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Abstract 

Although hypoxia (dissolved oxygen <4 mg L-1) in the bottom waters of lakes, reservoirs, 

and estuaries may be a natural product of stratification in eutrophic or mesotrophic systems, 

there is increasing concern because the occurrence of hypoxia is spreading in many areas where 

hypoxia did not previously exist.  Part of this new knowledge can be attributed to time-series 

data from buoy observatories that monitor systems in good weather and in bad, and allowing 

insight into the inner workings of a lake where sampling only a few times per year would not.  

This study made use of a five-year time-series of meteorological and water quality data in order 

to examine the effect of episodic wind-events on stratification and hypoxia within Muskegon 

Lake, Michigan, as well as performing bi-weekly lake-wide monitoring to evaluate the effects of 

stratification, hypoxia, and wind-events on the lake.  In the wind-event portion of the study, we 

found that events where wind speeds were above average for an extended period of time 

occurred fairly frequently on the lake, but that thermal stratification allowed only the strongest 

events to significantly mix the water column at the buoy location a few times per year.  This 

provided infrequent relief of hypoxia in the bottom waters.  The second portion of the study 

found extensive effects on the water quality and biology in the bottom of the lake due to hypoxia 

such as increased phosphorus concentrations, enhanced phycocyanin following a strong wind-

event, and decreased fish abundance, richness, and size.  We also found that hypoxia occurred 

lake-wide at all four sample locations, but was most stable at the deepest point in the lake that 

was least influenced by wind-events. It is possible that the combination of hypoxia and strong 

episodic wind-events leads to entrainment of phosphorus-rich waters to the surface initiating or 

continuing an algal bloom.  Hypoxia and wind-event mediated internal loading of phosphorus 

could be a positive feedback loop for cyanobacterial blooms and hypoxia in Muskegon Lake.  
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Chapter 1 – Introduction 

Introduction 

 As the problem of aquatic hypoxia continues to spread across the world’s rivers, 

reservoirs, lakes, and coastal water bodies, scientists are concerned with questions of how and 

why it forms, what forces interrupt it, and what are the consequences to the ecosystems.  The 

most common definition for aquatic hypoxia is when the dissolved oxygen (DO) concentration 

falls below 2 mg L-1; however, the term varies with some studies citing DO concentrations less 

than 3 or 4 mg L-1 as being considered “hypoxic” as well (Diaz 2001; Ludsin et al. 2009; Larsson 

and Lampert 2011).  DO typically decreases in the bottom waters of lakes, reservoirs, and 

estuaries during the summer as thermal stratification sets in, or salinity stratification in the case 

of some estuaries, and water column or benthic bacteria consume the remaining DO.  

Stratification isolates the cooler bottom waters from regular mixing with the warmer surface 

waters, which prevents reoxygenation of the deeper portions of the lake and allows hypoxia to 

develop, persist, and intensify. 

 Although hypoxia is most likely a natural feature in lakes as a result of stratification and 

the availability of organic matter to be decomposed in the bottom waters and sediment, it is clear 

in recent times, the areal and volumetric extent of hypoxia is expanding around the globe in 

freshwater and marine systems alike (Diaz and Rosenberg 2008; Zhou et al. 2013; Jenny et al. 

2016).  There are many consequences of hypoxia at every level within a lake ecosystem.  At the 

chemical level, bioavailable forms of phosphorus and nitrogen are reduced and released from 

sediments at low DO concentrations, sometimes referred to as internal loading (Testa and Kemp 

2012; Nürnberg et al. 2013).  Greenhouse gases such as methane and nitrous oxide also 

accumulate in hypoxic waters (Chen et al. 2008).  Bacterial communities under hypoxic 
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conditions also can change, with some species switching to more anoxic metabolic pathways, 

and other species that are more tolerant to low DO conditions becoming more abundant (Crump 

et al. 2007; Zaikova et al. 2010).  The phytoplankton and cyanobacterial abundance in surface 

waters can be impacted by hypoxia and internal loading if nutrients reach the sunlit surface 

waters, forming an algal bloom (Smith et al. 2011; Michalak et al. 2013; Crockford et al. 2014).  

At the higher trophic levels within the ecosystem, many zooplankton and fish species are known 

to be intolerant of low dissolved oxygen concentrations and are forced to move vertically or 

horizontally to escape to more tolerable but possibly unfavorable habitat (Killgore and Hoover 

2001; Ludsin et al. 2009; Roberts et al. 2009; Kraus et al. 2015).  

 Despite the fact that stratification makes the system stable enough for hypoxia to develop, 

forces such as weather make lakes hydrologically dynamic systems (Fig 1).  Such 

meteorologically driven hydrologic events can have an influence on the chemistry and biology of 

a lake by bringing nutrient rich waters or resuspended sediments to plankton in nutrient poor 

waters (Cotner et al. 2000; Kerfoot et al. 2008; Crockford et al. 2013).  Enhanced heterotrophic 

and autotrophic activity caused by intense weather events (increased river runoff and sediment 

resuspension) have been observed in Lake Michigan (Cotner et al. 2000; Johengen et al. 2008; 

Kerfoot et al. 2008).  Similar studies on smaller lakes indicate that episodic weather events can 

have profound influences on the physical structure of the water column, availability of sediment 

derived nutrients, and plankton metabolic activity (Smith et al. 2011; Jennings et al. 2012; 

Crockford et al. 2014).  Other studies have found that while phytoplankton could sustain most of 

their productivity locally through biotic mineralization, entrainment of nutrients from mixing 

events is needed to account for all of the phosphorus demand (Kamarainen et al. 2009). 
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Purpose 

 The overall purpose of this project was to evaluate disturbances to and effects of bottom 

water hypoxia in Muskegon Lake, Michigan.  Within the primary goal of evaluating disturbances 

to hypoxia, the secondary goal was to study episodic wind events on the lake and how they mix 

the water column at the Muskegon Lake Observatory location.  The ultimate goal of this was to 

determine if Muskegon Lake experiences strong enough wind-events during summer 

stratification to deepen the thermocline into the hypoxic hypolimnion.  The second goal of 

evaluating the effects of hypoxia in bottom waters was to provide evidence for ecosystem level 

changes by monitoring a suite of variables from nutrients to fish.  The results of the second part 

were analyzed individually, as well as in conjunction with the first part to determine how the 

ecosystem responds to hypoxia and wind-events. 

 

Scope 

 While this study directly pertains to Muskegon Lake; however, the methodology and 

results can be applied to other similar systems with suitable modifications.  Results are 

particularly relevant to other drowned river-mouth systems along the west coast of Michigan, 

many of which also experience hypoxia.  Lessons learned and methodology from this study can 

be applied not only to other drowned river-mouth lakes, but to other inland lakes, bays, and 

estuaries as well.  In fact, a similar methodology to part one of this study is currently being 

applied to Callander Bay within Lake Nipissing, Canada to evaluate the effects of wind-events 

on water column stratification and hypoxia (Prescott, M. 2016 IAGLR abstract). 
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Assumptions 

  A major assumption of this study is that measurements being made at the Muskegon Lake 

Buoy Observatory are representative of the rest of the pelagic waters of Muskegon Lake.  This 

idea was tested and evaluated through bi-weekly profiles at three additional pelagic locations in 

Muskegon Lake, primarily to compare water temperature and dissolved oxygen profiles, the 

variables of greatest interest.   

In the second part of the study nutrient concentrations and bacterial abundances were 

assumed to be constant within the hypolimnion.  On the basis of the observed homogeneity of 

the hypolimnetic temperatures and dissolved oxygen, as well as acoustic Doppler current profiler 

(ADCP) data that show comparable bottom water current speeds to that of the surface, we think 

this assumption is valid. 

 

Hypothesis 

 The hypothesis is that while wind events are common on Muskegon Lake, most of these 

events are not of significant magnitude to break the summer thermal stratification and bring 

about relief from hypoxia.  We also expect that benthic fish and hypolimnetic bacterial 

abundance will decrease, while nutrient levels, especially SRP, to increase in bottom waters as a 

result of desorption from metals in the sediment as a result of hypoxia.  In addition, we anticipate 

that phycocyanin will increase in surface waters following periods of particularly strong wind-

events to greater concentrations than before the wind-event occurred. 
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Significance 

 This work has significance in multiple areas, by helping to advance the knowledge of 

how wind-events influence lake mixing, as well as how the effects of hypoxia respond to lake 

mixing.  We know of no other study in which the influence of wind-events on lake stratification 

has been examined in an ecological context with as much intensity as this one, which uses 5 

years of time-series data to accomplish this task.  The present study has helped to determine 

drivers of lake mixing.  This study also examines the effects of hypoxia on fish at the community 

level, whereas many other studies only identify specific fish species of interest to study.  We 

point out that in systems where excessive nutrient loading is not an issue, algal blooms can still 

occur, possibly as a result of mixing events that entrain nutrient rich water to the surface. 

 

Definitions 

Mild Hypoxia – Dissolved oxygen concentration in water is <4 mg L-1. 

Severe Hypoxia- Dissolved oxygen concentration in water is <2 mg L-1. 

Epilimnion- The upper, warmer layer of a thermally stratified lake 

Hypolimnion- The lower, cooler layer of a thermally stratified lake 

Metalimnion- The layer between the epilimnion and hypolimnion of a thermally stratified lake, 

in which a marked decrease in temperature occurs. 

Thermocline- The horizontal plane within the metalimnion at which the rate of decline in 

temperature is maximal. 
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Oxycline- The horizontal plane at which the rate of decline in the concentration of dissolved 

oxygen is maximal. 
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Figure Legends 

Fig 1. Biological processes underlying the main components of lake metabolism. Oxygenic 

photoautotrophs use energy from photosynthetically active radiation (PAR) to produce biomass 

and oxygen (O2) from water (H2O), carbon dioxide (CO2), and nutrients. Some of the primary 

production is respired by aerobic organisms, producing CO2 and H2O and consuming O2. The 

pools of dissolved CO2 and O2 in the lake also exchange with the atmosphere. Figure and caption 

modified from McNair et al. (2013). 
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Abstract 

 

Hypoxia in lakes, estuaries, and coastal waters is an increasingly important issue 

worldwide as the climate warms and productivity accelerates, which increases microbial oxygen 

demand to decompose algal biomass in bottom waters.  We monitored the process of hypoxia 

formation and degradation during 2015 in Muskegon Lake at multiple locations, and evaluated 

the effect of episodic wind-events on lake mixing using five years (2011-2015) of time-series 

observatory data.  Bi-weekly water quality profiles at the center of the three sub-basins in 

addition to the observatory location revealed that hypoxia occurred at all four sites and persisted 

for 2-3 months during 2015.  On one date, up to 24% of the entire lake’s volume was estimated 

to be mildly hypoxic (DO < 4 mg L-1).  Based on the wind-event analysis, there was a significant 

relationship between the number of hours of above average wind per month and the monthly 

average wind-event mixing depth.  Water quality profiles taken before and after one such mixing 

event indicated that, while the wind was unable to completely mix the entire water column, it 

deepened the epilimnion and sheared a thin layer from the upper hypolimnion.  Wind-events may 

be the mechanism for entraining sediment-derived nutrients to the surface waters, fueling 

episodic algal blooms that would likely not occur with normal winds. It is important to determine 

the future of wind and mixing events in climate models as anthropogenic influences strengthen 

stratification and exacerbate hypoxia. 
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Text 

 

Introduction 

 Lakes and estuaries are the concentration points for the runoff of an entire watershed, 

which makes them highly susceptible to eutrophication and subsequent bottom water hypoxia 

(Zhang et al. 2010; Larson et al. 2013; Marko et al. 2013).  While rivers and runoff have always 

supplied nutrients to lakes, seas, and the coastal oceans, agricultural practices that include excess 

nutrient additions have made eutrophication a serious problem in many areas (Steinman et al. 

2008; Foley et al. 2012).  Eutrophication has led to a rise in ecological issues such as algal and 

cyanobacterial blooms, which can give way to harmful toxins in the water supply and low 

dissolved oxygen (DO) in bottom waters, also known as hypolimnetic hypoxia (Nürnberg et al. 

2013; Paerl and Otten 2013).  Eutrophication and sinking algal blooms may sequester excess 

carbon dioxide into the sediments, but this only will occur if carbon in algal biomass is not 

reintroduced to the surface through bacterial processing as carbon dioxide in wind-driven mixing 

events (Pacheco et al. 2013). 

Anthropogenic global climate change is increasing air temperatures worldwide, which 

directly correlates to increasing water temperatures in lakes - contributing to the proliferation of 

hypoxia (Dokulil 2013).  Warmer temperatures stabilize the thermocline, which limits normal 

mixing between the epilimnion and the hypolimnion (Dokulil 2013).  Toxin-producing 

cyanobacteria are also more tolerant to growing in warmer, stable waters than other 

phytoplankton, which allows them to bloom under conditions that are detrimental to the growth 

of other algae (Hong et al. 2006; Dokulil 2013).  Episodic precipitation events are also 

problematic because they may bring heavier rains and become more frequent.  The ground is not 

able to completely absorb sudden heavy precipitation, so more nutrients are flushed into the 
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rivers and lakes than would occur under normal rain conditions (Williamson et al. 2009; Sahoo et 

al. 2011). 

The two issues of eutrophication and climate change come together in the formation of 

hypolimnetic hypoxia in lakes (Williamson et al. 2009).  Inland lakes receive a relatively higher 

concentration of nutrients from their surroundings and heat up faster than the larger Laurentian 

Great Lakes, which makes them very susceptible to developing hypoxia (Dokulil 2013).  

Eutrophication leads to higher than normal phytoplankton biomass production at the surface, 

which eventually settles to the lake bottom where some of it is decomposed and some is buried 

(Pacheco et al. 2013).  Decomposition in the hypolimnion without the input of oxygen from the 

surface layers, due to thermal stratification, can lead to hypoxia (Sahoo et al. 2011).  Hypoxia 

can have negative effects on the organisms of the lake when it reduces living space for fish and 

zooplankton (Ludsin et al. 2009).  Also, more bioavailable species of phosphorus and nitrogen 

are released from the sediment under low oxygen conditions and build up in the hypolimnetic 

waters under stratification (Kamarainen et al. 2009).  Abnormal wind-events during thermal 

stratification can mix the lake down into the hypolimnion can create blooms of primary 

production through internal loading of nutrients (particularly phosphorus in freshwater systems) 

to the epilimnion (Jennings et al. 2012; Crockford et al. 2014).  The excess production then sinks 

to the bottom to be decomposed and further aggravates hypoxia (Testa and Kemp 2012). 

 Muskegon Lake, a Great Lakes area of concern (AOC), routinely experiences episodic 

hypoxia as a result of historic and ongoing eutrophication.  The lake has a history of lumber and 

paper mills along the shoreline, and is the receiving basin for Michigan’s second largest 

watershed, making it a settling area for large concentrations of organic matter (Steinman et al. 

2008; Marko et al. 2013).  The decomposition of excess organic matter in the sediment, along 
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with stratification, encourages the formation of hypoxia in the summer.  The Muskegon Lake 

Buoy Observatory (MLO) has allowed us to intensely document the presence of hypoxia in the 

lake from 2011-2015 (Biddanda et al. In Review).  The aim of this study is to further investigate 

hypoxia in Muskegon Lake with three goals: 1) to document the formation and presence of 

hypoxia throughout the lake’s three main basins and the central buoy location during summer 

2015, 2)  to identify the frequency and intensity of summer mixing events during 2011-2015 

using MLO data, and 3) to determine lake-wide consequences of strong wind before and after an 

episodic wind-event through monitoring specific wind-events in summer 2015 during hypoxia.  

By accomplishing these goals, we can further understand the development and disruptions of 

hypoxia in Muskegon Lake and apply lessons learned to other freshwater lakes, seas, and coastal 

areas around the world. 

 

Methods 

Study Site 

 Muskegon Lake is a drowned river-mouth lake situated on Michigan’s western coast, and 

connected to Lake Michigan (Fig 1).  Due to the accumulation of sand dunes on Michigan’s 

western coast, typical river flow is restrained and pools behind the dunes, forming drowned 

river-mouth lakes, which are a common feature along this particular coast of Michigan.  

Muskegon Lake receives water from the Muskegon River watershed, the second largest in 

Michigan (7302 km2), and empties into Lake Michigan via a 1.8-km connecting channel (Marko 

et al. 2013).  Muskegon Lake has an average hydraulic residence time of ~23 days, however, this 

can range from 14-70 days depending on the season and Muskegon River discharge (Freedman 

et al. 1979; Marko et al. 2013).  The Muskegon River is the primary inflow with several much 
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smaller tributaries such as Bear Creek to the north and Ruddiman Creek to the South.  The 

sample sites were deliberately selected to avoid sampling too close to any one of the tributaries, 

avoiding tributary-specific influences.  With a mean depth of ~7 m and a maximum depth of ~21 

m, Muskegon Lake also has a relatively irregular bathymetry with three apparent sub-basins 

(Marko et al. 2013). 

 

Muskegon Lake Buoy Observatory 

 Due to the environmental issues associated with the long history of industry along the 

shoreline, Muskegon Lake was declared a Great Lakes Area of Concern in 1987 (Steinman et al. 

2008).  As a result, Great Lakes Restoration Initiative funds from the EPA were used to install 

and operate a time-series buoy observatory on the lake to monitor its water quality.  The MLO 

monitors meteorological conditions every 5 minutes and, physical, chemical, and biological 

variables every 15 minutes from multiple depths throughout the water column (~12 m depth) at 

one location near the center of the lake (Fig 1; Vail et al. 2015).  Of concern in this study are 

measurements of dissolved oxygen concentration using YSI datasondes (Yellow Springs 

Instruments) at 2, 5 ,8, and 10-11 m, temperature (NexSens) at roughly 2, 4, 6, 8, 9-10, and 10-

11 m, and air temperature, wind speed, and wind direction (Lufft) ~2 m above the lake surface.  

The entire string of water quality sensors is serviced, cleaned, and recalibrated every 1-2 months 

during the typical operation season of May to December each year, with the exception of 

temperature (which cannot be calibrated).  Further information on the MLO system, how it 

operates and open access to data, are detailed in Vail et al. (2015) and at www.gvsu.edu/buoy. 
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Wind-Event Analysis 

 Of the entire 2011-2015 wind speed data set, the mean wind speed was 5.1 m s-1 (10 

knots) with a standard deviation of 2.6 m s-1 (5 knots), thus we defined a wind-event as any time 

the wind was above 1 standard deviation from the mean, or 7.7 m s-1 (15 knots).  One standard 

deviation away from the mean was picked, because it is statistically abnormal, so we were only 

looking at the effects of the upper ~15% of wind that the lake experiences.  Wind-events have 

been studied in other systems, with effects on the water column seen with similar wind speeds 

(Imberger 1985; Jennings et al. 2012; Crockford et al 2014).  We also decided that the wind 

would have to persist for at least three consecutive hours, considering preliminary analysis 

indicated that 1-2 hour periods of high wind had little effect on the water column.  If wind speeds 

fell below 7.7 m s-1 following at least 3 hours of high wind and wind speeds picked up again, we 

allowed up to 2 hours of wind below 7.7 m s-1 between to call it a continuous event.  Thus an 

event could be only three hours long, or could last for many days with intermittent periods of 1-2 

hours of wind less than 7.7 m s-1. 

 During the times the episodic wind-event was taking place, we evaluated the buoy water 

temperature profiles to see how deep the event had mixed the lake from the surface downward 

compared to before the wind-event.  We recorded the depth to which epilimnetic water 

homogenized from the surface to the bottom of the deeper epilimnion for water temperature 

(within 1° C).  The example in Figure 2 indicates that there was an event with winds in excess of 

7.7 m s-1, and the water temperature mixed from the surface (2 m) all the way to 11 m.  In this 

case we would record an 11 m “event mixing depth” for temperature. 

 To evaluate temporal patterns in mixing events, we calculated how many hours of wind 

over 7.7 m s-1 that each month and year experienced during the time that the buoy was deployed.  
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The time frame for this was from May to October during 2011-2015.  Thus, we were able to 

gather wind hour totals for 5 years and 30 months total. 

 

Manual Monitoring 

 The four stations in Muskegon Lake (East, Buoy, West, and South) were sampled once 

every two weeks starting the first week of May 2015 until the first week of November 2015 (Fig 

1).  Water quality profiles were performed at each site with a YSI 6600 sonde equipped with 

water temperature, dissolved oxygen, specific conductivity, pH, oxidative-reductive potential, 

turbidity, chlorophyll a, and phycocyanin sensors.  The sonde was allowed to equilibrate at the 

surface for 1 minute, and then lowered at a rate of ~1.7 cm s-1 while taking measurements every 

2 seconds to give a nearly continuous profile of the water column.  This gave the parameters 

enough time to respond to parameter changes.  Sensors were recalibrated on a monthly basis. 

 Using the dissolved oxygen concentration from the profiles, we determined the percent of 

the water column at each site that was mildly and severely hypoxic.  We defined mild hypoxia as 

DO < 4 mg L-1, because concentrations below this level can affect Lake Sturgeon (Acipenser 

fulvescens) behavior (Altenritter et al. 2013).  Muskegon Lake is an important habitat for a 

remnant Lake Sturgeon population, so the current definition for mild hypoxia in Muskegon Lake 

is ecologically relevant.  We defined severe hypoxia as DO < 2 mg L-1, because that is the more 

conventional definition for hypoxia (Diaz 2001). 

 Although the goal was to perform additional manual monitoring trips before and after 

episodic wind events, we were only able to sample before and after one event.  Wind speed 

forecasts were difficult to monitor as they changed often, so it was difficult to identify days that 



 

27 
 

would serve as suitable “pre-event” samples.  Many times, the actual wind speeds experienced 

on the lake were higher than in the weather forecast, in which case we did not sample beforehand 

because we did not anticipate the wind being strong enough to be deemed a wind-event.  The 

lone before/after monitoring trip was performed in late July 2015.  

 

Results 

Development of Hypoxia 

 Both mild and severe hypoxia were present at some point at all four of the sites in 

Muskegon Lake over the course of summer; however, the percent of each site’s water column 

that was hypoxic varied seasonally (Fig 3).  Mild hypoxia was first observed as a thin layer at the 

bottom of the South water column on 6/17/2015; however, significant hypoxia was clearly 

present at all four sites by the next trip on 6/30/2015.  The percent of each site’s water column 

that were mildly hypoxic on 6/30/2015 varied from 0.2% at West to 20.1% at South (Fig 3).  

Mild hypoxia then disappeared from all but the East site where 22% of its water column was 

hypoxic on 7/15/2015 (Fig 3).  This interruption is thought to be due to wind-driven upwelling 

and intrusion of Lake Michigan water coming in through the channel and displacing the bottom 

hypoxic waters (Dirk Koopmans, pers comm).  By 7/31/2015, mild hypoxia had returned to all 

four sites, varying from 3.9% at West to 32.9% at the Buoy (Fig 3).  The next sample on 

8/10/2015 showed the highest cumulative amount of mild hypoxia for any date ranging from 

17% of the water column at East to 44.3% at South (Fig 3). By 10/5/2015 there was no mild 

hypoxia detected at any of the sites. 

 Despite some interruptions to hypoxia in the early and late summer, it persisted in the 

bottom of the lake for a considerable amount of time throughout the summer.  Based on the dates 
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when mild hypoxia was detected, we can roughly calculate the length of time that hypoxia 

existed at each site in Muskegon Lake.  The longest continuous streaks of mild hypoxia were 42, 

58, 55, and 55 days at the East, Buoy, West, and South sites respectively.  This does not account 

for samplings in which mild hypoxia was detected at a single time point, but the dates before and 

after did not detect hypoxia.  Potentially, the added duration of short-term mild hypoxia in the 

bottom of the lake lengthens the hypoxic season by 15 to 30 days. 

 Severe hypoxia was not detected at any of the sites until 7/28/2015.  On that date, severe 

hypoxia was detected at the East site with 14.9% of the water column (Fig 3).  On 8/10/2015, 

severe hypoxia developed at the Buoy and South sites in addition to the East site (Fig 3).  From 

this point on, the South site was severely hypoxic until 9/23/2015, the last day hypoxia of any 

kind was detected.  The only time that all four sites were severely hypoxic was on 9/9/2015 (Fig 

3). 

 Unlike mild hypoxia, severe hypoxia was not present or persistent for long periods of 

time at each location.  Severe hypoxia was detected on continuous sampling days only the East 

and South sites.  The East and South sites showed 14 and 45 days of uninterrupted severe 

hypoxia, respectively, while the Buoy had severe hypoxia on two discontinuous dates and West 

on one sample day. 

 

Wind Events 

 The number of hours of wind over 7.7 m s-1 changed seasonally as well as yearly.  It is 

clear that the spring and fall months (particularly May and October) face a longer duration and 

higher frequency of above average winds (Fig 4).  June through September are less windy, with 
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the exception of August 2012 and 2015 which were exceptionally windy.  These two months 

included the most number of hours of wind over 7.7 m s-1 of all June-September 2011-2015.  The 

two windy August months of 2012 and 2015 were far windier than August 2011, 2013, and 2014 

that ranked as the three least windy months of the entire dataset.  The other months tended to 

follow the U-shaped pattern of wind from spring to fall. 

On an annual basis, 2012 and 2015 stood out as the two windiest years with 914 and 1102 

total hours of above average wind respectively.  The windiest June, August, and September 

occurred during 2012, while 2015 contained the windiest May, July, and October of the 5-year 

wind record.  Alternatively, 2013 was the least windy year of the 5-year record, containing four 

of the seven least windy months. 

 As expected, the depth that episodic mixing events were able to homogenize the 

epilimnion at the Buoy location was deepest in the spring and fall, and shallowest in the summer 

(Fig 5).  Wind-events were able to regularly homogenize the water column temperature 

completely to the bottom-most sensor 73.5% of the time in May and 95% of the time in October, 

while only 26% of the time in June-September as a whole.  Even within this time-frame, the 

summer transitional periods of June and September mixed the lake to the bottom at the buoy 

46.3% of the time; however, during the peak summer months of July and August this occurred 

only 7.7% of the time.   

 The average mixing event depth obtained from the temperature nodes were 9 m in May 

and 10.1 m in October (Fig 5), while the range for the summer months June and September was 

between 6.4 and 8.1 m.  From late-June to mid-September, typical wind-events were only 

temporarily able to deepen the epilimnion by a few meters.  More extreme wind-events were able 
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to mix the lake near the bottom; however, this was rare and also temporary during summer 

stratification. 

 Based on linear regression analysis, there was a statistically significant relationship 

between the number X of monthly hours of wind over 7.7 m s-1 and the monthly average mixing 

event depth Y ( Y=0.0145X+6.38, (F1,28=19.78, p<0.001, r2=0.42). 

 

Lake-Wide Monitoring of a Single Wind-Event 

 For one episodic wind-event in 2015, we were able to take profiles in the four locations 

before (7/28/2015) and after (7/31/2015) it took place.  From 7/29/2015 15:00 to 7/30/2015 

15:00 there were 10 hours of average wind speed over 7.7 m s-1 coming from 260° WSW.  Three 

of the hours were immediately consecutive, so it was indeed a wind event according to our 

definition.  Before the event, there was a lake-wide thermocline of roughly 5.1 m thickness and 

7.3 m deep in the middle (Fig 6).  Following the event, the thermocline thinned slightly to 4.9 m 

thickness and deepened in the center to 8.7 m (Fig 6).  The buoy data taken during the wind-

event indicated that the thermocline was temporarily shifted deeper than seen in the manual 

profiles following the event (Fig 7). 

There were also slight changes in the water column temperature and dissolved oxygen 

concentration post-event.  Following the event, the epilimnion was made much more 

homogenous than it was previously.  The average epilimnetic and hypolimnetic temperatures 

were very similar (though different than each other) before and after the event; however, the 

metalimnetic temperature decreased from 20.8 °C to 18.9 °C across the lake on average.  

Interestingly, the average DO concentration of all three layers decreased, from 8.9 to 8.2 mg L-1 
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in the epilimnion, 5.2 to 4.3 mg L-1 in the metalimnion, and 4.2 to 3 mg L-1 in the hypolimnion.  

According to the DO profiles, the wind event did not relieve any of the hypoxia.  The East site 

even fell from an initially mildly hypoxic DO concentration (2.2 mg L-1) to a severely hypoxic 

concentration (1.1 mg L-1) after the event. 

 

Discussion 

 Based on the manual monitoring profiles taken at four different points in Muskegon 

Lake, we demonstrated that mild hypoxia occurred lake-wide and was persistent throughout the 

summer, while severe hypoxia rarely occurred lake-wide and was persistent at a few sites.  While 

not all sites showed consistent levels or severity of hypoxia every sampling, we did see long 

stretches at each site where hypoxia was detected multiple times in a row.  Given the high 

productivity of Muskegon Lake, it is no surprise that there is enough benthic and hypolimnetic 

respiration to deoxygenate the bottom waters (Weinke et al. 2014; Dila and Biddanda 2015).  

Other lakes where hypoxia commonly occurs such as Lake Simcoe, in the province of Ontario, 

Canada, and Lake Erie, do not experience hypoxia across their entire lake bottoms as a result of 

factors such as depth, bathymetry, and wind-mixing (Altenritter et al. 2013; Nürnberg et al. 

2013; Zhou et al. 2015). 

 There were two disruptions to the presence of hypoxia that are site specific.  The first 

major disruption occurred in mid-to-late June when a suspected mass of upwelled Lake 

Michigan water wedged into the bottom of Muskegon Lake.  Upwelling events of Lake Ontario 

water have also been found to come into Hamilton Harbor (Bocaniov et al. 2011).  The cold, 

oxygen-rich water pushed the slightly warmer, hypoxic water mid water column.  This 

reoxygenated the hypoxic water through mixing, and diffusion.  The hypoxic water was also 
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pushed closer to the surface, so it was more vulnerable to wind-event mixing with warmer 

oxygenated waters.  The intrusion water affected the West site most notably because it is closest 

to the channel to Lake Michigan.  Its effects were also seen as far east as the Buoy location, but 

the intrusion was unable to make it all the way across the lake to the East site. 

 The second hypoxic disruption occurred on August 23-24 when a cold front came in 

along with 34 hours of continuous wind over 7.7 m s-1.  The combination of air cooling and 

above average winds deepened the thermocline to 10-11 m, which is equivalent to the total depth 

of the East site.  Because of this, hypoxia was relieved for the whole water column at the East 

site, and hypolimnetic nutrients likely mixed into surface waters.  The thermocline deepened to a 

similar depth at the other three sites, relieving some but not all of the hypoxia as well.  Strong 

winds together with air cooling have been shown to significantly mix a stratified lake (Crockford 

et al. 2014).  Warmer air temperatures over the next few weeks warmed the epilimnion and 

caused the thermocline to move higher in the water column, thus allowing hypoxia to continue to 

develop at all sites. 

 The irregular bathymetry of the lake allowed hypoxia to persist at the deeper locations.  

When the water column is much deeper than the thermocline, there is less of a likelihood to have 

mixing events reach the lake bottom.  Sites like the South location are markedly deeper than the 

surrounding bathymetry, which cuts it off from regular surficial mixing as well as episodic 

mixing (Nürnberg et al. 2013).  In addition, the prevailing summertime wind direction of ~SW, 

comes across the long fetch of the lake.  Thus, oxygenated water is likely to pool up on the 

shallower eastern side of the lake, temporarily reoxygenating the East and Buoy locations instead 

of the deeper, western South and West locations (Imberger 1985).  Without the disruption of 
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intruding Lake Michigan water, it is likely that hypoxia would have been the most persistent at 

these locations instead of the Buoy site. 

 It is important to note that there are two different types of mixing that occur in Muskegon 

Lake, and most typically dimictic lakes for that matter.  During the spring, the air temperature 

warms and thus the lake does as well.  Following the major spring overturn, the surface layers of 

the lake begin to warm; however, the lake is not quite stratified yet, so relatively weak winds, 

and especially wind-events, are able to completely homogenize the lake many times (Crockford 

et al. 2014).  This results in a re-homogenization of the entire water column, which slightly cools 

the upper waters and warms the bottom water.  This process continues throughout May into early 

June, and the reverse process happens typically toward the end of September into October.  The 

many overturns are also aided by the significantly higher number of hours of above-average 

wind, as evidenced by the positive association of increased mixing depth as wind hours 

increased. 

 Eventually, given an extended calm period without wind-events, the upper layers become 

too warm to regularly mix with the bottom waters.  This leads to a metalimnion that separates the 

upper epilimnion and lower hypolimnion (Imberger 1985).  This can happen at as little as 2 °C 

difference between the surface and bottom waters.  At the point that the thermocline forms and 

the upper and lower layers of the lake no longer regularly mix, the second type of mixing during 

a wind-event begins, called an internal seiche (Imberger 1985).   

We suspect that Muskegon Lake experiences internal seiches in the thermocline on a 

daily period as winds strengthen during the day and weaken at night.  The metalimnion tilts and 

becomes a “teeter-totter” (Imberger 1985).  During the day, we can speculate that the westerly 

winds pile up the warm, epilimnetic “surface water” in the eastern portion of the lake in the 
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downward shift of the metalimnion, while the cooler bottom waters get pushed westward in the 

upward shift (Fig 8).  Evidence for this also comes from Acoustic Doppler Current Profiler 

(ADCP) data at the MLO, that indicates bidirectional flow of surface and bottom waters.  During 

a typical summer day, westerly winds push the surface waters back towards the east side of the 

lake, against the overall flow, and bottom waters flow west towards the channel (Unpublished 

data, Scott Kendall and Leon Gereaux).  This reverses at night when the winds weaken, and the 

layers of the lake move the opposite ways as the tilt reverses.  Unlike what Monismith (1985) 

and Imberger (1985) found in the Wellington Reservoir of Australia, the hypolimnion of 

Muskegon Lake is significantly moved by wind-event forcing.  They suggest that just the 

epilimnion and metalimnion tilt as wind speeds increase, and that the hypolimnion is relatively 

unaffected.  However, as Figure 2 shows as an example, wind events on Muskegon Lake can 

lead to significant tilting of the hypolimnion as well. 

 This also decreases the effect of episodic wind-events completely mixing the lake like in 

the spring and fall.  The high winds can only extend the assumed seiche effect more dramatically 

due to the summer stratification.  That is to say, Figure 2 does not indicate that the entire lake 

mixed completely, and then suddenly developed stratification again.  What it means is that the 

event was strong and forced enough of the western epilimnetic water to nearly completely fill the 

eastern basin of Muskegon Lake that is shallower than the western portion.  This gives the 

illusion that the entire lake mixed to the bottom because, according to the temperature node 

profile, the whole water column was homogenous for a few hours.  Almost immediately after the 

winds let up, the lake returned to its previous state, and we see a stratified water column once 

again (Imberger 1985).  This was, of course, an extreme case as similar situations have only 

happened 14 times between July and August in the past 5 years.  Similar to Imberger (1985), we 
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also see that once the winds let up, the next seiche under normal wind conditions did not 

overshoot the normal range of thermocline tilt.   

 Given stratification and the inability for even extreme wind-events to completely mix 

Muskegon Lake, this contributes to the formation and persistence of hypoxia in the hypolimnion 

for the duration of stratification (Dokulil et al. 2010; Sahoo et al. 2011).  In fact, many aquatic 

systems are afflicted by summertime hypoxia, which may be a completely natural feature 

(Delorme 1982).  Evidence suggests that hypoxia has existed in estuaries and coastal areas prior 

to human influence; however, the occurrence and spread of hypoxia is increasing in recent time 

(Diaz 2001; Zhang et al. 2010; Jenny et al. 2016).  Lakes and estuaries have spring and summer 

blooms as well as organic matter in the sediments to decompose, drawing down dissolved 

oxygen in the bottom waters.  Without regular mixing with the oxygenated surface waters, the 

bottom waters will stay hypoxic until the fall overturn (Sahoo et al. 2011). 

 One of the biggest effects of hypoxia in the bottom waters is the release of nutrients, 

particularly phosphorus in freshwater systems, from the sediments (Nürnberg et al. 2013).  This 

process is called internal loading.  Normally, much of the phosphorus in the sediments is bound 

to metal particles under oxidative conditions (Smith et al. 2011).  Lower dissolved oxygen 

concentrations create a reducing environment, whereby soluble reactive phosphorus (SRP) is 

released from the sediment into the hypolimnetic water above.  High rates of release occur when 

DO of overlying water is < 2 mg L-1, but elevated concentrations of SRP are also seen when DO 

of overlying water is between 3-4 mg L-1 (Nürnberg et al. 2013).  Continual stratification and 

hypoxia, can lead to a build-up of SRP in the hypolimnetic waters.  Muskegon Lake shows 

evidence of internal loading due to extensive, persistent hypoxia during summer.  Seasonal 

sampling on Muskegon Lake, typically once in May, July, and September, indicates two times 
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higher concentrations of SRP in the bottom waters compared to surface waters (Steinman et al. 

2008). 

 During episodic wind-events, there is the potential for these nutrients to be brought to the 

surface waters (Kamarainen et al. 2009).  As the above-average winds cause extreme seiches, 

there is slight mixing where the epilimnion and hypolimnion meet the metalimnion.  Wind-

events increase the movement of water and increase the mixing and diffusion that happens within 

these boundary layers.  Also, due to the stress on the metalimnion (shear), small billows of these 

metalimnetic and hypolimnetic waters may burst into the epilimnion (Imberger 1985).  Thus, 

extreme winds may help the epilimnion pick up nutrients from the metalimnion and upper 

hypolimnion, and entrain them to the surface where phytoplankton and cyanobacteria are likely 

to use the increased nutrients to grow and bloom (Imberger 1985; Kamarainen et al. 2009).  

Also, during the previously mentioned Lake Michigan intrusion, nutrient-laden hypolimnetic 

water is pushed closer to the surface, by the more dense Lake Michigan water underlying it.  As 

nutrient-rich water comes closer to the surface, weaker wind-events could be capable of bringing 

nutrients to the phototrophs at the surface. 

It is easy to see that given a total cutoff of external nutrient loads, a eutrophic system can 

maintain its trophic status and productivity through internal loading and biotic mineralization 

(Kamarainen et al. 2009).  While there is likely still some nutrient mixing into the epilimnion 

during normal winds, the effect could be amplified during episodic wind-events.  In these cases, 

a larger burst of nutrients could be supplied suddenly to potentially harmful algal blooms in 

eutrophic systems during the prime growing season of the calm, hot, late summer (Michalak et 

al. 2013). 
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 It is important to take stratification, hypoxia, mixing events, and internal loading into 

consideration when thinking about the future of lakes as they relate to climate change.  In the 

temperate regions, there is expected to be an increase in air temperature, which will translate to 

warmer lakes (Sahoo et al. 2011; Dokulil 2013).  A warmer epilimnion will create a stronger 

degree of stratification, further limiting regular and episodic lake mixing from at least partially 

reoxygenating the bottom water (Sahoo et al. 2011).  We are already seeing the stratification and 

hypoxic seasons expanding in many lakes (Paerl and Huisman 2008; Dokulil et al. 2013).  Lakes 

are now stratifying earlier and staying stratified longer, which allows hypoxia to develop and 

persist in the bottom of lakes (Dokulil 2013).  A longer duration of hypoxia will promote a great 

release of nutrients from the sediments under the now reducing conditions (Nürnberg et al. 

2013).  This could potentially further concentrate these nutrients in the hypolimnion.   

While no increase or decrease for wind speeds is expected according to current climate 

models (Pryor and Barthelmie 2011), the weather is supposed to become more episodic 

(Jennings et al. 2012).  A greater frequency of episodic events could potentially create a situation 

in which nutrients are more frequently supplied in a higher concentration from the hypolimnion 

to the epilimnion, without hypolimnetic reprieve from hypoxia (Crockford et al. 2014).  Given 

cyanobacterial propensity to grow in warmer waters compared to phytoplankton, such as diatoms 

and green algae, episodic supplies of nutrients could enhance already problematic blooms of 

cyanobacteria (Paerl et al. 2011; Crockford et al. 2014).  In addition, while mixing does lead to a 

temporary decrease in cyanobacteria at the surface, intermittent mixing has been shown to be 

ineffective at permanently mitigating blooms of Microcystis (Jöhnk et al. 2008). 

 This complex system has the potential to influence trophic levels in the lake beyond that 

of phytoplankton.  Decaying algal blooms haven been shown to exacerbate hypoxia in lakes 
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(Paerl et al. 2011).  Hypoxic water has been indicated as both a refuge and a hazardous zone for 

zooplankton.  Some can tolerate low oxygen and use it as a hideaway from hypoxia intolerant 

fish (Larsson and Lampert 2011), while other intolerant zooplankton become concentrated above 

the hypoxia into the mouths of intolerant fish (Goto et al. 2012).  Longer extents and expanded 

areas of hypoxia will also eliminate more habitat that cold, deep dwelling fish prefer.   This 

forces them to move to warmer water above the hypoxia or to shallower, oxygenated littoral 

zones (Zhang et al. 2010).  Overall, hypoxia can have profound effects on organisms from the 

biochemical level to the community level (Zhang et al. 2010). 

All of this information together stresses the importance of continuous monitoring of our 

lakes and reservoirs.  Lakes have been shown to be integrators, regulators, and sentinels of 

change within watersheds and the climate (Williamson et al. 2009).  Particularly this study 

indicates that monitoring buoys, such as the Muskegon Lake Observatory, are invaluable in 

improving our understanding of how these vital systems operate (Jennings et al. 2012).  

Observatories can deliver higher frequency, time-series data from throughout the water column 

to off-site locations (Porter et al. 2009).  This means that we can know what is happening within 

the lake system during these episodic storms, which we would otherwise not see by sampling 

once on a sunny day to avoid bad or dangerous weather conditions (Jennings et al. 2012). 

 

Conclusion 

Using time-series observatory data and discrete measurements, we monitored the spread 

of hypoxia in the deepest areas of Muskegon Lake, and evaluated the effect of episodic wind-

events on mixing the lake before, during, and after stratification.  It is evident that both mild and 

severe hypoxia were a lake-wide phenomenon during summer stratification, and that mild 
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hypoxia persisted for at least 2-3 months continuously in 2015, barring an intrusion of upwelled 

water from Lake Michigan or an extreme wind-event combined with substantial cooling of the 

overlying air mass.  Additionally, episodic wind-events occurred quite frequently on Muskegon 

Lake; however, the spring and fall periods experienced more hours of above average wind 

speeds that have the potential to mix the lake.  Spring and fall events tended to mix the entire 

lake many times, but wind-events during the summer could not completely mix the lake due to 

stratification.  We suspect, summer wind-events exaggerated the seiche of the thermocline within 

the lake, but stratification soon returned as the winds weakened.  Close monitoring around the 

lake during one particular wind event indicated that wind-events homogenize and deepen the 

epilimnion, which shifted the metalimnion slightly deeper as well.  This indicated that during the 

event, the upper hypolimnion was sheared off, which could potentially bring nutrients like SRP 

to the surface waters, given their release into the water column during hypoxic, reducing 

conditions.  While we cannot control the weather to prevent stratification related hypoxia and 

internal loading, efforts need to be made to reduce the loads of external nutrients that promote 

aquatic eutrophication.  At the broader scale, we should take steps to mitigate climate change to 

prevent stratification from intensifying in the future. 
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Figure Legends 

Figure 1. (Left) Map of the Great Lakes region with arrow pointing to the location of Muskegon 

Lake, Michigan, USA.  (Right) Bathymetric map of Muskegon Lake indicating the locations of 

sub-basin sampling and red ring for the Muskegon Lake Observatory (MLO) locations with site 

names and approximate depths.  Boxes with white arrows indicate tributaries to Muskegon Lake. 

 

Figure 2. (A) Graph of water column temperature data measured by the Muskegon Lake 

Observatory (MLO) from 8/2/15 to 8/4/15.  (B) Wind speed measurements taken during the 

same time period.  The horizontal line defines the 7.7 m s-1 point, above which we have defined 

as above average wind speeds. 

 

Figure 3.  Percent of each site’s water column that is mildly (DO < 2 mg L-1) hypoxic (A) and 

severely (DO < 4 mg L-1) hypoxic (B).  No bar representation for a site on a sampling date 

indicates that hypoxia was not detected during that period. 

 

Figure 4.  Average number of hours of above average wind speeds (>7.7 m s-1) during each 

month 2011-2015 (N=5 for all months except May when no buoy meteorological data was 

reported in 2014 until June).  The thick lines inside the bars represent the median of the data.  

The tails represent the minimum and maximum number of hours, while the bars represent the 

inner 25-75th percentile. 
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Figure 5.  Average depths by month that mixing events homogenize the epilimnion. 

 

Figure 6.  Average water temperature profile taken at the four sampling sites on 7/28/15 (Solid 

Line) and 7/31/15 (Dashed Line). 

 

Figure 7. Muskegon Lake Observatory measurements of water temperature (Top) and dissolved 

oxygen concentration (Bottom) during a wind-event.  Grey vertical bars indicate times when the 

wind speeds were over 7.7 m s-1. 

 

Figure 8.  Conceptual representation of mixing in a rough west-to-east cross-section of 

Muskegon Lake.  On the top row, is a wind-mixing event during no or weak stratification.  There 

is essentially no thermocline, so the lake wind mixes easily and completely.  On the bottom row, 

is a wind-mixing event during strong stratification.
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Abstract 

 

The occurrence of bottom water hypoxia is increasing in many bodies of water around the 

world.    Hypoxia is of concern due to the way it negatively impacts lakes and estuaries at the 

whole ecosystem level.  We examined the influence of hypoxia on the Muskegon Lake 

ecosystem by collecting nutrient samples and bacterial abundance counts from the surface and 

bottom waters, fish community information from the bottom waters, and performing profiles of 

chlorophyll and phycocyanin as proxies for phytoplankton and cyanobacterial growth, 

respectively.  Significant changes occurred in Muskegon Lake as a result of hypoxia.  Lake-wide 

concentrations of soluble reactive phosphorus (SRP) and total phosphorus increased in bottom 

waters, and were significantly higher than in the bottom before hypoxia and surface waters 

during hypoxia.  Bacterial abundance decreased in the bottom waters from the pre-hypoxic 

period to post-hypoxia.  There were no drastic changes in surface chlorophyll a concentration 

through the season; however, phycocyanin increased three-fold following a major wind-mixing 

event, and remained elevated for over 1.5 months despite several strong wind-events.  The high 

SRP concentrations in the bottom waters may have mixed into the surface waters, sustaining the 

bloom.  The fish assemblage in the hypolimnion changed in association with hypoxia. Overall 

fish abundance, species richness, and maximum length all decreased in catch as a function of 

bottom dissolved oxygen concentrations.  The link between hypoxia and wind-events appears to 

serve as a positive feedback loop by continuing internal loading and cyanobacterial blooms in the 

lake, while simultaneously decreasing habitat quality for benthic fish.
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Text 

 

Introduction 

Aquatic hypoxia is expanding its extent around the globe, which has many consequences 

for the ecosystems it affects (Diaz 2001).  While most of the attention is on marine systems, 

where there are estimated to be over 400 hypoxic zones globally, freshwater hypoxia is 

increasing as well (Diaz and Rosenberg 2008; Jenny et al. 2016).  Hypoxia is thought to be 

natural in many systems as a result of thermal stratification and excess organic matter 

decomposition (Zhou et al. 2013; Jenny et al. 2016).  However, in a study of 365 lakes 

distributed around the world, 71 recently developed hypoxia within the last 300 years (Jenny et 

al. 2016).  Many studies attribute the development of hypoxia within freshwaters systems to 

eutrophication (Diaz 2001; Scavia et al. 2014; Jenny et al. 2016), but global climate change also 

is suspected to play a role in increasing the strength of stratification and bacterial metabolic rates 

while decreasing dissolved oxygen solubility (Sahoo et al 2011; Dokulil et al. 2013). 

An intensely studied consequence of hypoxia is the effect it has on fish due to their 

economic and food importance.  At the cellular level, hypoxia has been shown to be an endocrine 

disruptor, impairing the ability for fish to reproduce, as well as a teratogen, leading to malformed 

embryos (Wu et al. 2003; Shang and Wu 2004).  While many laboratory studies indicate 

decreased consumption and growth as a result of hypoxia exposure, some indicate that these 

effects may not be seen in the wild because fish have the ability to detect and avoid hypoxia 

(Burleson et al. 2001; Roberts et al. 2011; Vanderplancke et al. 2015).  However, numerous 

studies also show the impacts of hypoxia on fish because they must move to higher oxygenated 

areas that may not be preferred habitat, (Eby et al. 2005; Ludsin et al. 2009; Roberts et al. 2009; 

Brown et al. 2015; Kraus et al. 2015).  Not only does hypoxia cause fish to move, but 
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zooplankton and prey fish may be forced to move.  Hypoxia intolerant species must move to 

shallower water, to the same areas that the larger fish have also been restricted, which increases 

trophic interactions to a perhaps unnatural level (Eby and Crowder 2002).  Those that are fairly 

tolerant of hypoxia can actually use it to their advantage, swimming down into water that larger 

fish are unwilling to venture into (Ludsin et al. 2009; Larsson and Lampert 2011).  This, of 

course comes at the cost of living in hypoxia (Larsson and Lampert 2011; Goto et al. 2012).  

Dissolved oxygen is one of the major factors that shapes fish assemblages (Killgore and Hoover 

2001; Eby and Crowder 2002; Bhagat and Ruetz 2011; Altenritter et al. 2013). 

Another concern with bottom water hypoxia is the internal regeneration or loading of 

nutrients.  External loads of phosphorus are the primary cause of eutrophication of freshwater 

systems, which helps initiate algal blooms and subsequent hypoxia (Scavia et al. 2014).  In 

efforts to reverse eutrophication, watershed managers often point to reducing phosphorus loads 

to lakes in order to improve water quality; however, systems can maintain their eutrophic status 

through hypoxia mediated internal loading (Nürnberg et al. 2013).  Phosphorus is normally 

oxidized and bound to metals under oxic conditions, but under low-oxygen conditions, the 

system becomes reducing and releases bioavailable forms into the water column (Smith et al. 

2011).  Once concentrated in the bottom waters, they are typically isolated until the fall turnover.   

However, during extreme wind-events, these nutrients may be entrained into the surface waters 

(Jennings et al. 2012; Crockford et al. 2014).  Episodic influxes of nutrients to surface waters 

may be a mechanism for stimulating algal blooms, especially cyanobacteria, during the late-

summer period where water temperatures are warmest, stratification is strongest, and hypoxia is 

the most severe of the season (Crockford et al. 2014).  Algal blooms as a result of these nutrient 

supplies could potentially sustain themselves for weeks (Kamarainen et al. 2009). 
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 The main objective of this study was to evaluate the ecosystem level changes that 

occurred in Muskegon Lake during 2015 as a result of bottom water hypoxia.  Secondary 

objectives were to: 1) measure surface and bottom nutrient concentrations of four locations in 

Muskegon Lake to find evidence of nutrient regeneration in bottom waters and episodic transport 

to surface waters, 2) measure bacterial abundance at the surface and bottom for changes in 

overall abundance correlated with hypoxia, 3) identify what benthic fish species are present 

during hypoxia and in what abundances, 4) study chlorophyll a and phycocyanin pigment 

measurements in the surface waters to correlate blooms with major episodic wind-events.  With 

the results of this study, we hope to understand the concurrent changes that take place in 

Muskegon Lake as a result of hypoxia, to better inform us as to what occurs in similar lakes that 

experience hypoxia. 

 

Methods 

Study Site 

 Muskegon Lake is located midway up Michigan’s western coast, and is one of many 

drowned river-mouth lakes that naturally occur along this specific coast (Fig. 1).  Normally, 

river-mouths end in a delta-like fashion; however, the build-up of sand dunes has impeded 

natural flow, and led to a back-up forming a drowned river-mouth.  Its primary inflow is on the 

west side from the Muskegon River watershed, which is the second largest in Michigan (7302 

km2; Marko et al. 2013).  It has additional smaller tributaries of Ruddiman Creek to the south 

and Bear Lake to the North.  The mean hydraulic residence time changes seasonally (14-70 days) 

and with the weather, and averages ~23 days. (Freedman et al. 1979; Marko et al. 2013).  Sample 



 

60 
 

locations in Muskegon Lake were purposefully chosen because they represented the center of the 

lake’s three sub-basins, and were located away from any tributary inflows.   

 

Manual Monitoring 

 Manual monitoring was done at four sites in Muskegon Lake (East, Buoy, West, and 

South) and were visited bi-weekly in 2015 starting on May 6th and ending on November 4th (Fig. 

1).  The sites were sampled in the morning hours between approximately 8 a.m. and 11 a.m. in 

order of East, Buoy, West, and then South.  Order of sampling was not randomized in order to 

sample all four locations in the least time possible and avoid too much influence of changing 

time of day.  At each site, a YSI datasonde (Yellow Springs Instruments), equipped with 

temperature, dissolved oxygen (DO), chlorophyll a, and phycocyanin sensors, was used to 

perform a profile of the water column.  It was allowed to equilibrate as close to the surface as 

possible for 1 min, then lowered at a rate of roughly 1m/min to the previously measured depth 

using a drop rope and weight.  DO was not calibrated each trip because these sondes are 

calibrated monthly. 

 

Nutrients 

 At each site, water for nutrient analysis was gathered bi-weekly using a Van Dorn bottle 

from 1 m below the surface and 1 m above the sediment.  Water was dispensed from the sampler 

into acid washed Nalgene bottles.  Bottles were kept on ice in a cooler until the return to the 

laboratory, where they were immediately transported to the in-house chemistry lab at the Annis 

Water Resources Institute, Muskegon, Michigan (AWRI).  Samples were collected for soluble 
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reactive phosphorus (SRP), total phosphorus (TP), ammonia (NH3), and total Kjeldahl nitrogen 

(TKN).  They were analyzed in-house at the AWRI, according to EPA (1993) methods.  Samples 

that were below the detection limit were assumed to be 50% of the detection limit (SRP=0.05 mg 

L-1, NH3=0.01 mg L-1) 

 For the four types of nutrients, comparisons were made between the top and bottom 

samples for each period of pre, during, and post hypoxia, as well as a comparison between just 

the bottom samples pre, during, and post hypoxia.  In order to justify pooling data, sites were 

compared to one another for the same time period (pre, during, and post-hypoxia) and location in 

the water column (top or bottom) using ANOVA (all pre-hypoxia surface samples were 

compared between sites for example). 

When comparing the groups for SRP to evaluate the ability to pool them across sites, 

only sites during post hypoxia taken from the bottom water were significantly different. They 

were still pooled together, because the other five groups were not different.  Not all of the pooled 

groups were normally distributed, so non-parametric tests were used.  A Kruskal-Wallis test was 

used to compared the bottom samples pre, during, and post hypoxia, and a pairwise Wilcoxon 

test with Holm’s correction was used for post-hoc testing.  A sign test was used to compare the 

top and bottom samples for each period relative to hypoxia, due to non-normality and 

asymmetric distribution about the median. 

For TP, no sites were statistically significant from one another by way of ANOVA.  

Though all pooled bottom samples were normally distributed (Shapiro-Wilk normality test), 

bottom pre, during, and post hypoxia TP samples were still compared using Kruskal-Wallis with 

post-hoc pairwise Wilcoxon signed ranks using Holm’s correction so that all comparisons are 
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consistent.  Given the three surface groups were not normally distributed, surface and bottom 

samples during the three periods were compared using a paired Wilcoxon signed ranks test. 

In the analysis of NH3, only one pair of sites were different from one another in the 

bottom during hypoxia using an ANOVA test, thus all groups were still pooled.  When 

comparing the bottom for pre, during, and post hypoxia, during hypoxia was not normal, so the 

three groups were compared using a Kruskal-Wallis.  A pairwise Wilcox with Holm’s correction 

was used to differentiate the three groups. Since all surface and bottom groups were not normal, 

paired Wilcoxon signed ranks tests were used. 

Only the bottom during-hypoxia group of TKN concentrations show significant 

differences between some sites using an ANOVA, so groups were still pooled.  All bottom 

groups for pre, during, and post hypoxia were normal, but for consistency they were also 

compared using Kruskal-Wallis and post-hoc comparisons were done using a pairwise Wilcoxon 

signed ranks test with Holm’s correction.  All top and bottom groups were normally distributed 

so surface and bottom groups were compared using paired Wilcoxon signed ranks tests. 

 

Bacteria 

We preserved the bacteria with 2% formalin, followed by an acridine orange stain.  We 

then filtered them using black 25 mm (0.2 μm pore size) polycarbonate Millipore filters.  

Prepared slides were frozen and stored in the freezer until enumeration.  Bacterial enumeration 

was done via standard epifluorescence microscopy (1000x Magnification) (Hobbie et al. 1977; 

Dila and Biddanda 2015). 
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For bacterial abundance, only one group of sites out of six showed significant differences 

between sites by ANOVA, so sites were still grouped depending on surface or bottom and period 

in relation to hypoxia.  All bottom groups were not normally distributed so they were compared 

using a Kruskal-Wallis and a post-hoc pairwise Wilcoxon signed ranks test with Holm’s 

correction.  Surface and bottom groups were compared using a paired Wilcoxon signed ranks 

test. 

 

Chlorophyll a and Phycocyanin 

 To analyze the ability for major mixing events to initiate algal blooms, we compared 

near-surface chlorophyll and phycocyanin concentrations before and after the first major mixing 

event of the summer on 8/2/15.  Chlorophyll a and phycocyanin from profiles were averaged for 

each site between 1 and 2 m, which encompasses the maximum concentration ranges for the 

water column.  The sites and dates were pooled for before and after 8/2/15 and compared.   

 

Fish 

We collected fish using gill-nets at the Buoy location.  The fish were caught in two 38.1 

m long by 1.8 m tall experimental gill-nets, with 5 mesh sizes ranging from 2.54 cm up to 12.7 

cm bar measure by increments of 2.54 cm (Sanders et al. 2011; Altenritter et al. 2013).  Nets 

were deployed at approximately 8 a.m. and recovered 3 hours later.  Fish were identified to 

species and total length measured.  Nets were placed on the bottom of the northeast and 

southwest sides of the MLO at a depth of approximately 12m.  Nets were always deployed with 

the smallest mesh size facing North for consistency. 
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Linear regressions were used to investigate the relationship of fish abundance, species 

richness, and maximum length to the lowest DO concentration measured in the water column 

during the day of sampling.  Normality was tested using a Shapiro-Wilk test.  Abundance and 

richness were not normal, but were square-root transformed and were then normally distributed.  

Maximum lengths were normal and linear regressions were performed accordingly.  Regressions 

were considered significant at α <0.05. 

 

Results 

Nutrients 

 There were similarities and significant differences in SRP concentrations between the top 

and bottom samples, and this changed when hypoxia was or was not present (Fig. 2).  SRP 

concentrations were highest in the bottom during hypoxia with a median of 0.0189mg L-1, and 

lowest at the top during hypoxia when no sample was above the detection limit.  Following the 

fall overturn, SRP concentrations in the top and bottom were relatively similar at 0.008 and 

0.010 mg L-1, respectively.  A significant difference was found for the bottom SRP 

concentrations pre, during and post hypoxia (χ=9.0674, df=2, p<0.05).  Post-hoc testing revealed 

that pre and during concentrations were significantly different (p<0.01), while pre vs post and 

during vs post concentrations were not different.  Pre-hypoxia (s=9, p<0.01) and during-hypoxia 

(s=26, p<0.001) concentrations were significantly higher at the bottom, but concentrations post 

hypoxia were no different top vs bottom. 

 Similar to SRP, TP concentration peaked in the bottom waters during hypoxia at 0.366 

mg L-1, while concentrations in the other 2 periods at the bottom and the 3 at the top were all 

similar.  There were significant differences between the bottom TP concentrations during the 
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three periods (χ=11.745, df=2, p<0.01), and bottom concentrations during hypoxia were found to 

be significantly higher than pre (p<0.01) and post hypoxia (p<0.05; Fig. 2).  Pre and post 

hypoxia concentrations were not different.  Bottom TP concentrations during hypoxia were 

found to be significantly higher than surface concentrations (V=48, p<0.001). 

 Contrary to what we expected, NH3 concentrations in the surface waters during hypoxia 

were very similar to the bottom (0.167 mg L-1 and 0.193 mg L-1 median).  The highest NH3 

concentrations (0.043 mg L-1) occurred prior to hypoxia in the bottom.  NH3 concentrations 

indicated a significant difference when comparing pre, during, and post hypoxia (χ=9.3384, 

df=2, p<0.01).  NH3 concentrations were significantly higher in the bottom waters prior to 

hypoxia compared to during hypoxia (p<0.05), while pre-hypoxia concentrations were no 

different than post, and during hypoxia concentrations were no different than post hypoxia (Fig. 

2).  Prior to hypoxia, concentrations of NH3 at the bottom were higher than at the surface (V=4, 

p<0.001), but there were no differences between the surface and bottom during or post hypoxia. 

 TKN concentrations in the pre and post hypoxia periods were all relatively similar 

ranging from 0.429 to 0.493 mg L-1.  The highest concentration occurred in the surface waters 

during hypoxia (0.593 mg L-1), which also created the biggest difference in surface and bottom 

concentrations between the three periods.  In the bottom, there were no differences in TKN with 

relation to hypoxia with pairwise tests despite the Kruskal-Wallis test indicating a difference 

(χ=7.1177, df=2, p<0.05).  Interestingly, surface TKN concentrations during hypoxia were 

actually higher than those of the bottom waters (V=401, p<0.001; Fig. 2).  Comparisons between 

surface and bottom groups indicate that during hypoxia TKN concentrations were higher at the 

surface than at the bottom (V=401, p<0.001). 
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Bacterial Abundance 

 Bacterial abundances changed in the surface and bottom of Muskegon Lake throughout 

the summer.  Median surface abundances pre and during hypoxia (903,300 and 946,300 cells 

mL-1) decreased to 392,400 cells mL-1 in the post hypoxia period.  Bottom bacterial abundance 

decreased consistently throughout the season from 662,200 to 550,100, to 368,900 cells mL-1. 

When comparing pre, during, and post hypoxia bacterial abundances in the bottom waters, all 

three periods were significantly different from one another (χ=18.58, df=2, p<0.001).  Pre was 

significantly higher than during (p<0.02), pre was significantly higher than post (p<0.001), and 

during was significantly higher than post (P<0.01; Fig. 3).  Pre was the highest and post was 

lowest, with during falling between them.  In the comparisons of top and bottom abundances, pre 

(V=109, p<0.01) and during (V=387, p<0.001) were both significantly different, while top and 

bottom were not different in the post hypoxia period. 

 

Chlorophyll a and Phycocyanin 

 Three separate strong wind-events occurred on 8/2, 8/20, and 8/23-24, which 

homogenized the water column at the buoy location to the bottom-most sensors.  The event on 

8/23-24 led to a late summer turn-over event, whereby nearly the entire lake was mixed.  The 

lake-wide average of phycocyanin concentrations (3579 ± 491 cells mL-1) in the three samples 

(6/30, 7/15, 7/28) before 8/2 were significantly lower (W=0, P<0.001) than phycocyanin 

concentrations (11232 ± 760 cells mL-1) afterwards (8/10, 8/26, 9/9; Table 1, Fig. 4).  

Chlorophyll a concentrations were not significantly different before (6.7 ± 0.3 μg L-1) or after 
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(7.8 ± 0.5 μg L-1) 8/2, and water temperatures also were also not significantly different prior to 

(23.8 ± 0.5 °C) or following (22.8 ± 0.4 °C) the 8/2 event (Table 1, Fig. 4). 

 

Fish 

The catch of benthic fishes in the vicinity of the MLO in Muskegon Lake changed 

drastically as seasonal hypoxia developed within the lake’s hypolimnion.  Total catch over the 11 

sampling dates yielded 201 fish comprised of 11 different species.  The overall most abundant 

fish species in the catch were yellow perch (Perca flavescens), spottail shiner (Notropis 

hudsonius), white perch, (Morone americana), and walleye (Sander vitreus) (Table 2).  During 

peak DO on November 4, 2015, 67 fish comprised of 9 species were caught.  This represented 

the highest abundance and species richness of all sampling trips.  During the lowest period of 

DO, no fish were caught.  This represented the lowest abundance and species richness of all 

sampling trips.  Catch during hypoxia was almost entirely composed of yellow perch, with only 

three other species (white perch, walleye, and alewife) captured in low abundances under the 

same conditions.  Fish total length also changed with decreasing DO (Fig. 5).  Maximum fish 

lengths tended to decrease as hypoxia formed.  In contrast, minimum fish size changed very little 

over the course of the season. 

All regressions yielded significant relationships with DO.  Benthic fish abundance near 

the MLO increased as DO increased (p<0.001, R2=0.74, F1,9=26.06, 

Abundance=0.6034(DO)+0.7763; Fig. 5).  Species richness increased as DO increased (p<0.001, 

R2=0.81, F1,9=38.16, Number of Species=0.2570(DO)+0.4555; Fig. 5).  Minimum fish length 

was fairly consistent across DO concentrations, ranging between 9 and 11 cm.  Maximum 
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(p<0.00001, R2=0.91, F1,9=91.06, Maximum Length=+0.2570(DO)+0.4555; Fig. 5) fish lengths 

increased as DO increased. 

 

Discussion 

Internal Loading of Phosphorus 

 SRP and TP were both significantly higher in the bottom in the summer hypoxia 

compared to the springtime during oxygenation.  Although the bottom SRP concentrations of 

during hypoxia and post hypoxia were not statistically different, 17 of the 28 measurements 

during hypoxia were higher than the maximum concentration measured post hypoxia.  This 

suggests that they might have been different if not for several extremely low concentrations 

caused by a Lake Michigan intrusion of low nutrient water and episodic wind mixing.  This also 

is supported by the comparisons for TP that show during hypoxia, bottom TP concentrations 

were higher than pre or post hypoxia.  While Steinman et al. (2008) also indicate that bottom 

water SRP concentrations were higher than surface in Muskegon Lake from 2003-2005, the same 

pattern is observed in 2015, although bottom SRP concentrations range much higher in the 

current study. 

The high SRP concentrations of bottom waters during hypoxia suggest that even mild 

hypoxia is causing internal loading from the sediments or mineralization from algal 

decomposition.  Rates of release of inorganic phosphorus from sediments are known to increase 

under low oxygen conditions, so the high SRP in hypoxic waters of Muskegon Lake come as no 

surprise (Zhang et al. 2010; Smith et al. 2011; Nürnberg et al. 2013).  Typically, higher SRP 

release rates from sediments occur when the DO concentration in the overlying water is < 2 mg 
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L-1, however studies have noted increased SRP concentrations in hypolimnetic water even when 

DO concentration 1 m above the sediment is 3-4 mg L-1 which is a common occurrence during 

the summer in Muskegon Lake.  The sediments of Muskegon Lake are organically rich due to 

high productivity within the lake and supply from the Muskegon River, which means there is a 

lot of carbon to be respired, drawing down DO concentrations quickly (Marko et al. 2013; Dila 

and Biddanda 2015).  Under these hypoxic conditions, SRP would be reduced and released from 

the sediments.  Respiration and nutrient mineralization in the water column, specifically the 

hypolimnion, also may be a source of SRP, as water column respiration has been shown to be the 

main source of hypoxia generation in Lake Erie and The Gulf of Mexico (Conroy et al. 2011; 

McCarthy et al. 2013).  Although several studies have indicated that summer is a period of high 

internal phosphorus loading in two nearby drowned river-mouth lakes (Steinman et al. 2004; 

Steinman et al. 2009), another indicates that there is relatively little internal load compared to 

external load in a different nearby lake (Steinman et al. 2006).  More experiments using 

hypolimnetic water and sediment core incubations would be needed to further determine what 

the exact internal source of the SRP is in Muskegon Lake. 

 The patterns with the nitrogen species of NH3 and TKN were less clear and seemed to not 

be related to hypoxia formation.  We would expect the nitrogen form of NH3 to increase similarly 

to reduced phosphorus SRP with hypoxia formation (Zhang et al. 2010).  Unlike SRP and TP, 

NH3 and TKN did not increase in concentration in the hypoxic period.  In fact, surface TKN 

during hypoxia was actually higher in concentration than the bottom.  While not all studies agree 

on the exact DO concentration at while P and N release from sediments, the suggested range 

goes from below 2 mg L-1 to below 0.5 mg L-1 (Mortimer 1941; Schön et al. 1993; Testa and 

Kemp 2012).  All sites reached DO concentrations where N should have been released as well as 
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P.  Other nitrogen species such as Nitrite-NO2, Nitrate-NO3 could be measured in the future - 

which could reveal more about the presently missing details in Nitrogen cycling under hypoxia. 

 

Bacteria 

We were unable to see a change in bacterial abundance as a result of hypoxia formation 

in the hypolimnion.  Pre-hypoxia abundances were different between surface and bottom groups, 

as were during-hypoxia abundances.  The average abundance of bacteria in bottom waters from 

pre to during hypoxia did decrease, although the statistical comparison indicates this was not 

significant.  We expected to see bacterial abundance decrease when more anaerobic bacteria 

become numerous compared to aerobic bacteria, but we did not see this.  In fact, the bacterial 

abundance was significantly lower for both surface and bottom groups from the post hypoxia 

period when compared to the pre and during hypoxia periods.  Surface abundances across all 

seasons were similar to that seen by Steinman et al. (2008) for Muskegon Lake. 

The similarity in bacterial abundances in pre and during hypoxia periods suggest that the 

bacterial community in the spring already has the potential to decrease bottom waters to hypoxic 

levels; however, spring mixing and lack of stratification continually supply the bottom with DO.  

This may explain why DO in the hypolimnion immediately starts to decrease following even 

weak thermal stratification.  Their pre and during hypoxia bacterial abundance similarity is also 

puzzling considering the high productivity in the surface waters during the summer (Weinke et 

al. 2014; Dila and Biddanda 2015).  However, it’s possible that there is enough excess algal 

production in the surface waters that sinks to the bottom to be decomposed.  The bacterial 

abundance during summer at the surface is roughly 36% higher than at the bottom, which 
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suggests perhaps much of the bacterial processing of algal production occurs in the surface 

waters.  About 60% of surface algal production was estimated to have been broken down in 

Morgan et al. 2006.  Thus, the high bacterial abundance in the surface waters during the summer 

is logical, as many other systems have noted higher abundance in the oxic surface waters 

(Morgan et al. 2006; Zaikova et al. 2010).  Perhaps enough surface production is sinking down to 

fuel the hypolimnetic bacterial community since chl a has been shown to be a predictor of the 

BOD that depletes DO to hypoxic levels (Mallin et al. 2006).  Although the current study did not 

attempt to evaluate if there was a change in the bacterial community composition as a response 

to hypoxia, other studies have shown that the hypolimnetic bacterial community does transition 

to more hypoxia and anoxia tolerant species (Crump et al. 2007; Zaikova et al. 2010).  In Lake 

Tahiu, China, the bacterial community composition changed along with dissolved oxygen, and 

was dominated during hypoxic times by different species than during pre or post hypoxic times 

(Li et al. 2012).  These species are evne suspected to be related to decomposition of Microcystis.   

 

Cyanobacterial Blooms During and Following Major Mixing Events 

 Despite the slight increases in phycocyanin through July before the August mixing 

events, there were significant differences between the phycocyanin concentrations of the three 

sampling periods before the 8/2/15 event and the three sampling periods following.  Surface 

scums of Microcystis were not visible on Muskegon Lake until the August and September 

sampling trips. 

 We investigated several possible causes for the cyanobacterial blooms to form, such as 

temperature, runoff of nutrients from the river, and entrainment of hypolimnetic nutrients due to 



 

72 
 

mixing events (Paerl and Huisman 2008; Nürnberg et al. 2013).  Cyanobacteria often bloom 

under warm water conditions that prevail in the late summer (Paerl and Huisman 2008); 

however, a comparison of the air temperatures measured by the MLO from before and after the 

8/2/15 wind event shows no significant change in air temperature.  In fact, several of the wind 

events that occurred in August were accompanied by ~10°C drops in air temperature.  In order to 

evaluate the influence of nutrients delivered by the river, we looked at the surface nutrient 

concentrations.  There were no visually obvious trends of increasing surface nutrients that were 

worth investigating for the four nutrient species measured that would help fuel a cyanobacterial 

bloom.   

The last and most plausible cause of the cyanobacterial bloom was wind induced mixing 

events.  It is important to note that wind mixing has often been cited as the algal equalizer, 

because the buoyancy control by some cyanobacteria cannot overpower wind mixing (Huisman 

et al. 2004).  During periods of high wind, cyanobacteria are circulated and mixed throughout the 

water column.  However, this is only effective if the mixing is continuous.  Periodic mixing of 

the water column can be ineffective at mitigating cyanobacterial blooms (Jöhnk et al. 2008).  

Nutrients, specifically phosphorus in freshwater systems, are regenerated in bottom waters 

during hypoxia through decomposition/mineralization and anoxic sediment release (Paerl et al. 

2011; Nürnberg et al. 2013).  These nutrients that are normally isolated in these bottom waters 

due to stratification, can then be mixed into the surface waters during strong episodic mixing 

events – fueling surface blooms (Kamarainen et al. 2009; Crockford et al. 2014).   

While no obvious trends of decreasing nitrogen species occurred in the bottom waters in 

the study following the strong mixing events of August, both SRP and TP show decreases in the 

bottom waters at the two shallowest sites, East and Buoy, on the eastern side of the lake.  MLO 
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water profile data from the Buoy site indicate that the thermocline was significantly deepened by 

these mixing events, especially the event over the course of 8/23 and 8/24 that kept the 

thermocline around 10 m for a few days.  Studies of thermal profiles from the East and Buoy 

locations indicate that through August into early September, the thermocline was almost 10 

meters deep.  Thus the wind mixing events caused significant mixing and deepening of the 

thermocline at the East and Buoy locations, leading to a decrease in bottom SRP and TP.  These 

nutrients were potentially mixed into the surface waters during the wind-events, supplying the 

needed limiting phosphorus for cyanobacteria to bloom (Kamarainen et al. 2009; Nürnberg et al. 

2013; Crockford et al. 2014).  Due to the fact that surface SRP decreases in the summer to 

undetectable levels, while nitrogen species stay the same or increase, we can hypothesize that the 

surface algal community is P-limited.  This only increases the important of episodic supplies of 

phosphorus-rich water to a phosphorus-limited system,   

 Additionally, there were only a few weaker wind-events that occurred between or after 

the 3 significant ones noted here.  This gave the cyanobacteria calm periods between the wind 

events, enough time for them to rise back to the surface and continue to bloom.  Calm conditions 

following wind-events are especially important to allow the cyanobacteria to bloom (Paerl and 

Huisman 2008; Paerl and Otten 2013), which further strengthens the notion that while mixing 

events do spread cyanobacteria throughout the water column and bring some DO to the hypoxic 

waters, temporary mixing may be ineffective at mitigating HAB’s and hypoxia (Jöhnk et al. 

2008). 

Disappearance of fish from the hypolimnion 

Overall there was a dramatic difference in the abundance, species richness, and size of 

benthic fish that were caught in the hypolimnion near the MLO during hypoxia compared to 
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before or after hypoxia.  Although we only caught fish at one relatively deep location in 

Muskegon Lake, there was a strong correlation between DO and benthic fish presence in the 

hypolimnion.  DO profiles at the other three locations in the lake show similar hypoxic 

conditions throughout the summer.  Given these observations, we expect a similar pattern of 

lake-wide summer migration of benthic fish out of the hypoxic hypolimion, which is similar to 

what was reported for juvenile lake sturgeon in Muskegon Lake (Altenritter et al. 2013). 

Many other studies have examined fish behavior, mostly those of economic importance, 

to hypoxia and found similar results.  In a laboratory experiment using chambers and gradients of 

DO saturation, largemouth bass (Micropterus salmoides) actively avoided low saturations of DO 

(Burleson et al. 2001), which is comparable to the species seen in Muskegon Lake.  The study 

also showed that smaller fish stayed in lower DO than larger fish that stayed in higher DO water 

(Burleson et al. 2001).  Our results also indicate that smaller fish inhabit lower DO water, and 

that longer fish prefer high DO.  While numerous laboratory experiments have shown that fish 

avoid hypoxic water (Burleson et al. 2001), there are also in situ observations that corroborate 

these results.  Tagged largemouth bass in tributaries of the Chowan River on the US east coast, 

were shown to avoid water less than 1.8 mg L-1 (Brown et al. 2015).  In the Neuse River Estuary 

in North Carolina, Atlantic Croaker Micropogonias undulatus were found to avoid hypoxic 

waters that compressed their habitat to shallow, warm, oxygenated waters (Eby et al. 2005).  

This compression can be vertical as well as horizontal, as trawls in Lake Erie indicate that 

fishing along the edge of a hypoxic zone results in a higher catch (Kraus et al. 2015).  The need 

to actively avoid hypoxia showed that the bay anchovy Anchoa mitchilli occupied shallower 

waters, which isolated it from its preferred zooplankton prey that could tolerate the hypoxic 

conditions.   
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The benthic fish in Muskegon Lake could also move upwards or horizontally to avoid 

hypoxia.  Sampling fish communities in the mid-water column would provide more information 

on the potential for benthic fishes to simply move vertically to avoid hypoxia.  At the Buoy 

location, there is a nearby shelf immediately to the west that is only a few meters deep, and may 

provide a refuge via horizontal migration.  Lake sturgeon (Acipenser fulvescens) in Muskegon 

Lake are known to migrate from the deeper portions of the lake to the shallower mouth of the 

Muskegon River during the summer, so horizontal migration has been seen before in Muskegon 

Lake (Altenritter et al. 2013).  With so many options available for hypoxia-sensitive fish to go, 

the change in species and abundances seen at the Buoy, possibley reflects a change in fish 

distribution as opposed to a change in the fish community as a whole. 

There have been relatively few studies looking at the response of benthic fish species 

compositions to hypoxia in freshwater systems or estuaries.  A study by Eby and Crowder (2002) 

showed that all 10 species they looked at avoided DO less than 2 mg L-1 in the Neuse River 

Estuary.  Interestingly, they also found that their avoidance of hypoxia was context dependent, 

because when hypoxia was spatially expansive fish would go into the hypoxic zone.  Similarly, 

we only captured one species, yellow perch when the DO was less than 2 mg L-1, but these were 

in extremely low abundances compared to well-oxygenated times.  In a study done in Mercer 

Bayou, Arkansas, fish species richness, abundance, and size were all significantly reduced at DO 

concentrations < 0.5 mg L-1 (Killgore and Hoover 2001). 

One of the more interesting findings from the fish catches was that yellow perch was the 

only species found in the hypoxic waters below 2 mg L-1 and was the most abundant species 

overall.  Previous studies have found that in the wild, yellow perch avoid waters below 2 mg L-1, 

and in the laboratory, consumption of food and overall growth decreases in hypoxic water 
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(Roberts et al. 2009; Roberts et al. 2011).  In the current study, one yellow perch was caught in 

our study when the DO was less than 2 mg L-1, while 24 were caught when the DO was between 

2 and 3 mg L-1.  This suggests than indeed 2 mg L-1 is an acceptable definition of hypoxia for 

Yellow Perch.  As to why a yellow perch was caught in water less than 2 mg L-1, one study in 

Lake Erie showed that although yellow perch avoid hypoxia, some make frequent dives into 

hypoxia in order to feed on benthic macroinvertebrates (Roberts et al. 2009).  This could also 

explain why even so many yellow perch were caught in 2-3 mg L-1 water, considering only three 

other species (3-white perch, 1-walleye, 1-alewife) were captured when DO was that low.  

Muskegon Lake appears to be an important site for yellow perch, even during times of mild 

hypoxia (DO < 4 mg L-1) when all other fishes avoided this zone at the MLO.  Additionally, 

another study on fish communities in Muskegon Lake also found yellow perch to be the most 

abundant species in the littoral areas (Bhagat and Ruetz 2011).  Their studies also show a 

significant decrease in littoral yellow perch abundance in the summer, ~25% of the abundance of 

either spring or fall, as well as in length range (Bhagat and Ruetz 2011; Janetski et al. 2013).  

Considering yellow perch have been show to migrate either horizontally or vertically to avoid 

hypoxia in Lake Erie, decreases in yellow perch abundance in both the benthic and littoral areas 

of Muskegon Lake suggest that they may occupy the limnetic/pelagic areas above the hypoxia in 

open water (Roberts et al. 2009).   

 

Conclusion 

 There are many changes that occur in the bottom waters Muskegon Lake as a result of the 

development of summertime hypolimnetic hypoxia.  We observed a drastic change in the benthic 

fish assemblage near the MLO that can be correlated with low dissolved oxygen concentrations 
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such as decreases in abundance, species richness, and size.  There appears to be internal loading 

of phosphorus in bottom waters during hypoxia, however the same cannot be said for nitrogen.  

It is also possible that these phosphorus rich waters can be entrained to the surface, during 

episodic wind mixing events, which would provide cyanobacteria the fuel to continue the bloom 

that started during an initial calm, warm period.  While bacterial abundance did not show a 

pattern with respect to hypoxia, further work should be done to characterize the bacterial 

community to identify which, if any, changes occur in species and abundances of specific 

species. 

 Although hypoxia may be an entirely natural feature of many freshwater systems, it is 

becoming increasingly more common and increasing in severity (areal and volumetric) as 

nutrients accumulate at confluences of watershed and global climate change strengthens thermal 

stratification.  Conditions that promote internal loading of nutrients and global climate change 

are only continuing to accelerate, making it difficult for Earth’s freshwater systems to recover.  

Despite potential reductions of external loads of nutrients, internal loading and climate change 

could allow unnatural levels of hypoxia to persist for years (Allan et al. 2012).  This could have 

many consequences for the entire ecosystem from nutrient cycling to primary production, and 

bacteria to fish. 
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Figure Legends 

Figure 1. (Left) Map of the Great Lakes region with arrow pointing to the location of Muskegon 

Lake, Michigan.  (Right) Bathymetric map of Muskegon Lake, Michigan with three green rings 

indicating the basin sampling and red ring for the Muskegon Lake Observatory (MLO) locations 

with site name and approximate depths.  Boxes with white arrows indicate tributaries to 

Muskegon Lake. 

 

Figure 2. A) Soluble Reactive Phosphorus (SRP), B) Total Phosphorus (TP), C) Ammonia 

(NH3), and D) Total Kjedahl Nitrogen (TKN), concentrations in Muskegon Lake.  Groups are 

representative of all four sites by time in relation to hypoxia (pre, during, and post) and location 

of sample in the water column (surface or bottom). 

 

Figure 3. Bacterial abundance in surface and bottom waters in relation to hypoxia.   

 

Figure 4. 1-2 m average A) Chlorophyll and B) Phycocyanin concentrations from 3 sample dates 

before and after the 8/2/2015 mixing event. 

 

Figure 5.  Linear regressions of A) fish abundance (total catch), B) number of species, and C) 

maximum length, against dissolved oxygen concentration in the hypolimnion of Muskegon Lake, 

Michigan.   
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Table 1: Water Temperature, Chlorophyll a, and Phycocyanin averages from 1-2 m depth duing 

summer 2015 in Muskegon Lake, Michigan.  White dates are prior to a series of major wind-

events during August, while shaded dates are during and after the wind-events. 
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Table 2: Dissolved oxygen concentration and fish caught in experimental gill nets on different 

sampling dates during 2015 in Muskegon Lake, Michigan at approximately 12 m depth. 
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Chapter 3 

Extended Literature Review 

A Review of Hypoxia in Lakes: Development, Effects, Disruptions 

Abstract 

In modern times, human influence has put stress on the environment, and changed the 

way it functions.  While is it easy to see the influence on the land through deforestation and 

cities, the issues caused in lakes are harder to identify as we can only see so deep.  One of the 

most important problems facing our lakes today is low oxygen in the bottom waters 

(hypolimnetic hypoxia).  Humans have intensified hypoxia in recent times through 

eutrophication and global climate change.  Hypoxia has significant consequences on the food 

web, from the smallest bacteria and phytoplankton up to zooplankton and fish.  Attempting to 

control and reverse hypoxia is a difficult job once a lake has settled into that state and may take 

many years of remediation to recover.  From all of the research done on the causes and effects of 

hypoxia, we can draw inferences about other lakes where we suspect or know hypoxia occurs.  

  

Introduction 

Role of Lakes 

Due to their relatively small size compared to the oceans, lakes have received 

comparatively less attention for their role in global nutrient cycles (Cole et al. 2007).  However, 

inland freshwater systems play an extraordinary role in regional and global cycling.  Inland lakes 

and rivers significantly change the amounts and types of material that are transported from land 

to lake (Marko et al. 2013).  For example, research indicates that our inland freshwaters process 
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nearly half of the carbon that they receive from the terrestrial ecosystem, which shows that they 

play a disproportionately important role in the global carbon cycle (Cole et al. 2007). 

 More recently, the large role that lakes and rivers play is being altered through 

anthropogenic pressure in many ways.  Arguably, the most pressing issues impacting our inland 

waters are eutrophication and climate change, and these are taking place largely because of 

human development (Jenny et al. 2016).  Serving as sentinels of change, our inland waters allow 

us to see what is happening, because the content of a lake represents the influence of an entire 

watershed and regional climate (Williamson et al. 2009).  Williamson et al. (2009) makes the 

argument that lakes can tell you about what has happened, is happening, and projected to happen 

in the climate and watershed based on the data gathered from a lake.  From data collected in the 

past few decades we can tell that lakes are suffering as a result of eutrophication and global 

climate change, and one of the main ailments is aquatic hypoxia. 

 

What is Hypoxia? 

Aquatic hypoxia is when the concentration of dissolved oxygen in the water fall below a 

threshold.  Generally, this occurs in the bottom waters of a lake when excess organic matter in 

the epilimnion sinks to the hypolimnion and is decomposed by bacteria.  The issue with 

decomposition in the hypolimnion is that there is only respiration occurring, without inputs of 

oxygen from photosynthesis.  Also, if a lake has a defined epilimnion and hypolimnion, then the 

lake will be stratified with limited mixing and inputs of oxygen to the bottom from the top.  So 

oxygen is consumed through respiration with little input, leading to depletion in the hypolimnion 

(Diaz 2001). 



 

96 
 

Up to this point the word hypoxia has been used to talk about low oxygen, but there are 

actually two different terms relating to low oxygen conditions.  The thresholds that are set by 

these two terms change depending on which literature you are looking at.  The first and most 

extreme is “anoxia”.  The term anoxia really means zero oxygen, but in some literature anoxia is 

defined as below 1-2 mgO2 L
-1 (Nürnberg 2004).  The definition of “hypoxia” is even more 

arbitrary, because the term is reserved for defining low oxygen conditions tailored to the specific 

water body that is undergoing study (Nürnberg 2004).  Thresholds of hypoxia range from 2 mg 

O2 L
-1 (Diaz 2001; Zhou et al. 2013), 3 mgO2 L

-1 (Ludsin et al. 2009), to 4 mgO2 L
-1 (Altenritter 

et al. 2013).  For the purposes of this review, the term “hypoxia” will be used to describe 

generally low oxygen conditions. 

Considering that hypoxia is becoming increasingly common around the world (Diaz and 

Rosenberg 2008; Jenny et al. 2016), these areas are receiving increased attention to quantify and 

compare aspects of their hypoxia (Nürnberg 2004).  Every lake is different, so indeed lakes vary 

with respect to how they develop and sustain hypoxic conditions.  Thus, various calculations 

have been performed to standardize and compare lakes through such terms as the hypoxic factor 

(HF) (Nürnberg 2004), which indicates the hypoxic extent on an areal and temporal basis in a 

lake, and volumetric or areal hypolimnetic oxygen demand (VHOD or AHOD) (Matthews and 

Effler 2006; Foley et al. 2012), which indicates the rate of depletion of oxygen in the 

hypolimnion on a volumetric or areal basis respectively. 

 

Causes of Hypoxia 

Eutrophication 
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 The first ingredient of hypoxia is eutrophication, which occurs mainly through excess 

nutrient additions.  These nutrients can come from a variety of sources such as agriculture, lawn 

fertilization, and sewage (Scavia et al. 2014?).  Although phosphorus is the main nutrient of 

concern in freshwaters, nitrogen is of concern as well considering many cyanobacteria that are 

becoming more common are not nitrogen fixers (Paerl et al. 2011; Scavia et al. 2014).  When the 

excess nutrients are added to the water, they bloom until the nutrients are used up.  Once the 

bloom is no longer sustainable, many will die and those who are not recycled at the surface sink 

to the bottom and are decomposed or buried in the sediments (Paerl and Huisman 2008).  When 

there is an excess of organic matter to be broken down in the hypolimnion, there will be a 

constant drawdown of oxygen.  With little input of oxygen from surface waters, hypoxia is 

allowed to persist (Diaz 2001). 

 There are a few other things to consider with the detection and future of eutrophication as 

it relates to hypoxia in our waters.  Research has shown that large watersheds and the 

concentration of phosphorus that comes from them, are positively correlated with rates of 

production and respiration in the receiving waters (Hoellein et al. 2013).  Also, with 

eutrophication almost inevitably comes cyanobacterial blooms.  Eutrophication has been found 

to promote the growth of cyanobacteria, and this causes problems on two fronts (Paerl and 

Huisman 2008).  Firstly, as previously discussed, blooms will eventually sink and be 

decomposed in the bottom (Havens 2008).  This further worsens the hypoxia situation and leads 

to internal loading of nutrients, which will be discussed in detail later.  Secondly, some 

cyanobacteria such as Microcystis also produce toxins that are harmful to the water supply (Paerl 

and Otten 2013).  In the future, all of these problems could become worse as global climate 

change increases the intensity of rain events.  More intense rain events could create situations 
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where the land cannot absorb sudden large inputs of water, so many nutrients run off the land 

into the lakes and streams (Michalak et al. 2013).  This would give the aquatic system a sudden 

input of nutrients that had little chance to be used within the terrestrial ecosystem, exacerbating 

eutrophic conditions (Sahoo et al. 2011).   

 

Stratification and Global Climate Change 

 Thermal stratification is the other main ingredient that hypoxia needs in order to develop 

and persist (Diaz 2001).  Increased temperatures, mainly during the summer, warm the 

epilimnion of the lake and create a stabilized thermocline (Paerl and Huisman 2008).  The 

thermocline essentially helps to isolate the hypolimnion from the epilimnion (Foley et al. 2012).  

When the hypolimnion is isolated from mixing with the well oxygenated epilimnion, the 

consumption of oxygen by bacteria draws down dissolved oxygen to hypoxic levels (Nürnberg et 

al. 2013).  

 While warmer summer temperatures will lead naturally to thermal stratification in the 

majority of lakes, the strength of stratification is increasing due to warmer air temperatures that 

create a stronger thermocline and associated issues.  Lake Tahoe is just one example of a lake 

that has become more resistant to mixing in recent years due to warmer temperatures (Sahoo et 

al. 2011).  Research also has shown that the hypoxic season in lakes has increased as a result.  

The onset of stratification is coming earlier and the fall overturn is coming later, which increases 

the hypoxic season (Foley et al. 2012).  Additionally, increased water temperatures have an 

effect on the solubility of oxygen and metabolic rates.  Warmer water holds less oxygen, so when 

the lake does manage to mix, less oxygen in transported down into the hypolimnion, thus 
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hypoxia sets up faster (Sahoo et al 2011).  Increased metabolic rates through increases in 

temperature cause dissolved oxygen to be used up faster as well. 

Conditions characteristic of summer, such as increased temperatures and decreased water 

column mixing, favor cyanobacteria over other types of phytoplankton (Jöhnk et al. 2008).  

Cyanobacteria are better adapted to dealing with elevated temperatures than other competitors 

(Paerl and Huisman 2008).  Reduced mixing promotes the growth of cyanobacteria as they grow 

best in stable, warm conditions (Paerl and Huisman 2008).  Increased water residence time, 

which typically occurs during the later summer months, also has been shown to assist the growth 

and blooms of cyanobacteria (Paerl and Otten 2013).  Cyanobacterial blooms can potentially 

play a huge role in the development of hypoxia too (Havens 2008).  The blooms form large pools 

of dissolved organic carbon, which fuel a large portion of bacterial metabolism when released 

upon cell death (Paerl and Otten 2013).  The accelerated bacterial metabolism not only can 

consume oxygen in surface waters, but in the hypolimnion as well.   All in all, the tops and 

bottoms of lakes are intimately connected to one another despite separation by the thermocline. 

 

Effects of Hypoxia 

Internal Loading 

 One of the primary effects that hypoxia has on a lake is that it can help to enrich the lake 

with nutrients from within (Nürnberg et al. 2013).  Under normal oxygen conditions, nutrients 

like nitrogen and phosphorus are oxidized and bound to metals in the sediment (Smith et al. 

2011).  However, under hypoxic conditions, nitrogen and phosphorus are reduced and released 

into the water column (Nürnberg and Peters 1984).  Once reduced and released, they are 
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accessible in the water as the highly bioavailable forms of nitrogen and phosphorus (Testa and 

Kemp 2012).   

During the summer hypoxia when mixing is limited, these nutrients can build up in the 

hypolimnion of a lake.  Research on Muskegon Lake, Michigan has shown that during the 

summer, levels of total phosphorus are greater than during the spring or fall (Steinman et al. 

2008).  Also during this time, Muskegon Lake shows higher levels of soluble reactive 

phosphorus (SRP) in the hypolimnion compared to the epilimnion, which indicates a buildup of 

SRP in the bottom and that the available SRP in the surface is rapidly used up and converted into 

other forms.  Nutrient examinations of Chesapeake Bay, which demonstrates a gradient of 

hypoxia from land to ocean, shows that there is also a gradient of bioavailable nutrients along the 

same gradient.  In hypoxic areas, they observed higher measurements of ammonium and SRP but 

just the opposite in oxic areas (Testa and Kemp 2012).  A discussion of how these nutrients reach 

the surface will be discussed later on. 

 

Zooplankton 

 Normally, organisms such as zooplankton that operate primarily by aerobic means will be 

negatively affected by hypoxia; however, this may not always be the case.  Depending on the 

species, they have varying survival in hypoxic zones.  Goto et al. 2012 found that 50% of 

Daphnia mendotae died within 4 hours of being in hypoxic waters, which indicates a very 

limited tolerance to hypoxic conditions.  On the other hand, Daphnia pulcaria seem to be 

unaffected by hypoxia, as they will go into a hypoxic hypolimnion if there is more food available 

than in the epilimnion (Larsson and Lampert 2011).  Similar results have been seen in the 
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mesozooplankton of Chesapeake Bay (Ludsin et al. 2009).  Although some can tolerate the 

hypoxia for some amount of time, there are many negative consequences for living in cold 

hypoxic water such as reduced reproduction, growth, and feeding rates (Larsson and Lampert 

2011). 

 

Fish 

 Similar to zooplankton, fish have varying responses to hypoxia.  Many fish will actively 

avoid hypoxia by either swimming towards the shore or positioning themselves just above the 

hypolimnion (Ludsin et al. 2009; Larsson and Lampert 2011; Roberts et al. 2011; Altenritter et 

al. 2013).  Laboratory based experiments and in-situ studies also have shown that largemouth 

bass (Micropterus salmoides) will actively avoid hypoxia (Burleson et al. 2001; Brown et al. 

2015).  Along a gradient of dissolved oxygen concentrations, larger largemouth bass will stay in 

higher dissolved oxygen water, whereas smaller largemouth bass will live in lower oxygenated 

waters (Burleson et al 2001).  Avoidance of hypoxia happens for good reason as there are 

numerous negative effects on fish.  Yellow perch (Perca flavescens) food consumption and 

growth rates decline in hypoxic zones (Roberts et al. 2011), and hypoxia also has been shown to 

act as a teratogen and endocrine disruptor, which has consequences for fish reproduction and 

embryonic development (Wu et al. 2003; Shang and Wu 2004).  Fish that cannot escape the 

hypoxia are likely to die, as seen with the collapse of benthic-dwelling fish populations in the 

Black Sea (Mee 1992).  Some fish show behavior or adaptations to deal with hypoxia though 

(Xiao 2015).  Yellow perch in Lake Erie will take short trips into the hypolimnion in order to 

feed on benthic food sources (Roberts et al. 2009).  Some other species of fish that may more 
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commonly experience hypoxia have special adaptations to live in hypoxic waters, such as 

“rough” fish like carp and catfish (Killgore and Hoover 2001; Xiao 2015). 

 

Food Webs 

 All of the effects, behaviors and adaptations to hypoxia shape the communities in which 

they live.  Species richness in fish communities has been found to decrease along a gradient of 

normoxia to hypoxia in a vegetated impoundment (Killgore and Hoover 2001).  The diel vertical 

migration of planktivorous fishes in Chesapeake Bay is constrained by hypoxia, so that they can 

only occupy the epilimnion or the shore.  This can be beneficial or harmful to fish and 

zooplankton though.  In a laboratory experiment with fish and zooplankton in the same tank, fish 

avoided the hypoxic water while zooplankton used the hypoxia as a refuge (Larsson and Lampert 

2011).  A similar situation occurs in Chesapeake Bay between the planktivorous fishes and their 

mesozooplankton prey (Ludsin et al. 2009).  Hypoxia can actually limit the interactions of the 

predator fish and prey zooplankton, which is harmful to the fish and improves the survivorship of 

the zooplankton.  However, if zooplankton are also intolerant of hypoxia, then they are 

concentrated in the epilimnion with their predators (Goto et al. 2012).  This reduces their 

survival and average body size as smaller individuals are favored under heavy predation 

conditions. 

 

Role of wind events 

 While it may seem like mixing events that bring oxygen down to the hypolimnion would 

be good for a lake and its organisms, mixing events can actually make conditions worse.  Mixing 
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can bring nutrients from the bottom (Nürnberg et al. 2013) to fuel further blooms of algae in 

three ways that will be discussed in detail here.  The three are episodic wind events/entrainment, 

benthic resuspension, and seasonal overturn. 

Episodic Wind Events 

 Even though stratification acts as a barrier to mixing and has become stronger in recent 

years, there are still episodic wind events during the stratified season that can temporarily break 

down and deepen the thermocline (Jennings et al. 2012).  While Testa and Kemp (2012) say that 

the nutrients must be transported upwards without bringing oxygen down to the hypoxic zones, 

data from Muskegon Lake show how nutrients can be transported upwards without relieving 

hypoxia for any significant amount of time (Bopi Biddanda, personal communication).  In 

mixing events on Muskegon Lake, hypoxia is relieved for only less than a day before low 

oxygen conditions return, while nutrients are presumably mixed into the epilimnion in the 

process possibly leading to blooms (Chapter 2.1).  Other studies indicate that summertime deep-

mixing events may become more common as weather becomes more episodic, and that they may 

offset the reduction of external nutrient loads (Crockford et al. 2014). 

 A similar mixing situation has been studied in Lake Mendota, Wisconsin.  In a study of 

where phytoplankton derive their phosphorus during the summer, Kamarainen et al. (2009) 

looked at mineralization and entrainment.  They found that mineralization was enough to sustain 

phytoplankton populations, but entrainment was also important to consider in order to meet 

phosphorus demand when episodic algal blooms occurred.  The problem with these mixing 

events is that even though they temporarily supply the bottom with oxygen, the phytoplankton 

are supplied with an excess of SRP.  The excess leads to an increase of overall biomass and an 

increase of phosphorus uptake by the phytoplankton.  On this luxury uptake, the phytoplankton 
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can sustain a bloom for one to two weeks.  While one bloom may be fine, if another mixing 

event occurs within that two weeks then blooms can potentially sustain for long periods of time.  

It is important to note that although wind-events can supply the surface waters with nutrients, an 

extended calm period is necessary to give cyanobacteria the competitive advantage over other 

types of phototrophs (Jöhnk et al. 2008). 

 

Benthic Resuspension 

 Another type of episodic input of nutrients is “benthic resuspension”, whereby strong 

storms create turbulence near the shore and then currents carry water with suspended shoreline 

sediment out to deeper waters (Cotner et al. 2000).  The suspended sediments typically contain 

high levels of organic and inorganic nutrients relative to the surface waters (Cotner et al. 2000).  

Due to the light that is blocked by the sediment particles, heterotrophic bacterial growth 

decouples from autotrophic phytoplankton growth, because the bacteria have a source of food 

that doesn’t have to come from the phytoplankton (Cotner et al. 2000).  However, when 

phytoplankton are relatively nutrient starved, resuspension events can also stimulate their 

production despite less light availability (Kerfoot et al. 2008).  This has also been shown to 

stimulate the growth of zooplankton, possibly explaining how they survive through winters with 

low food availability (Kerfoot et al. 2008).  Research has also shown that the currents that carry 

suspended sediment offshore can also be transporting nutrient rich river water, of which net 

primary production and ecosystem respiration are actually increased more so by a combination 

of suspended sediment and river water than by either source individually (Johengen et al. 2008). 
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Seasonal Overturn 

 The last mixing event related to hypoxia that will be covered here is the fall overturn, 

which, in most cases, brings the final relief from hypoxia to the lake until next spring/summer in 

temperate climates.  Despite the hypolimnion returning to oxic conditions, the fall turnover can 

still have negative effects on the lake if the bottom was previously hypoxic.  During the summer 

hypoxia ammonium and SRP are released from the sediment and build up in the hypolimnion, 

and the fall overturn mixes the lake completely distributing these nutrients throughout the water 

column.  This helps stimulate algal blooms at the border between summer and fall, and maintain 

them well into the fall (Nürnberg et al. 2013).  In Lake Simcoe, Ontario, fall overturn increases 

phosphorus levels in the photic zone and chlorophyll concentrations, while decreasing light 

levels (Nürnberg et al. 2013).  The overturn also appears to stimulate cyanobacterial blooms, and 

lead to their dominance of the phytoplankton community in the fall (Biddanda et al. 2008; 

Nürnberg et al. 2013).  Additionally, late-fall and winter blooms of diatoms have been indicated 

as a major source of hypoxia for the next summer in Lake Erie (Reavie et al. 2016). 

 

What is the future of hypoxia and what do we do about it? 

Changing times 

 Due to human influence, hypoxic zones are spreading rapidly in lakes and coastal areas 

around the world (Diaz 2001).  While humans have been adding fertilizer that stimulates algal 

blooms, global climate change has increased air and water temperatures as well.  Research has 

found that many lakes are becoming gradually warmer at the surface, and are having a more 

difficult time mixing as a result (Sahoo et al. 2011).  Studies are also finding that the onset of 
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stratification is coming earlier in the year, while the departure of stratification is coming later 

(Sahoo et al. 2011).  Lakes with reduced mixing have seen hypoxic measurements steadily 

increase such as the hypoxic factor in Lake Simcoe, Ontario, and hypolimnetic anoxia in 

Blelham Tarn, UK (Foley et al. 2012; Nürnberg et al. 2013).   Lack of mixing not only lends 

itself to the formation of hypoxia, but also leads to the dominance of possibly toxic 

cyanobacteria in the phytoplankton community (Huisman et al. 2004; Sahoo et al. 2011). 

 

Remedies 

 There are many different approaches that we can take in order to fix hypoxia.  One of the 

most important ways is to reduce hypoxia through reversing eutrophication (Testa and Kemp 

2012).  Agriculture is one of the largest contributors to eutrophication (Scavia et al. 2014).  Thus, 

nutrients can be cut off at the source through using feed that is lower in phosphorus, limiting the 

application of nutrients to crops to as little as is necessary, and building buffer zones around 

lakes and rivers so that terrestrial plants can use up nutrients before they get into the water 

(Daniel et al. 1998).  That would lower inputs from external sources, but as previously discussed, 

internal loads are also significant (Nürnberg et al. 2013).  The sediments of lakes can be treated 

with Alum to lock up phosphorus so that it is no longer available to plankton, even under 

hypoxic conditions (Reitzel 2003).  Marko et al. (2013) even suggests that resrtictive channelized 

outflow of drowned river mouth lakes prevents biomass and nutrients from leaving, so they 

become more concentrated in the lake over time.  Turning reservoirs and drowned river mouth 

lakes back to faster flowing systems may reduce the hypoxic conditions.  In the future, sensor 

buoys may play a critical role in identifying hypoxic lakes, since high intensity, time-series data 

at multiple depths can give insight into the health and operation of lakes (Porter et al. 2009). 
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Conclusion 

 In recent times, researchers have started to realize what a critical role our inland waters 

play in global cycles of carbon and nutrients (Cole et al. 2007), even as their roles are being 

altered through human activity (Diaz 2001; Biddanda and Koopmans 2016).  Global climate 

change and mass eutrophication have changed the amount of materials they process, how they 

process it, and where they process it (Dokulil 2013; Pacheco et al. 2013).  Warming waters are 

preventing upper and lower layers from mixing, while excess algal productivity sinks and is 

decomposed which leads to hypoxia (Diaz 2001).  The situation promotes the dominance of 

cyanobacteria, while zooplankton and fish further up the food web suffer from reduced habitat 

(Paerl and Huisman 2008; Ludsin et al. 2009; Goto et al. 2012).  While lake mixing may relieve 

hypoxia temporarily, it may do more harm than good by bringing nutrients to the surface and 

fueling blooms (Kamarainen et al. 2009).  Without significant remediation, eutrophic, hypoxic 

lakes may get stuck in a positive feedback cycle of excess productivity and hypoxia (Diaz 2001). 
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Extended Methodology 

Study Site 

 Muskegon Lake is a 17 km2 drowned-river mouth lake that connects the second largest 

watershed in Michigan, the Muskegon River Watershed, to Lake Michigan (Marko et al. 2013).  

The Muskegon River enters Muskegon Lake on the northeast end of the lake, and the Lake 

empties into eastern Lake Michigan through a ~2 km long shipping channel.  The average 

hydraulic residence time of Muskegon Lake is ~23 days, but changes depending on the time of 

year and precipitation (Freedman et al. 1979; Marko et al. 2013).  Through remediation efforts, 

the once eutrophic lake is now classified as mesotrophic; however, it’s surface waters are still 

productive, leading to summertime hypoxia and Microcystis blooms. 

 

Muskegon Lake Buoy Observatory 

 The Muskegon Lake Buoy Observatory (MLO) is a stationary water quality monitoring 

buoy in Muskegon Lake.  It is located near the middle of the lake at ~12 m depth.  It has a 

meteorological station ~2m above the water surface, which measures atmospheric variables (air 

temperature, humidity, wind speed and direction, precipitation, and barometric pressure) at 5 

minute intervals.  The MLO also monitors a suite of water quality variables at varying depths in 

the water column at 15 minute intervals.  The water quality data used in this study were mainly 

the water temperature data from Nexsens T-nodes at 2,4,6,8, and 10-11 m.  More data and 

information about the MLO are available online at www.gvsu.edu/buoy, and in Vail et al. 2015. 

 

http://www.gvsu.edu/buoy
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Wind Event Analysis 

 Since there is no common definition about what a wind-event was, we decided upon what 

characteristics would qualify a period of elevated wind speed as a wind-event.  The average wind 

speed of all data points collected by the MLO from 2011-2015 was 5.1 m s-1 and a standard 

deviation of 2.6 m s-1, so we defined the wind speed threshold of a wind-event as 7.7 m s-1 which 

is 1 standard deviation above the mean.  We also decided that a wind-event would have to last 

for at least 3 consecutive hours in order to have the duration necessary to mix Muskegon Lake.  

Preliminary analysis confirmed that this definition was sufficient to cause a visible disturbance to 

the water temperature structure of Muskegon Lake.  We analyzed the impact of wind-events on 

the temperature structure of the Lake using the MLO water temperature data.  We studied the 

time-series data for water temperature, before, during, and after each event to identify the depth 

to which a wind-event homogenized the epilimnion to within 1 °C of the 2m temperature node.  

Thus if an event homogenized the epilimnion from 6 m to 10 m, we said the event mixing depth 

was 10 m.  To calculate the average event mixing depth for each month (May-October) from 

2011-2015, we averaged all event mixing depths for that month.  We also totaled the number of 

hours of wind that was > 7.7 m s-1 each month through the five-years as well.  A linear 

regression of number of hours of elevated wind vs. average event mixing depth was performed.   

 

Manual Monitoring 

Sampling and monitoring of Muskegon Lake was conducted biweekly at four different 

sites, named in order of depth East (10.5 m), Buoy (12 m), West (14.5 m), and South (21 m).  

Sites were selected to be at the center of one of the three sub-basins of the lake (except the Buoy 
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which was an established location) and also located away from the direct influence of any 

tributary.  Sampling started in the first week of May 2015, and continued to the first week of 

November 2015.  2 sampling trips were conducted within the same week (July 28 and 31), to 

identify influences of a wind-event that occurred between those dates.  The 4 sites were sampled 

in order of depth between 8 and 11 a.m. 

 Experimental gill nets (2) were set first at approximately 8 a.m. on the southwest and 

northeast sides of the Buoy at ~12 m depth.  They are each 38.1 m long and 1.8 m tall, and 

contain five different equal length panels of different mesh sizes ranging from 2.54 cm to 12.7 

cm by increments of 2.54 cm.  Nets were pulled 3 hours later where fish were identified to 

species and length measured to the nearest millimeter and released.   

 In the meantime, the four monitoring sites were visited, where water column water 

quality profiles were conducted and waters samples were taken.  For water quality profiles, a 

YSI 6600 data sonde (Yellow Springs Instruments) was equilibrated at the surface for 1 min and 

lowered to the bottom at a rate of ~ 1 m per min to allow adequate time for sensors to adjust.  

The sonde measured water temperature, dissolved oxygen, chlorophyll a, and phycocyanin every 

2 seconds.  Water samples were collected 1 m below the surface and 1 m off the bottom using a 

VanDorn bottle.  Samples were dispensed into 500 mL bottles for nutrient analysis (total 

phosphorus -TP, soluble reactive phosphorus -SRP, ammonia-NH3, and total Kjeldahl nitrogen-

TKN), and 1 L bottles for bacterial abundance enumeration.   

Sample bottles were put into a cooler with ice, and were prepped for analysis in the 

laboratory at AWRI.  SRP samples were filtered and frozen.  NH3 and TKN samples were 

acidified and were put into the refrigerator with the TP samples.  All nutrients were analyzed 

according to EPA (1993) methods at the Annis Water Resources Institute (AWRI) in Muskegon, 
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Michigan.  Bacterial enumeration slides were made by preserving bacterial water samples in 2% 

formalin and stained with Acridine Orange.  Samples were filtered onto 25mm (0.2 μm pore 

size) black polycarbonate Millipore filters.  Filters were placed onto slides and put in the freezer.  

Using standard epifluorescence microscopy, we enumerated the bacteria at 1000X magnification 

(Dila and Biddanda 2015; Hobbie et al. 1977).  Appropriate calculations were made to scale up 

from the viewing area on the microscope to 1 mL. 

 

Statistical Methods 

 In order to compare nutrient concentrations and bacterial abundances, the 4 sites were 

pooled based on position in the water column (top or bottom) and time period (pre, during, or 

post hypoxia).  Thus 6 groups were compared (top-pre hypoxia, bottom-pre hypoxia, etc).  We 

tested the ability to pool the four sites using ANOVA.  Groups were tested for normality using 

Shapiro-Wilk normality test.  Bottom groups were compared across periods using Kruskal-

Wallis with a pairwise Wilcoxon test and Holm’s correction.  Top and bottom groups of the 3 

periods were compared using sign test (SRP) and paired Wilcoxon signed ranks test for the rest.   

 Fish catch data were analyzed using linear regressions that related total fish catch 

(abundance), number of species (richness), and maximum fish length to the lowest DO 

concentration measured during the water column profile of the Buoy site. 
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