F-NaF  PET/CT 

was found to be diagnostically superior to other 99mTc-based bone scintigraphy for more accurate 

detection of extent osseous metastatic disease in a variety of cancers such as head and neck 

cancer, thyroid cancer, lung cancer, breast cancer, hepatocellular carcinoma, multiple myeloma, 

bladder cancer and prostate cancer. Accurate identification of the tumor viability was useful not 

only in diagnosis but also in treatment planning and follow-up. 

The American Cancer Society estimates 26,850 new cases of multiple myeloma in the United 

States for the year of 2015 and an estimated 11,240 deaths (Society 2015). The median age at 

diagnosis is 69 and median age at death was estimated to be 75. 46.6% of the people was 

estimated to survive for 5 years. High mortality rate due to multiple myeloma was attributed to 

late diagnosis of the disease. Multiple myeloma causes bone metastasis which causes an 

imbalance in the ratio of the osteoblast to osteoclast activity of bones. During bone metastasis the 

osteoclast activity takes over osteoblast activity and causes bone erosion. Also, it was found that 

5-10% of all cancer patients develop spinal metastasis during the course of their disease. Early 

diagnosis of bone/spine specific metastasis can preserve/improve neurologic functionality, 

achieve functional stability, optimize local tumor growth and improve the quality of life of the 

patients.  

At the Small Animal Imaging Facility, the study was conducted to identify the precursors for 

early detection of multiple myeloma based on bone remodeling. The study was conducted on 6 

week old Nob-Obese Diabetic (NOD) Severe Combined Immuno-Deficiency (SCID) mice with 

human multiple myeloma cell line injected via tail vein injection procedure. 18F -NaF radiotracer 

was injected and the mice were scanned at several time points in order to study the disease 



progression and its effect on osseous tissue.  Three image dataset from the study was used to 

evaluate the accuracy and throughput of automated atlas based segmentation algorithm against 

the manual method. For the manual method, MIPAV image analysis software was used to draw 

ROI on individual spinal vertebrae L1-L5 on each slice and obtain the radiotracer activity value 

in each vertebra. The manually obtained value and the value obtained using the algorithm was 

tabulated as shown in Table 4.1. It shows the 18F-NaF radiotracer activity value in vertebrae L1-

L5. Figure 4-5 to 4-7, shows the plot of uptake value in (Bqml) in each of the vertebrae from L1-

L5 for all the three subjects. 

 Vertebrae L1-L5 was selected as they are easy to identify for drawing the ROI manually. Figure 

4-10 shows the sequential steps involved in registration of the whole atlas to the µCT dataset. 

Initially the skull is registered, followed by Cervical, Thoracic, Lumbar, Sacral and Caudal 

vertebrae. Figure 4-8, shows the percentage error in the automated method considering the 

manual ROI method using MIPAV tool as gold standard. It was seen that, the error percent 

varies from 2.57% on L4 of dataset 3 to 27.45% on L3 of dataset 2. Dataset 3 had the least error 

percent with a minimum and maximum value of 2.57% on L4 to 15.54% on L5. Also, dataset 2 

had the highest error rate with a minimum and maximum value of 14.47% on L1 and 25.05% on 

L5. Also, a general trend in the variation of error percent was an increment in the error percent as 

we move down the spinal column. The error rate on L1and L2 on all three dataset was found to 

be less than L5 vertebra. This can be attributed to the cumulative error on each vertebrae 

registration from the skull to the caudal vertebrae. An error in the registration of skull results in 

an incremental error in the registration of the 1st cervical vertebrae as they are connected together 

in the atlas.  

The algorithm was run on a Windows 8, Intel Core 64 bit, i5 processor laptop with 12GB DDR3 

RAM laptop on Matlab® R2014a. The time taken by the algorithm was measured using the ‘tic-



toc’ function in Matlab and it was found to be 1414.34 seconds or 24 minutes (approximately). 

The time taken for the manual method to register the PET and CT dataset, draw the ROI on each 

slice and each vertebrae takes 60-65 minutes approx. Thus the time taken for the post processing 

of image dataset was reduced to one-third by automated method accelerating the image analysis 

workflow. Also, the time taken by the automated method can be reduced further by using a 

computer with a better configuration (eg: i7 processor with16GB RAM). Also, it was seen that 

activity measured during manual method depends on the subject drawing the ROI and the values 

slightly vary during each attempt. But the automated method is user independent on each attempt 

of image analysis and thus more robust compared to the manual method.  

An analysis on the logic to stop the iteration for the ICP algorithm was performed. A static 

number of iteration, 150 was initially set to the algorithm, where algorithm attempts to register 

the atlas to the CT during 150 iterations. As in Figure 4-11, the error metric was found to be 

saturated after a particular number of iteration. It was observed that, the error metric saturates at 

different iteration for different segments based on their initial alignment. Following this, an 

arbitrary threshold of 1/1000 was set for the variation in error metric to be called as in saturated 

state. The algorithm stops the iteration when the difference of error metric from the previous 

iteration is less than 1/1000. Figure 4-12, shows that the registration gets completed at an early 

stage than the set value of 150 iterations. Skull segment was found to have a high initial error 

metric because it was the first segment to be registered. As expected, the number of iterations 

required for a saturated error metric was found to be 70 iterations. The number of iterations were 

found to lower for the L1-L5 segments and were in the rage of 29-38 iterations. The algorithm 

stops the registration once the error metric gets saturated, reducing the registration time (in the 

milli-seconds (ms) range). Since the algorithm takes 15-20 minutes from beginning till the end, 

the improvement in overall throughout due of the lower number of iterations were not 



significant. Also, from Figure 4-11 and 4-12, it was found that, in the case of a set number of 

iterations, a slightly higher initial error metric was observed in certain segments like L2 and L5. 

This can be attributed to the fluctuation in the error metric in its saturated state and when the set 

value for the iteration coincides with a high fluctuation in error metric, the initial alignment for 

the following segment will result in higher misalignment. Figure 4-13, shows the fluctuation in 

the error metric for the skull segment in its saturated state. In this case, the required number of 

iteration for registration based on the arbitrary threshold was 70 and the set value was higher at 

150.  

In this thesis, an automated image segmentation method was used to segment individual 

vertebrae in mice. The algorithm was tested on three datasets from a PET/CT bone metastasis 

study using 18F-NaF radiotracer. The algorithm was found to reduce the analysis time threefold 

with a potential to further reduce the automated analysis time by use of better specification for 

system to run the algorithm. The manual analysis value can vary each time the analysis is 

performed is dependent on the individual performing the analysis. Also the error percent was 

recorded and found that it tends to increases as the analysis moves down the spine from skull to 

caudal vertebrae.  

 

 

 

 

 

 

 

 



6. Future Work 
 
The performance of the algorithm can be improved by the use of an automated method to scale 

the µCT dataset to the size of atlas data instead of using a static scaling value. The software can 

include an optional manual intervention to add markers to specify each vertebra, making the tool 

semi-automatic and more reliable. The software can be written in another language like C++ 

using the ITK (Insight Segmentation and Registration Toolkit) and VTK (Visualization Toolkit) 

for developing better Graphical User Interface (GUI) and image processing algorithms. The 

above work can be integrated to the existing work done by VanOss et al, to segment all the bones 

in the CT data. In the future work, a semi automated analysis method can be developed where 

the user marks the approximate center of mass of the low contrast soft tissue and the software 

completes the remaining steps in registration. A more detailed study on the degree of freedom 

including the scaling of the subject data to the atlas can provide more robust registration of the 

high contrast soft tissues. Thus in the future version of the software, foremost, the skull can be 

registered based on the initial conditions laid out in this work or by the identification of 

anteroposterior axis by Principal Component Analysis method followed by VanOss et al. The 

registration of spine and sternum assists the registration of rib cage and high contrast lung soft 

tissue. The registration of low contrast soft tissue like liver has to be studied by semi-automatic 

method for high accuracy prior to fully automated analysis.   

 

 

 

  
 
 
 



7. Appendices 
 

7.1. Software Code: 
 
Moby_icp_demo_2.m 
%%Author: Vineeth Radhakrishnan 
%%Data:   3/4/2016 
clear all; 
close all; 
CT_file='AAAP_MMy-NaF_1-00_T5^^^^_CT.dcm'; 
PET_file='AAAP_MMy-NaF_1-00_T5^^^^_PT.dcm'; 
marker_init=zeros(170,170,252); 
marker_array=add_marker(marker_init); 
[m,n,p] = size(marker_array); 
[xm,ym,zm]= meshgrid(1:m,1:n,1:p); 
[fm,vm,cm] = isosurface(xm,ym,zm,marker_array,10,xm); 
scale=5.0; 
vm=vm.*scale; 
stlwrite('Marker.stl',fm,vm,'mode','ascii'); 
plotct(vm,fm,cm); 
marker_init_1=zeros(170,170,252); 
marker_array_1=add_marker_1(marker_init_1); 
[m,n,p] = size(marker_array_1); 
[xm1,ym1,zm1]= meshgrid(1:m,1:n,1:p); 
[fm1,vm1,cm1] = isosurface(xm1,ym1,zm1,marker_array_1,10,xm1); 
vm1=vm1.*scale; 
stlwrite('Marker_1.stl',fm1,vm1,'mode','ascii'); 
plotct(vm1,fm1,cm1); 
CT_bone=threshold_bone(CT_file,-550); 
CT_bone=flipdim(CT_bone,3); 
[m,n,p] = size(CT_bone); 
[x,y,z]= meshgrid(1:m,1:n,1:p); 
[f,v,c] = isosurface(x,y,z,CT_bone,10,x); 
v=v.*scale; %Scaling factor for the CT data. 
filename='Skull_outside.stl'; 
[SkullF,SkullV,SkullC]=stl_file_read(filename); 
wr=0.01; 
[Ricp, Ticp, ER, t] = icp(v', SkullV',70,'Matching', 'kDtree', 
'Minimize','point','Extrapolation', true,'WorstRejection',wr); 
[SkullF,SkullV,SkullC]=transform_apply(filename,SkullV,Ricp, Ticp); 
plotct(v,f,c); 
hold on; 
plot_segment(SkullF,SkullV,SkullC,filename,1,0,0); 
display('C1-C2'); 
filename='C3-C7.stl'; 
[C3C7F,C3C7V,C3C7C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='T1-T3.stl'; 
[T1T3F,T1T3V,T1T3C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='T4-T8.stl'; 
[T4T8F,T4T8V,T4T8C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='T9-T13.stl'; 
[T9T13F,T9T13V,T9T13C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='L1.stl'; 
[L1F,L1V,L1C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='L2.stl'; 



[L2F,L2V,L2C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='L3.stl'; 
[L3F,L3V,L3C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='L4.stl'; 
[L4F,L4V,L4C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='L5.stl'; 
[L5F,L5V,L5C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_primary(filename,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_primary(filename,Ricp,Ticp); 
  
filename='C1-C2.stl'; 
[C1C2F,C1C2V,C1C2C]=transform_apply_primary(filename,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', C1C2V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[C1C2F,C1C2V,C1C2C]=transform_apply_update(filename,C1C2V,Ricp,Ticp); 
plot_segment(C1C2F,C1C2V,C1C2C,filename,1,1,0); 
[v]=Update_ct(C1C2V,v); 
display('C3-C7'); 
filename='T1-T3.stl'; 
[T1T3F,T1T3V,T1T3C]=transform_apply_update(filename,T1T3V,Ricp,Ticp); 
filename='T4-T8.stl'; 
[T4T8F,T4T8V,T4T8C]=transform_apply_update(filename,T4T8V,Ricp,Ticp); 
filename='T9-T13.stl'; 
[T9T13F,T9T13V,T9T13C]=transform_apply_update(filename,T9T13V,Ricp,Ticp); 
filename='L1.stl'; 
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp); 
filename='L2.stl'; 
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp); 
filename='L3.stl'; 
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp); 
filename='L4.stl'; 
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp); 
filename='L5.stl'; 
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
filename='S2.stl'; 



[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='C3-C7.stl'; 
[C3C7F,C3C7V,C3C7C]=transform_apply_update(filename,C3C7V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', C3C7V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[C3C7F,C3C7V,C3C7C]=transform_apply_update(filename,C3C7V,Ricp,Ticp); 
plot_segment(C3C7F,C3C7V,C3C7C,filename,0,1,1); 
  
[v]=Update_ct(C3C7V,v); 
display('T1-T3'); 
filename='T4-T8.stl'; 
[T4T8F,T4T8V,T4T8C]=transform_apply_update(filename,T4T8V,Ricp,Ticp); 
filename='T9-T13.stl'; 
[T9T13F,T9T13V,T9T13C]=transform_apply_update(filename,T9T13V,Ricp,Ticp); 
filename='L1.stl'; 
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp); 
filename='L2.stl'; 
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp); 
filename='L3.stl'; 
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp); 
filename='L4.stl'; 
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp); 
filename='L5.stl'; 
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 



[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='T1-T3.stl'; 
[T1T3F,T1T3V,T1T3C]=transform_apply_update(filename,T1T3V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', T1T3V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[T1T3F,T1T3V,T1T3C]=transform_apply_update(filename,T1T3V,Ricp,Ticp); 
plot_segment(T1T3F,T1T3V,T1T3C,filename,0,0,1); 
  
display('T4-T8'); 
[v]=Update_ct(T1T3V,v); 
filename='T9-T13.stl'; 
[T9T13F,T9T13V,T9T13C]=transform_apply_update(filename,T9T13V,Ricp,Ticp); 
filename='L1.stl'; 
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp); 
filename='L2.stl'; 
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp); 
filename='L3.stl'; 
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp); 
filename='L4.stl'; 
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp); 
filename='L5.stl'; 
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='T4-T8.stl'; 
[T4T8F,T4T8V,T4T8C]=transform_apply_update(filename,T4T8V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', T4T8V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[T4T8F,T4T8V,T4T8C]=transform_apply_update(filename,T4T8V,Ricp,Ticp); 
plot_segment(T4T8F,T4T8V,T4T8C,filename,1,0,1); 
  
display('T9-T13'); 
[v]=Update_ct(T4T8V,v); 
filename='L1.stl'; 
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp); 
filename='L2.stl'; 
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp); 
filename='L3.stl'; 
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp); 



filename='L4.stl'; 
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp); 
filename='L5.stl'; 
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='T9-T13.stl'; 
[T9T13F,T9T13V,T9T13C]=transform_apply_update(filename,T9T13V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', T9T13V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[T9T13F,T9T13V,T9T13C]=transform_apply_update(filename,T9T13V,Ricp,Ticp); 
plot_segment(T9T13F,T9T13V,T9T13C,filename,0,0,1); 
  
[v]=Update_ct(T9T13V,v); 
display('L1'); 
filename='L2.stl'; 
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp); 
filename='L3.stl'; 
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp); 
filename='L4.stl'; 
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp); 
filename='L5.stl'; 
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 



filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='L1.stl'; 
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', L1V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[L1F,L1V,L1C]=transform_apply_update(filename,L1V,Ricp,Ticp); 
plot_segment(L1F,L1V,L1C,filename,1,1,0); 
  
[v]=Update_ct(L1V,v); 
display('L2'); 
filename='L3.stl'; 
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp); 
filename='L4.stl'; 
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp); 
filename='L5.stl'; 
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='L2.stl'; 
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', L2V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[L2F,L2V,L2C]=transform_apply_update(filename,L2V,Ricp,Ticp); 
plot_segment(L2F,L2V,L2C,filename,0,1,0); 
  
[v]=Update_ct(L2V,v); 
display('L3'); 
filename='L4.stl'; 
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp); 
filename='L5.stl'; 
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
filename='S2.stl'; 



[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='L3.stl'; 
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', L3V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[L3F,L3V,L3C]=transform_apply_update(filename,L3V,Ricp,Ticp); 
plot_segment(L3F,L3V,L3C,filename,1,0,0); 
  
display('L4'); 
[v]=Update_ct(L3V,v); 
filename='L5.stl'; 
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='L4.stl'; 
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', L4V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[L4F,L4V,L4C]=transform_apply_update(filename,L4V,Ricp,Ticp); 
plot_segment(L4F,L4V,L4C,filename,0,1,1); 
  
display('L5'); 
[v]=Update_ct(L4V,v); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 



filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='L5.stl'; 
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', L5V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[L5F,L5V,L5C]=transform_apply_update(filename,L5V,Ricp,Ticp); 
plot_segment(L5F,L5V,L5C,filename,0,0,1); 
  
display('L6'); 
[v]=Update_ct(L5V,v); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='L6.stl'; 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', L6V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[L6F,L6V,L6C]=transform_apply_update(filename,L6V,Ricp,Ticp); 
plot_segment(L6F,L6V,L6C,filename,0,1,0); 
  
display('S1'); 
[v]=Update_ct(L6V,v); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
filename='S3.stl'; 



[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='S1.stl'; 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', S1V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[S1F,S1V,S1C]=transform_apply_update(filename,S1V,Ricp,Ticp); 
plot_segment(S1F,S1V,S1C,filename,0,1,1); 
  
display('S2'); 
[v]=Update_ct(S1V,v); 
filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='S2.stl'; 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', S2V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[S2F,S2V,S2C]=transform_apply_update(filename,S2V,Ricp,Ticp); 
plot_segment(S2F,S2V,S2C,filename,1,1,0); 
  
display('S3'); 
[v]=Update_ct(S2V,v); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 



filename='S3.stl'; 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', S3V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[S3F,S3V,S3C]=transform_apply_update(filename,S3V,Ricp,Ticp); 
plot_segment(S3F,S3V,S3C,filename,1,0,1); 
  
display('S4'); 
[v]=Update_ct(S3V,v); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='S4.stl'; 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', S4V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[S4F,S4V,S4C]=transform_apply_update(filename,S4V,Ricp,Ticp); 
plot_segment(S4F,S4V,S4C,filename,1,1,0); 
  
display('CA1'); 
[v]=Update_ct(S4V,v); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='CA-1.stl'; 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', CA1V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[CA1F,CA1V,CA1C]=transform_apply_update(filename,CA1V,Ricp,Ticp); 
plot_segment(CA1F,CA1V,CA1C,filename,1,0,1); 
display('CA2'); 
[v]=Update_ct(CA1V,v); 
filename='CA-3.stl'; 
[CA3F,CA3V,CA3C]=transform_apply_update(filename,CA3V,Ricp,Ticp); 
filename='CA-4.stl'; 
[CA4F,CA4V,CA4C]=transform_apply_update(filename,CA4V,Ricp,Ticp); 
filename='CA-5.stl'; 
[CA5F,CA5V,CA5C]=transform_apply_update(filename,CA5V,Ricp,Ticp); 
filename='CA-2.stl'; 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
[Ricp Ticp ER t] = icp(v', CA2V', 40,'Matching', 'kDtree', 
'Minimize','point','WorstRejection',wr); 
[CA2F,CA2V,CA2C]=transform_apply_update(filename,CA2V,Ricp,Ticp); 
plot_segment(CA2F,CA2V,CA2C,filename,0,1,0); 
stlwrite('Skull_roi.stl',SkullF,SkullV,'mode','ascii'); 



stlwrite('C1C2_roi.stl',C1C2F,C1C2V,'mode','ascii'); 
stlwrite('C3C7_roi.stl',C3C7F,C3C7V,'mode','ascii'); 
stlwrite('T1T3_roi.stl',T1T3F,T1T3V,'mode','ascii'); 
stlwrite('T4T8_roi.stl',T4T8F,T4T8V,'mode','ascii'); 
stlwrite('T9T13_roi.stl',T9T13F,T9T13V,'mode','ascii'); 
stlwrite('L1_roi.stl',L1F,L1V,'mode','ascii'); 
stlwrite('L2_roi.stl',L2F,L2V,'mode','ascii'); 
stlwrite('L3_roi.stl',L3F,L3V,'mode','ascii'); 
stlwrite('L4_roi.stl',L4F,L4V,'mode','ascii'); 
stlwrite('L5_roi.stl',L5F,L5V,'mode','ascii'); 
stlwrite('L6_roi.stl',L6F,L6V,'mode','ascii'); 
stlwrite('S1_roi.stl',S1F,S1V,'mode','ascii'); 
stlwrite('S2_roi.stl',S2F,S2V,'mode','ascii'); 
stlwrite('S3_roi.stl',S3F,S3V,'mode','ascii'); 
stlwrite('S4_roi.stl',S4F,S4V,'mode','ascii'); 
stlwrite('CA1_roi.stl',CA1F,CA1V,'mode','ascii'); 
stlwrite('CA2_roi.stl',CA2F,CA2V,'mode','ascii'); 
stlwrite('CA3_roi.stl',CA3F,CA3V,'mode','ascii'); 
stlwrite('CA4_roi.stl',CA4F,CA4V,'mode','ascii'); 
L1_list=Update_flist('L1.stl'); 
L2_list=Update_flist('L2.stl'); 
L3_list=Update_flist('L3.stl'); 
L4_list=Update_flist('L4.stl'); 
L5_list=Update_flist('L5.stl'); 
L6_list=Update_flist('L6.stl'); 
PET_PixelData=dicomread(PET_file); 
PET_HeaderInformation = dicominfo(PET_file); 
PET_data = ((squeeze(PET_PixelData))); 
PET_PixelData = int16(PET_PixelData); 
PET_data=im2double(PET_data); 
sliceomatic(PET_data); 
size(PET_data) 
  
CT_bone=threshold_bone(CT_file,-550); 
 [m,n,p] = size(CT_bone) 
CT_bone=add_marker(CT_bone); 
o1=CT_bone(:,85,:); 
c=squeeze(o1); 
figure(1); 
imagesc(c); 
hold on; 
o=PET_data(:,45,:); 
c1=squeeze(o); 
figure(2); 
imagesc(c1); 
  
figure(3);  
imshowpair(c1, c); 
title('Unregistered'); 
  
[optimizer, metric]=imregconfig('multimodal'); 
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric); 
figure(4); 
imshowpair(movingRegisterDefault, c); 
title('A:Default Registration'); 
  



disp(optimizer) 
disp(metric) 
  
optimizer.InitialRadius=optimizer.InitialRadius/5 
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric); 
figure(5); 
imshowpair(movingRegisterDefault, c); 
title('A:Adjusted Initial Radius Registration'); 
  
optimizer.MaximumIterations=500; 
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric); 
figure(6); 
imshowpair(movingRegisterDefault, c); 
title('A:Adjusted Initial Radius Registration, MaximumIterations=300'); 
  
optimizer.InitialRadius=optimizer.InitialRadius/1.2 
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric); 
figure(7); 
imshowpair(movingRegisterDefault, c); 
title('A:Adjusted Initial Radius Registration, MaximumIterations=300'); 
  
tformSimilarity = imregtform(c1, c,'similarity',optimizer,metric); 
Rfixed = imref2d(size(c)); 
movingRegisteredRigid = imwarp(c1,tformSimilarity,'OutputView',Rfixed); 
figure(8); 
imshowpair(movingRegisteredRigid, c); 
title('C: Registration based on similarity transformation model.'); 
  
movingRegisteredAffineWithIC = imregister(c1,c,'affine',optimizer,metric,... 
    'InitialTransformation',tformSimilarity); 
figure(9);  
imshowpair(movingRegisteredAffineWithIC,c); 
title('D: Registration from affine model based on similarity initial 
condition.'); 
size(c) 
size(c1) 
size(movingRegisteredAffineWithIC) 
size(L1_list) 
L1_Vert_sq=squeeze(sum(L1_list,1)); 
imagesc(L1_Vert_sq); 
figure(10); 
imshowpair(L1_Vert_sq, movingRegisteredAffineWithIC); 
size(L1_Vert_sq) 
size(movingRegisteredAffineWithIC) 
[moby] = VOXELISE(170,170,252,'Marker.stl','xyz'); 
e=double(moby); 
for i=1:170 
        for j=1:170 
            for k=1:252 
                if (e(i,j,k)==-1) 
                    e(i,j,k)=0; 
                elseif(e(i,j,k)>0) 
                    e(i,j,k)=1; 
                end 
            end 
        end 



end 
figure(1); 
imagesc(squeeze(sum(e,1))); 
colormap(gray(256)); 
xlabel('Z-direction'); 
ylabel('X-direction'); 
axis equal tight; 
  
%%Manually Draw ROI on PET 
PET_PixelData=dicomread(PET_file); 
PET_HeaderInformation = dicominfo(PET_file); 
PET_data = ((squeeze(PET_PixelData))); 
PET_PixelData = int16(PET_PixelData); 
PET_data=im2double(PET_data); 
sliceomatic(PET_data); 
size(PET_data) 
CT_bone=threshold_bone(CT_file,-550); 
%CT_bone=flipdim(CT_bone,3); 
[m,n,p] = size(CT_bone) 
CT_bone=add_marker(CT_bone); 
o1=CT_bone(:,80,:); 
c=squeeze(o1); 
figure(1); 
imagesc(c); 
hold on; 
o=PET_data(:,45,:); 
c1=squeeze(o); 
figure(2); 
imagesc(c1); 
  
figure(3);  
imshowpair(c1, c); 
title('Unregistered'); 
  
[optimizer, metric]=imregconfig('multimodal'); 
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric); 
figure(4); 
imshowpair(movingRegisterDefault, c); 
title('A:Default Registration'); 
  
disp(optimizer) 
disp(metric) 
  
optimizer.InitialRadius=optimizer.InitialRadius/5 
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric); 
figure(5); 
imshowpair(movingRegisterDefault, c); 
title('A:Adjusted Initial Radius Registration'); 
  
optimizer.MaximumIterations=500; 
movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric); 
figure(6); 
imshowpair(movingRegisterDefault, c); 
title('A:Adjusted Initial Radius Registration, MaximumIterations=300'); 
  
optimizer.InitialRadius=optimizer.InitialRadius/1.2 



movingRegisterDefault=imregister(c1, c, 'affine', optimizer, metric); 
figure(7); 
imshowpair(movingRegisterDefault, c); 
title('A:Adjusted Initial Radius Registration, MaximumIterations=300'); 
  
tformSimilarity = imregtform(c1, c,'similarity',optimizer,metric); 
Rfixed = imref2d(size(c)); 
movingRegisteredRigid = imwarp(c1,tformSimilarity,'OutputView',Rfixed); 
figure(8); 
imshowpair(movingRegisteredRigid, c); 
title('C: Registration based on similarity transformation model.'); 
  
movingRegisteredAffineWithIC = imregister(c1,c,'affine',optimizer,metric,... 
    'InitialTransformation',tformSimilarity); 
figure(9);  
imshowpair(movingRegisteredAffineWithIC,c); 
title('D: Registration from affine model based on similarity initial 
condition.'); 
size(L1_list) 
L1_Vert_sq=squeeze(sum(L1_list,1)); 
imagesc(L1_Vert_sq); 
figure(10); 
imshowpair(L1_Vert_sq, movingRegisteredAffineWithIC); 
size(L1_Vert_sq) 
size(movingRegisteredAffineWithIC) 
ct_mip=MIP(CT_bone); 
imshow(ct_mip); 
  
PET_PixelData=dicomread(PET_file); 
PET_HeaderInformation = dicominfo(PET_file); 
PET_data=PET_PixelData*PET_HeaderInformation.RescaleSlope+PET_HeaderInformati
on.RescaleIntercept; 
Reg_PET=Temp_PET(PET_file, CT_file, 30,65, L1_Vert_sq); 
%Apply ROI 
for i=1:n 
    Reg_PET_L1(:,i,:)=squeeze(Reg_PET(:,i,:)).*im2bw(L1_Vert_sq,0.01); 
end 
L1_Bqml=PET_HeaderInformation.RescaleSlope*sum(sum(sum(Reg_PET_L1))) 
L2_Vert_sq=squeeze(sum(L2_list,1)); 
for i=1:n 
    Reg_PET_L2(:,i,:)=squeeze(Reg_PET(:,i,:)).*im2bw(L2_Vert_sq,0.01); 
end 
L2_Bqml=PET_HeaderInformation.RescaleSlope*sum(sum(sum(Reg_PET_L2))) 
L3_Vert_sq=squeeze(sum(L3_list,1)); 
for i=1:n 
    Reg_PET_L3(:,i,:)=squeeze(Reg_PET(:,i,:)).*im2bw(L3_Vert_sq,0.01); 
end 
L3_Bqml=PET_HeaderInformation.RescaleSlope*sum(sum(sum(Reg_PET_L3))) 
L4_Vert_sq=squeeze(sum(L4_list,1)); 
for i=1:n 
    Reg_PET_L4(:,i,:)=squeeze(Reg_PET(:,i,:)).*im2bw(L4_Vert_sq,0.01); 
end 
L4_Bqml=PET_HeaderInformation.RescaleSlope*sum(sum(sum(Reg_PET_L4))) 
L5_Vert_sq=squeeze(sum(L5_list,1)); 
for i=1:n 
    Reg_PET_L5(:,i,:)=squeeze(Reg_PET(:,i,:)).*im2bw(L5_Vert_sq,0.01); 
end 



L5_Bqml=PET_HeaderInformation.RescaleSlope*sum(sum(sum(Reg_PET_L5))) 
 
add_marker.m 
function [ CT_bone] = add_marker( CT_bone ) 
[a,b,c]=size(CT_bone); 
max(max(max(CT_bone))); 
CT_bone(1:10,1:10,1:10)=1000; 
CT_bone(160:170, 160:170, 1:10)=1000; 
CT_bone(1:10, 160:170, 1:10)=1000; 
CT_bone(160:170,1:10,1:10)=1000; 
CT_bone(160:170,1:10,242:252)=1000; 
CT_bone(160:170,160:170,242:252)=1000; 
CT_bone(1:10,1:10,242:252)=1000; 
CT_bone(1:10,160:170,242:252)=1000; 
end 
 
threshold_bone.m 
function [ CT_bone ] = threshold_bone( filename,x) 
  
CT=dicomread(filename); 
 CT=int16(squeeze(CT)); 
 CT_Header=dicominfo(filename); 
 Rescale_Slope=CT_Header.RescaleSlope; 
 Rescale_Intercept=CT_Header.RescaleIntercept; 
 CT=CT*Rescale_Slope+Rescale_Intercept; 
[l,m,n]=size(CT) 
 CT_bone=zeros(size(CT)); 
for i=1:l 
    for j=1:m 
        for k=1:n 
            if (CT(i,j,k)>x) 
            CT_bone(i,j,k)=1000; 
            elseif((CT(i,j,k)<x)) 
            CT_bone(i,j,k)=0; 
            end 
        end 
    end 
end 
CT_bone(1:l,1:40,1:n)=0; 
CT_bone(100:l,1:m,1:n)=0; 
 
Transform_apply.m 
function [F,V,C]=transform_apply(filename,V,Ricp,Ticp) 
 
    [F,V1,C]=stl_file_read(filename); 
    Dicp = Ricp * V' + repmat(Ticp, 1, size(V',2)); 
    V=Dicp';  
end 
  
 
plot_segment.m 
function plot_segment( F,V,C,filename,c1,c2,c3) 
[F,V1,C]=stl_file_read(filename); 
O = patch('faces', F, 'vertices' ,V); 



set(O, 'facec', 'flat');            
set(O, 'FaceVertexCData', C); 
set(O, 'facealpha',.4); 
set(O, 'EdgeColor',[c1 c2 c3]); 
light 
daspect([1 1 1]) 
view(3); 
xlabel('X'),ylabel('Y'),zlabel('Z'); 
title(['Imported CAD data from ' filename]); 
xlim([0 800]); 
ylim([0 800]); 
zlim([0 1200]); 
disp(('Complete moby mouse atlas')) 
pause(1); 
end 
  
 
transform_apply_primary.m 
function [F,V,C]=transform_apply_primary(filename,Ricp,Ticp) 
 
    [F,V,C]=stl_file_read(filename); 
    Dicp = Ricp * V' + repmat(Ticp, 1, size(V',2)); 
    V=Dicp'; 
  
     
  
end 
  
 
transform_apply_update.m 
function [F,C1C2V,C]=transform_apply_update(filename,C1C2V,Ricp,Ticp); 
     
    [F,V1,C]=stl_file_read(filename); 
    Dicp = Ricp * C1C2V' + repmat(Ticp, 1, size(C1C2V',2)); 
    C1C2V=Dicp';  
end 
  
 
algo_test.m 
clear all; 
close all; 
R_model=moby_joint;           %Ribs 
R_model.Heir_state=['C','C','3']; 
R_model.Color_mat=[0 0 1]; 
R_model.filename='Ribs.stl'; 
R_model.parent_joint_cordinate=[0,0,100]; 
R_model.draw(); 
R_model.Vertices=R_model.Vertices'; 
R_model.Vertices = [R_model.Vertices(1,:); R_model.Vertices(2,:); 
R_model.Vertices(3,:); ones(1,length(R_model.Vertices))]; 
k = tl(R_model.parent_joint_cordinate)*Rx(30)*R_model.Vertices; 
set(R_model.object,'Vertices',k(1:3,:)'); 
drawnow; 
R_model.Vertices=k(1:3,:)'; 



  
  
R_data=moby_joint;           %Ribs 
  
R_data.Heir_state=['C','C','3']; 
R_data.Color_mat=[0 1 0]; 
R_data.filename='Ribs.stl'; 
R_data.parent_joint_cordinate=[328.8,279.5,697]; 
  
R_data.draw(); 
 
  
  
    [Ricp Ticp ER t] = icp(R_model.Vertices', R_data.Vertices', 20,'Matching', 
'kDtree', 'Minimize','plane','Extrapolation', true); 
    Dicp = Ricp * R_data.Vertices' + repmat(Ticp, 1, 
size(R_data.Vertices',2)); 
    R_data.Vertices=Dicp'; 
    cla(R_model.object); 
    R_data.object = patch('faces', R_data.Faces, 'vertices' ,R_data.Vertices)   
        
        set(R_data.object, 'Marker','h'); 
        set(R_data.object, 'facec', 'flat');            
        set(R_data.object, 'FaceVertexCData', R_data.Color); 
        set(R_data.object, 'facealpha',.4); 
        set(R_data.object, 'EdgeColor',R_data.Color_mat); 
        light 
        daspect([1 1 1]) 
        view(3); 
        xlabel('X'),ylabel('Y'),zlabel('Z'); 
        title(['Imported CAD data from ' R_data.filename]); 
        drawnow   
        disp(['Complete moby mouse atlas']) 
        pause(1); 
 
Joint_define.m 
%Script to assign properties of each part like its position in heirarchy, 
parent joint cordinate (point of 3D rotation),  
%color matrix for each part, filename of each part. 
%In the heirarchy name, first alphabet refers to the part position(up-->A, 
%down-->B, Center-->C), Right/left(Right-->R, Left-->L, Center-->C), joint 
%location(1-->skull to 6-->paws) 
  
%Author: Vineeth Radhakrishnan 
%Date: 3/10/2014 
  
clear all; 
close all; 
  
SI=moby_joint;          %Skull Inside 
SO=moby_joint;          %Skull Outside 
S=moby_joint;           %Spine 
SL=moby_joint;          %Scapula left 
SR=moby_joint;          %Scapuka Right 



R=moby_joint;           %Ribs 
PL=moby_joint;          %Pelvis Left 
PR=moby_joint;          %pelvis Right 
UFL=moby_joint;         %Upper Forelmb Left 
UFR=moby_joint;         %Upper Forelimb Right 
UHL=moby_joint;         %Upper hindlimb Left 
UHR=moby_joint;         %Upper hindlimb Right 
LFL=moby_joint;         %Lower forelimb Left 
LFR=moby_joint;         %Lower forelimb Right 
LHL=moby_joint;         %Lower Hindlimb Left 
LHR=moby_joint;         %Lower Hindlimb Right 
FPL=moby_joint;         %Forepaw Left 
FPR=moby_joint;         %orepaw Right 
HPL=moby_joint;         %Hindpaw Left 
HPR=moby_joint;         %Hindpaw Right 
St=moby_joint;          %Sternum 
  
Obj_array=[SI,SO,S,SL,SR,R,PL,PR,UFL,UFR,UHL,UHR,LFR,LHL,LHR,FPR,HPL,HPR,St,L
FL,FPL]; 
SI.Heir_state=['A','C','1']; 
SI.Color_mat=[0 0 1]; 
SI.parent_joint_cordinate=[328.8,279.5,697]; 
SI.filename='Skull_inside.stl'; 
 
SO.Heir_state=['A','C','1']; 
SO.Color_mat=[1 0 0]; 
SO.parent_joint_cordinate=[328.8,279.5,697]; 
SO.filename='Skull_outside.stl'; 
 
S.Heir_state=['A','C','2']; 
S.Color_mat=[0 0 1]; 
S.parent_joint_cordinate=[328.8,279.5,697]; 
S.filename='Spine.stl'; 
 
SL.Heir_state=['A','L','3']; 
SL.Color_mat=[1 0 0]; 
SL.parent_joint_cordinate=[157.1,154.6,842.2]; 
SL.filename='Scapula_left.stl'; 
SL.draw(); 
  
SR.Heir_state=['A','R','3']; 
SR.Color_mat=[1 0 0]; 
SR.parent_joint_cordinate=[328.8,279.5,697]; 
SR.filename='Scapula_right.stl'; 
 
R.Heir_state=['C','C','3']; 
R.Color_mat=[0 1 1]; 
R.filename='Ribs.stl'; 
R.parent_joint_cordinate=[328.8,279.5,697]; 
 
PL.Heir_state=['B','L','3']; 
PL.Color_mat=[1 0 1]; 
PL.filename='Pelvis_left_part.stl'; 
PL.parent_joint_cordinate=[328.8,279.5,697]; 
 
PR.Heir_state=['B','R','3']; 



PR.Color_mat=[1 0 1]; 
PR.filename='Pelvis_right_part.stl'; 
PR.parent_joint_cordinate=[328.8,279.5,697]; 
 
UFL.Heir_state=['A','L','4']; 
UFL.Color_mat=[0 1 0]; 
UFL.filename='Upper_forelimb_left.stl'; 
UFL.parent_joint_cordinate=[127,221.5,869.8]; 
UFL.draw(); 
  
UFR.Heir_state=['A','R','4']; 
UFR.Color_mat=[0 1 0]; 
UFR.filename='Upper_forelimb_right.stl'; 
UFR.parent_joint_cordinate=[328.8,279.5,697]; 
 
UHL.Heir_state=['B','L','4']; 
UHL.Color_mat=[0 1 0]; 
UHL.filename='Upper_hindlimb_left.stl'; 
UHL.parent_joint_cordinate=[328.8,279.5,697]; 
 
UHR.Heir_state=['B','R','4']; 
UHR.Color_mat=[0 1 0]; 
UHR.filename='Upper_hindlimb_right.stl'; 
UHR.parent_joint_cordinate=[328.8,279.5,697]; 
  
LFR.Heir_state=['A','R','5']; 
LFR.Color_mat=[1 0 0]; 
LFR.filename='Lower_forelimb_right.stl'; 
LFR.parent_joint_cordinate=[328.8,279.5,697]; 
 
LHL.Heir_state=['B','L','5']; 
LHL.Color_mat=[1 0 0]; 
LHL.filename='Lower_hindlimb_left.stl'; 
LHL.parent_joint_cordinate=[328.8,279.5,697]; 
 
LHR.Heir_state=['B','R','5']; 
LHR.Color_mat=[1 0 0]; 
LHR.filename='Lower_hindlimb_right.stl'; 
LHR.parent_joint_cordinate=[328.8,279.5,697]; 
 
FPR.Heir_state=['A','R','6']; 
FPR.Color_mat=[0 0 1]; 
FPR.parent_joint_type='BallnSocket'; 
FPR.parent_joint_cordinate=[328.8,279.5,697]; 
FPR.filename='Forepaw_right.stl'; 
 
HPL.Heir_state=['B','L','6']; 
HPL.Color_mat=[0 0 1]; 
HPL.parent_joint_type='BallnSocket'; 
HPL.parent_joint_cordinate=[328.8,279.5,697]; 
HPL.filename='Hindpaw_left.stl'; 
 
HPR.Heir_state=['B','R','6']; 
HPR.Color_mat=[0 0 1]; 
HPR.parent_joint_type='BallnSocket'; 



HPR.filename='Hindpaw_right.stl'; 
HPR.parent_joint_cordinate=[328.8,279.5,697]; 
 
LFL.Heir_state=['A','L','5']; 
LFL.Color_mat=[1 0 0]; 
LFL.filename='Lower_forelimb_left.stl'; 
LFL.parent_joint_type='Hinge'; 
LFL.parent_joint_cordinate=[80.26,221.5,761.6]; 
LFL.draw(); 
  
FPL.Heir_state=['A','L','6']; 
FPL.Color_mat=[0 0 1]; 
FPL.parent_joint_type='Hinge'; 
FPL.parent_joint_cordinate=[106.2,335.3,704.4]; 
FPL.filename='Forepaw_left.stl'; 
FPL.draw(); 
  
St.Heir_state=['C','C','4']; 
St.Color_mat=[0 1 1]; 
St.filename='Sternum.stl'; 
St.parent_joint_cordinate=[328.8,279.5,697]; 
  
SL.rotate(Obj_array); 
UFL.rotate(Obj_array); 
FPL.rotate(Obj_array); 
FPL.parent_joint_cordinate 
LFL.rotate(Obj_array); 
FPL.parent_joint_cordinate 
FPL.rotate(Obj_array); 
LFL.rotate(Obj_array); 
 
Update_flist.m 
function [ diff_image ] = Update_flist( filename ) 
  
switch filename 
    case 'L1.stl' 
    f_list_1 = 
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 
    f_list_2 = 
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L2_roi.stl','L3_roi.stl','L4_roi.stl','L5
_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 
    e1=Volumetric_conv(f_list_1); 
    e2=Volumetric_conv(f_list_2); 
    diff_image=(e1-e2); 
    %size(diff_image); 
    for i=1:170 
        for j=1:170 
            for k=1:252 
                if (diff_image(i,j,k)==-1) 
                    diff_image(i,j,k)=0; 



                elseif(diff_image(i,j,k)>0) 
                    diff_image(i,j,k)=1; 
                end 
            end 
        end 
    end 
figure(1); 
imagesc(squeeze(sum(diff_image,1))); 
colormap(gray(256)); 
xlabel('Z-direction'); 
ylabel('X-direction'); 
axis equal tight; 
  
    case 'L2.stl' 
    f_list_1 = 
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 
    f_list_2 = 
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L3_roi.stl','L4_roi.stl','L5
_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 
    e1=Volumetric_conv(f_list_1); 
    e2=Volumetric_conv(f_list_2); 
    diff_image=(e1-e2); 
    %size(diff_image); 
    for i=1:170 
        for j=1:170 
            for k=1:252 
                if (diff_image(i,j,k)==-1) 
                    diff_image(i,j,k)=0; 
                end 
            end 
        end 
    end 
     
figure(2); 
imagesc(squeeze(sum(diff_image,1))); 
colormap(gray(256)); 
xlabel('Z-direction'); 
ylabel('X-direction'); 
axis equal tight; 
  
 case 'L3.stl' 
    f_list_1 = 
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 
    f_list_2 = 
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L4_roi.stl','L5
_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 
    e1=Volumetric_conv(f_list_1); 



    e2=Volumetric_conv(f_list_2); 
    diff_image=(e1-e2); 
    %size(diff_image); 
    for i=1:170 
        for j=1:170 
            for k=1:252 
                if (diff_image(i,j,k)==-1) 
                    diff_image(i,j,k)=0; 
                end 
            end 
        end 
    end 
  
figure(3); 
imagesc(squeeze(sum(diff_image,1))); 
colormap(gray(256)); 
xlabel('Z-direction'); 
ylabel('X-direction'); 
axis equal tight; 
  
 case 'L4.stl' 
    f_list_1 = 
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 
    f_list_2 = 
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L5
_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 
    e1=Volumetric_conv(f_list_1); 
    e2=Volumetric_conv(f_list_2); 
    diff_image=(e1-e2); 
    %size(diff_image); 
    for i=1:170 
        for j=1:170 
            for k=1:252 
                if (diff_image(i,j,k)==-1) 
                    diff_image(i,j,k)=0; 
                end 
            end 
        end 
    end 
figure(4); 
imagesc(squeeze(sum(diff_image,1))); 
colormap(gray(256)); 
xlabel('Z-direction'); 
ylabel('X-direction'); 
axis equal tight; 
  
 case 'L5.stl' 
    f_list_1 = 
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 



    f_list_2 = 
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4
_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 
    e1=Volumetric_conv(f_list_1); 
    e2=Volumetric_conv(f_list_2); 
    diff_image=(e1-e2); 
    %size(diff_image); 
    for i=1:170 
        for j=1:170 
            for k=1:252 
                if (diff_image(i,j,k)==-1) 
                    diff_image(i,j,k)=0; 
                end 
            end 
        end 
    end 
  
figure(5); 
imagesc(squeeze(sum(diff_image,1))); 
colormap(gray(256)); 
xlabel('Z-direction'); 
ylabel('X-direction'); 
axis equal tight; 
  
 case 'L6.stl' 
    f_list_1 = 
{'Skull_roi.stl','Marker.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl','T
4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4_r
oi.stl','L5_roi.stl','L6_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_
roi.stl','CA1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'}; 
    f_list_2 = 
{'Skull_roi.stl','Marker_1.stl','C1C2_roi.stl','C3C7_roi.stl','T1T3_roi.stl',
'T4T8_roi.stl','T9T13_roi_roi.stl','L1_roi.stl','L2_roi.stl','L3_roi.stl','L4
_roi.stl','L5_roi.stl','S1_roi.stl','S2_roi.stl','S3_roi.stl','S4_roi.stl','C
A1_roi.stl','CA2_roi.stl','CA3_roi.stl','CA4_roi.stl'};    
e1=Volumetric_conv(f_list_1); 
    e2=Volumetric_conv(f_list_2); 
    diff_image=(e1-e2); 
    %size(diff_image); 
    for i=1:170 
        for j=1:170 
            for k=1:252 
                if (diff_image(i,j,k)==-1) 
                    diff_image(i,j,k)=0; 
                end 
            end 
        end 
    end 
  
figure(6); 
imagesc(squeeze(sum(diff_image,1))); 
colormap(gray(256)); 
xlabel('Z-direction'); 
ylabel('X-direction'); 
axis equal tight; 



  
end 
 
 
icp.m (Code inspired from Jakob Wilm & Hans Martin Kjer with modification (Copyright (c) 
2012, Jakob Wilm & Hans Martin Kjer)) 
function [TR, TT, ER, t] = icp(q,p,varargin) 
  
inp = inputParser; 
  
inp.addRequired('q', @(x)isreal(x) && size(x,1) == 3); 
inp.addRequired('p', @(x)isreal(x) && size(x,1) == 3); 
  
inp.addOptional('iter', 10, @(x)x > 0 && x < 10^5); 
  
inp.addParamValue('Boundary', [], @(x)size(x,1) == 1); 
  
inp.addParamValue('EdgeRejection', false, @(x)islogical(x)); 
  
inp.addParamValue('Extrapolation', false, @(x)islogical(x)); 
  
validMatching = {'bruteForce','Delaunay','kDtree'}; 
inp.addParamValue('Matching', 'bruteForce', 
@(x)any(strcmpi(x,validMatching))); 
  
validMinimize = {'point','plane','lmapoint'}; 
inp.addParamValue('Minimize', 'point', @(x)any(strcmpi(x,validMinimize))); 
  
inp.addParamValue('Normals', [], @(x)isreal(x) && size(x,1) == 3); 
  
inp.addParamValue('NormalsData', [], @(x)isreal(x) && size(x,1) == 3); 
  
inp.addParamValue('ReturnAll', false, @(x)islogical(x)); 
  
inp.addParamValue('Triangulation', [], @(x)isreal(x) && size(x,2) == 3); 
  
inp.addParamValue('Verbose', false, @(x)islogical(x)); 
  
inp.addParamValue('Weight', @(x)ones(1,length(x)), 
@(x)isa(x,'function_handle')); 
  
inp.addParamValue('WorstRejection', 0, @(x)isscalar(x) && x > 0 && x < 1); 
  
inp.parse(q,p,varargin{:}); 
arg = inp.Results; 
clear('inp'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Actual implementation 
  
% Allocate vector for RMS of errors in every iteration. 
t = zeros(arg.iter+1,1);  



  
% Start timer 
tic; 
  
Np = size(p,2); 
  
% Transformed data point cloud 
pt = p; 
  
% Allocate vector for RMS of errors in every iteration. 
ER = zeros(arg.iter+1,1);  
  
% Initialize temporary transform vector and matrix. 
T = zeros(3,1); 
R = eye(3,3); 
  
% Initialize total transform vector(s) and rotation matric(es). 
TT = zeros(3,1, arg.iter+1); 
TR = repmat(eye(3,3), [1,1, arg.iter+1]); 
     
% If Minimize == 'plane', normals are needed 
if (strcmp(arg.Minimize, 'plane') && isempty(arg.Normals)) 
    arg.Normals = lsqnormest(q,4); 
end 
  
% If Matching == 'Delaunay', a triangulation is needed 
if strcmp(arg.Matching, 'Delaunay') 
    DT = DelaunayTri(transpose(q)); 
end 
  
% If Matching == 'kDtree', a kD tree should be built (req. Stat. TB >= 7.3) 
if strcmp(arg.Matching, 'kDtree') 
    kdOBJ = KDTreeSearcher(transpose(q)); 
end 
  
% If edge vertices should be rejected, find edge vertices 
if arg.EdgeRejection 
    if isempty(arg.Boundary) 
        bdr = find_bound(q, arg.Triangulation); 
    else 
        bdr = arg.Boundary; 
    end 
end 
  
if arg.Extrapolation 
    % Initialize total transform vector (quaternion ; translation vec.) 
    qq = [ones(1,arg.iter+1);zeros(6,arg.iter+1)];    
    % Allocate vector for direction change and change angle. 
    dq = zeros(7,arg.iter+1); 
    theta = zeros(1,arg.iter+1); 
end 
  
t(1) = toc; 
  
% Go into main iteration loop 



% k=1; 
% while (k<=arg.iter) 
for k=1:arg.iter        
    % Do matching 
    switch arg.Matching 
        case 'bruteForce' 
            [match mindist] = match_bruteForce(q,pt); 
        case 'Delaunay' 
            [match mindist] = match_Delaunay(q,pt,DT); 
        case 'kDtree' 
            [match mindist] = match_kDtree(q,pt,kdOBJ); 
    end 
  
    % If matches to edge vertices should be rejected 
    if arg.EdgeRejection 
        p_idx = not(ismember(match, bdr)); 
        q_idx = match(p_idx); 
        mindist = mindist(p_idx); 
    else 
        p_idx = true(1, Np); 
        q_idx = match; 
    end 
     
    % If worst matches should be rejected 
    if arg.WorstRejection 
        edge = round((1-arg.WorstRejection)*sum(p_idx)); 
        pairs = find(p_idx); 
        [~, idx] = sort(mindist); 
        p_idx(pairs(idx(edge:end))) = false; 
        q_idx = match(p_idx); 
        mindist = mindist(p_idx); 
    end 
     
    if k == 1 
        ER(k) = sqrt(sum(mindist.^2)/length(mindist)); 
    end 
     
    switch arg.Minimize 
        case 'point' 
            % Determine weight vector 
             weights = arg.Weight(match); 
%             size(match) 
%              size(weights) 
%             size(p_idx) 
%              size(weights(p_idx)) 
%              sum(weights) 
            [R,T] = eq_point(q(:,q_idx),pt(:,p_idx), weights(p_idx)); 
        case 'plane' 
            weights = arg.Weight(match); 
            [R,T] = 
eq_plane(q(:,q_idx),pt(:,p_idx),arg.Normals(:,q_idx),weights(p_idx)); 
        case 'lmaPoint' 
            [R,T] = eq_lmaPoint(q(:,q_idx),pt(:,p_idx)); 
    end 
  
    % Add to the total transformation 



    TR(:,:,k+1) = R*TR(:,:,k); 
    TT(:,:,k+1) = R*TT(:,:,k)+T; 
  
    % Apply last transformation 
    pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np); 
     
    % Root mean of objective function  
    ER(k+1) = rms_error(q(:,q_idx), pt(:,p_idx)); 
     
    % If Extrapolation, we might be able to move quicker 
    if arg.Extrapolation 
        qq(:,k+1) = [rmat2quat(TR(:,:,k+1));TT(:,:,k+1)]; 
        dq(:,k+1) = qq(:,k+1) - qq(:,k); 
        theta(k+1) = 
(180/pi)*acos(dot(dq(:,k),dq(:,k+1))/(norm(dq(:,k))*norm(dq(:,k+1)))); 
        if arg.Verbose 
            disp(['Direction change ' num2str(theta(k+1)) ' degree in 
iteration ' num2str(k)]); 
        end 
        if k>2 && theta(k+1) < 10 && theta(k) < 10 
            d = [ER(k+1), ER(k), ER(k-1)]; 
            v = [0, -norm(dq(:,k+1)), -norm(dq(:,k))-norm(dq(:,k+1))]; 
            vmax = 25 * norm(dq(:,k+1)); 
            dv = extrapolate(v,d,vmax); 
            if dv ~= 0 
                q_mark = qq(:,k+1) + dv * dq(:,k+1)/norm(dq(:,k+1)); 
                q_mark(1:4) = q_mark(1:4)/norm(q_mark(1:4)); 
                qq(:,k+1) = q_mark; 
                TR(:,:,k+1) = quat2rmat(qq(1:4,k+1)); 
                TT(:,:,k+1) = qq(5:7,k+1); 
                % Reapply total transformation 
                pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np); 
                % Recalculate root mean of objective function 
                % Note this is costly and only for fun! 
                switch arg.Matching 
                    case 'bruteForce' 
                        [~, mindist] = match_bruteForce(q,pt); 
                    case 'Delaunay' 
                        [~, mindist] = match_Delaunay(q,pt,DT); 
                    case 'kDtree' 
                        [~, mindist] = match_kDtree(q,pt,kdOBJ); 
                end 
                ER(k+1) = sqrt(sum(mindist.^2)/length(mindist)); 
            end 
        end 
    end 
     
    if (k>1) 
        diff=abs(ER(k-1)-ER(k)) 
        if(diff<=0.001) 
            diff 
            break; 
        end  
    t(k+1) = toc; 
     
    end 



    %k=k+1; 
end 
k 
if not(arg.ReturnAll) 
    TR = TR(:,:,end); 
    TT = TT(:,:,end); 
end 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [match mindist] = match_kDtree(~, p, kdOBJ) 
    [match mindist] = knnsearch(kdOBJ,transpose(p)); 
    match = transpose(match); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [R,T] = eq_point(q,p,weights) 
  
m = size(p,2); 
n = size(q,2); 
  
% normalize weights 
weights = weights ./ sum(weights); 
  
% find data centroid and deviations from centroid 
q_bar = q * transpose(weights); 
q_mark = q - repmat(q_bar, 1, n); 
% Apply weights 
q_mark = q_mark .* repmat(weights, 3, 1); 
  
% find data centroid and deviations from centroid 
p_bar = p * transpose(weights); 
p_mark = p - repmat(p_bar, 1, m); 
% Apply weights 
%p_mark = p_mark .* repmat(weights, 3, 1); 
  
N = p_mark*transpose(q_mark); % taking points of q in matched order 
  
[U,~,V] = svd(N); % singular value decomposition 
  
R = V*diag([1 1 det(U*V')])*transpose(U); 
  
T = q_bar - R*p_bar; 
  
function [R,T] = eq_lmaPoint(q,p) 
  
Rx = @(a)[1     0       0; 
          0     cos(a)  -sin(a); 
          0     sin(a)  cos(a)]; 
       
Ry = @(b)[cos(b)    0   sin(b); 
          0         1   0; 
          -sin(b)   0   cos(b)]; 
       



Rz = @(g)[cos(g)    -sin(g) 0; 
          sin(g)    cos(g)  0; 
          0         0       1]; 
  
Rot = @(x)Rx(x(1))*Ry(x(2))*Rz(x(3)); 
  
myfun = @(x,xdata)Rot(x(1:3))*xdata;%+repmat(x(4:6),1,length(xdata)); 
  
  
options = optimset('Algorithm', 'levenberg-marquardt'); 
x = lsqcurvefit(myfun, zeros(6,1), p, q, [], [], options); 
  
  
R = Rot(x(1:3)); 
T = x(4:6); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Extrapolation in quaternion space. Details are found in: 
% 
% Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes.  
% IEEE Transactions on pattern analysis and machine intelligence, 239?256. 
  
function [dv] = extrapolate(v,d,vmax) 
  
p1 = polyfit(v,d,1); % linear fit 
p2 = polyfit(v,d,2); % parabolic fit 
v1 = -p1(2)/p1(1); % linear zero crossing 
v2 = -p2(2)/(2*p2(1)); % polynomial top point 
  
if issorted([0 v2 v1 vmax]) || issorted([0 v2 vmax v1]) 
    disp('Parabolic update!'); 
    dv = v2; 
elseif issorted([0 v1 v2 vmax]) || issorted([0 v1 vmax v2])... 
        || (v2 < 0 && issorted([0 v1 vmax])) 
    disp('Line based update!'); 
    dv = v1; 
elseif v1 > vmax && v2 > vmax 
    disp('Maximum update!'); 
    dv = vmax; 
else 
    disp('No extrapolation!'); 
    dv = 0; 
end 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Determine the RMS error between two point equally sized point clouds with 
% point correspondance. 
% ER = rms_error(p1,p2) where p1 and p2 are 3xn matrices. 
  
function ER = rms_error(p1,p2) 
dsq = sum(power(p1 - p2, 2),1); 



ER = sqrt(mean(dsq)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Converts (orthogonal) rotation matrices R to (unit) quaternion 
% representations 
%  
% Input: A 3x3xn matrix of rotation matrices 
% Output: A 4xn matrix of n corresponding quaternions 
% 
% http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion 
  
function quaternion = rmat2quat(R) 
  
Qxx = R(1,1,:); 
Qxy = R(1,2,:); 
Qxz = R(1,3,:); 
Qyx = R(2,1,:); 
Qyy = R(2,2,:); 
Qyz = R(2,3,:); 
Qzx = R(3,1,:); 
Qzy = R(3,2,:); 
Qzz = R(3,3,:); 
  
w = 0.5 * sqrt(1+Qxx+Qyy+Qzz); 
x = 0.5 * sign(Qzy-Qyz) .* sqrt(1+Qxx-Qyy-Qzz); 
y = 0.5 * sign(Qxz-Qzx) .* sqrt(1-Qxx+Qyy-Qzz); 
z = 0.5 * sign(Qyx-Qxy) .* sqrt(1-Qxx-Qyy+Qzz); 
  
quaternion = reshape([w;x;y;z],4,[]); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Converts (unit) quaternion representations to (orthogonal) rotation 
matrices R 
%  
% Input: A 4xn matrix of n quaternions 
% Output: A 3x3xn matrix of corresponding rotation matrices 
% 
% 
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#From_a_quaterni
on_to_an_orthogonal_matrix 
  
function R = quat2rmat(quaternion) 
q0(1,1,:) = quaternion(1,:); 
qx(1,1,:) = quaternion(2,:); 
qy(1,1,:) = quaternion(3,:); 
qz(1,1,:) = quaternion(4,:); 
  
R = [q0.^2+qx.^2-qy.^2-qz.^2 2*qx.*qy-2*q0.*qz 2*qx.*qz+2*q0.*qy; 
     2*qx.*qy+2*q0.*qz q0.^2-qx.^2+qy.^2-qz.^2 2*qy.*qz-2*q0.*qx; 
     2*qx.*qz-2*q0.*qy 2*qy.*qz+2*q0.*qx q0.^2-qx.^2-qy.^2+qz.^2]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  



% Least squares normal estimation from point clouds using PCA 
% 
% H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.  
% Surface reconstruction from unorganized points.  
% In Proceedings of ACM Siggraph, pages 71:78, 1992. 
% 
% p should be a matrix containing the horizontally concatenated column 
% vectors with points. k is a scalar indicating how many neighbors the 
% normal estimation is based upon. 
% 
% Note that for large point sets, the function performs significantly 
% faster if Statistics Toolbox >= v. 7.3 is installed. 
% 
% Jakob Wilm 2010 
  
function n = lsqnormest(p, k) 
m = size(p,2); 
n = zeros(3,m); 
  
v = ver('stats'); 
if str2double(v.Version) >= 7.5  
    neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1)); 
else 
    neighbors = k_nearest_neighbors(p, p, k+1); 
end 
  
for i = 1:m 
    x = p(:,neighbors(2:end, i)); 
    p_bar = 1/k * sum(x,2); 
     
    P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd 
matrix P 
    %P = 2*cov(x); 
     
    [V,D] = eig(P); 
     
    [~, idx] = min(diag(D)); % choses the smallest eigenvalue 
     
    n(:,i) = V(:,idx);   % returns the corresponding eigenvector     
end 
  
function bound = find_bound(pts, poly) 
  
%Correcting polygon indices and converting datatype  
poly = double(poly); 
pts = double(pts); 
  
%Calculating freeboundary points: 
TR = TriRep(poly, pts(1,:)', pts(2,:)', pts(3,:)'); 
FF = freeBoundary(TR); 
  
%Output 
bound = FF(:,1); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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