
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Masters Theses Graduate Research and Creative Practice

8-2016

Application of Genetic Algorithm in Multi-objective Optimization Application of Genetic Algorithm in Multi-objective Optimization

of an Indeterminate Structure with Discontinuous Space for of an Indeterminate Structure with Discontinuous Space for

Support Locations Support Locations

Rahat Sultana
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/theses

 Part of the Engineering Commons

ScholarWorks Citation ScholarWorks Citation
Sultana, Rahat, "Application of Genetic Algorithm in Multi-objective Optimization of an Indeterminate
Structure with Discontinuous Space for Support Locations" (2016). Masters Theses. 821.
https://scholarworks.gvsu.edu/theses/821

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at
ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/theses
https://scholarworks.gvsu.edu/grcp
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=scholarworks.gvsu.edu%2Ftheses%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/821?utm_source=scholarworks.gvsu.edu%2Ftheses%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Application of Genetic Algorithm in Multi-objective Optimization of an

Indeterminate Structure with Discontinuous Space for Support Locations

Rahat Sultana

A Thesis Submitted to the Graduate Faculty of

GRAND VALLEY STATE UNIVERSITY

In

Partial Fulfillment of the Requirements

For the Degree of

Master of Science in Engineering

Product Design and Manufacturing Engineering

August 2016

3

Dedication

To my parents, Engr. Md. Robiul Islam and Mrs. Mahamuda Islam, and my husband M Shahriar
Mazid Khan, for their selfless and relentless support to my pursuit of higher studies.

4

Acknowledgement

I would first like to convey my sincere thanks to Dr. Shabbir A Choudhuri, my thesis advisor, for

supervising my work and for his guidance, expertise, patience and involvement to this work. This

work would not have been completed without his instructions, appreciations, and inspiration. I

cannot thank him enough for enriching me with first-hand research experience, and helping to be

habituated with apt brainstorming, planning research works and accomplishing them within

deadline. I owe countless thanks to Dr. Wendy Reffeor for her continuous involvement with the

work, technical guidance, insight, and valuable time. My heartfelt thanks go to Dr. Lindsay Corneal

for her persistent support and encouragement throughout my research work. I would also like to

thank Graduate School, Grand Valley State University for supporting the research by funding this

project. M Shahriar Khan, my husband, has kept my courage high during the hard times. Without

his support, it was not possible for me to endure the struggle of graduate studies. And finally, I

would like to thank my parents, Md Robiul Islam and Mrs. Mahamuda Islam for their continuous

support and faith in me.

5

Abstract

In this thesis, an indeterminate structure was developed with multiple competing objectives

including the equalization of the load distribution among the supports while maximizing the stability

of the structure. Two different coding algorithms named “Continuous Method” and “Discretized

Method” were used to solve the optimal support locations using Genetic Algorithms (GAs). In

continuous method, a continuous solution space was considered to find optimal support locations.

The failure of this method to stick to the acceptable optimal solution led towards the development

of the second method. The latter approach divided the solution space into rectangular grids, and

GAs acted on the index number of the nodal points to converge to the optimality. The average value

of the objective function in the discretized method was found to be 0.147 which was almost one-

third of that obtained by the continuous method. The comparison based on individual components

of the objective function also proved that the proposed method outperformed the continuous

method. The discretized method also showed faster convergence to the optima. Three circular

discontinuities were added to the structure to make it more realistic and three different penalty

functions named flat, linear and non-linear penalty were used to handle the constraints. The

performance of the two methods was observed with the penalty functions while increasing the

radius of the circles by 25% and 50% which showed no significant difference. Later, the discretized

method was coded to eliminate the discontinuous area from the solution space which made the

application of the penalty functions redundant. A paired t-test (α=5%) showed no statistical

difference between these two methods. Finally, to make the proposed method compatible with

irregular shaped discontinuous areas, “FEA Integrated Coded Discretized Method (FEAICDM)”

was developed. The manual elimination of the infeasible areas from the candidate surface was

6

replaced by the nodal points of the mesh generated by Solid Works. A paired t-test (α=5%) showed

no statistical difference between these two methods. Though FEAICDM was applied only to a class

of problem, it can be concluded that FEAICDM is more robust and efficient than the continuous

method for a class of constrained optimization problem.

7

Table of Content

 Dedication…………………………………………………………………………. 3

 Acknowledgement………………………………………………………………….. 4

 Abstract….…………………………………………………………………………. 5

 List of Illustration…………………………………………………………………... 12

 List of Tables…………………..…………………………………………………… 13

1. Introduction……………………………………………………………………. 14

1.1. Objective……………………………………………………………….. 15

1.2. Scope……..……………………………………………………………. 15

1.3. Organization of the Thesis……………………………………………... 16

2. Literature Review……………………………………………………………….. 17

2.1. Optimization…………………………………………………………… 17

2.1.1. Approaches to Solve Optimization………………………………….. 17

2.1.1.1. Classical Methods…………………………………………... 17

2.1.1.2. Evolutionary Algorithms (EAs)…………………………….. 18

2.1.2. Classification of Evolutionary Algorithms……………………………. 21

2.1.2.1. Genetic Algorithms (GAs)…………………………………. 21

8

2.1.2.2. Evolutionary Strategies (ESs)………………………………. 19

2.1.2.3. Evolutionary Programming………………………………… 20

2.1.2.4. Genetic Programming……………………………………… 20

2.1.3. Differences between Evolutionary Algorithm and Classical Method… 21

2.2. Multi-Objective Optimization Problem (MOOP)………………………. 21

2.2.1. Formulation of Multi-Objective Optimization Problem……………... 22

2.2.2. Basic Concepts and Terminology……………………………………. 23

2.2.3. Approaches to solve Multi-objective Optimization………………….. 27

2.2.4. Classification of Multi-Objective Optimization (MOOA)……………. 28

2.2.4.1. Classical Method for MOOA……………………………….. 28

2.2.4.2. Evolutionary Algorithms (EAs) for MOOA……………….... 28

2.3. Genetic Algorithm……………………………………………………… 29

2.3.1. GA Operators……………………………………………………....... 30

2.3.1.1. Initialization……………………………………………….... 30

2.3.1.2. Objective and Fitness Functions……………………………. 31

2.3.1.3. Selection……………………………………………………. 32

2.3.1.4. Crossover…………………………………………………... 34

2.3.1.5. Mutation……………………………………………………. 35

9

2.3.2. Genetic Algorithm with Multi-objective Optimization………………. 35

2.3.3. Genetic Algorithm in Structural Design Problem……………………. 37

2.3.4. Genetic Algorithm in Constrained Optimization Problem…………... 37

2.3.5. Penalty Function…………………………………………………….. 38

2.3.5.1. Static Method………………………………………………. 40

2.3.5.2. Dynamic Method…………………………………………... 41

2.3.5.3. Death Method……………………………………………… 41

2.3.5.4. Adaptive Method…………………………………………… 42

2.3.5.5. Exact Absolute Value & Augmented Lagrangian Penalty

Methods…………………………………………………….

43

3. Methodology…………………………………………………………………… 44

3.1. Developing an Indeterminate Structure with Unconstrained Solution
Space……………………………………………………………………

44

3.1.1. Test Case…………………………………………………………… 44

3.1.2. Conflicting Objectives………………………………………………. 45

3.2. Developing Genetic Algorithm to Solve the Support Locations……….... 46

3.2.1. GA based Methodology……………………………………………… 47

3.2.1.1. Design Variables……………………………………………. 47

3.2.1.2. Objective Function…………………………………………. 48

10

3.2.1.3. Continuous Method…………………………………………. 50

3.2.1.3.1. GA Operator……………………………………………. 51

3.2.1.3.2. GA Parameter…………………………………………… 52

3.3. Introducing Physical Discontinuity on the Structure and Applying Penalty
Functions……………………………………………………….

52

3.3.1. Flat Penalty………………………………………………………….. 54

3.3.2. Linear Penalty………………………………………………………. 55

3.3.3. Non-linear Penalty…………………………………………………... 55

3.4. Developing Coding Algorithm to Handle Constraints in Genetic
Algorithms……………………………………………………………....

56

4. Results & Discussion…………………………………………………………… 57

4.1. Unconstrained Problem………………………………………………… 57

4.1.1. Implementation of the Continuous Method……..………….………. 57

4.1.2. Normalized Objective Function…………….…………….……..…. 58

4.1.3. Discretized Method…………………………………….. 60

4.1.3.1. Objective Function………………………………………. 62

4.1.3.2. GA Operators for Discretized Method…………………... 62

4.1.3.3. GA Parameter…………………………………………… 63

4.1.4. Implementation of the Discretized Method……………… 63

4.2. Constrained Problem………………………………………………….. 68

11

4.2.1. Continuous Method………………………………………………… 68

4.2.2. Discretized Method…………………………………………………. 69

4.3. Coded Algorithm for Constrained Optimization………………………... 72

4.3.1. Coded Discretized Method…………………………………………... 72

4.3.2. FEA Integrated Coded Discretized Method…………………………. 75

5. Conclusion…………………………………………………………………….... 77

 Appendices…………………………………………………………………………... 79

 References…………………………………………………………………………… 83

12

List of Illustrations

Figure 3.1: (a) Top view and (b) Isometric view of the indeterminate plate…………………….…45

Figure 3.2: (a) Balanced reactive forces with smaller enclosed area and (b) Bigger enclosed area with
unbalanced reactive forces………………………………………………………………………46

Figure 3.3: (a) Location of three supports which generates an area on the surface (b) heuristically
calculated maximum possible area with equal reaction forces in all
supports…………………………………………………………………………………...……50

Figure 3.4: Modified test case with circular discontinuities…………………………………...…..53

Figure 4.1: (a) Differences among reactive forces and (b) enclosed area by support locations for
“Continuous Method”………………………………………………………………………….58

Figure 4.2: Optimum objective value obtained by using “Continuous Method” from 30
runs…………………………………………………………………………………………….59

Figure 4.3: Solution space for (a) continuous method and (b) discretized method………………60

Figure 4.4: Optimum objective value obtained by using two
methods………………………….……………………………………………………………..64

Figure 4.5 (a) Distribution of optimal area value and (b) reaction differences by two
methods………………………………………………………………………………………...65

Figure 4.6: Graph of minimum (best) objective value vs generation number for continuous and
discretized method……………………………………………………………………………..67

Figure 4.7: Indeterminate structure with (a) previous discontinuous areas (b) 25% increased circular
discontinuities and (c) 50% increased circular discontinuities…………………………………..69

Figure 4.8: Results after applying three different penalty functions- flat, linear and non-
linear…………………………………………………………………………………………..70

Figure 4.9: Objective functions for the three penalty functions after increasing the discontinuous
space by (a) 25% and (b) 50%..72

Figure 4.10: Steps followed in coded discretized algorithm……………………………………74

13

List of Tables

Table 3.1: GA parameter……………………………………………………………………... 52

Table 4.1: Objective function obtained using Continuous and Discretized Method…………… 64

Table 4.2 Area and reaction difference obtained from two Methods………………………….. 65

Table 4.3: Average of the optimal results of 30 trials…………………………………………... 68

Table 4.4: Results obtained from Coded discretized method………………………………….. 74

Table 4.5: Results obtained from FEA Integrated Coded Discretized method………………… 76

Table 4.6 Results of the indeterminate structure without discontinuity using Continuous
Method………………………………………………………………………………………

79

Table 4.7 Results of the indeterminate structure without discontinuity using Discretized
Method………………………………………………………………………………………

80

Table 4.8 Paired t-test analysis of Discretized Method and Coded Discretized Method……… 81

Table 4.9 Paired t-test analysis of Coded Discretized Method and FEAICDM…………...… 82

14

1. Introduction:

Genetic algorithms (GAs), members of the large class of “Evolutionary Algorithms”, are

metaheuristics approach for solving various optimization problems. GAs are inspired by the natural

selection process. GAs operate on a set of potential solutions applying the principle of survival of

the fittest to produce better and better approximations to a solution. Based on the fitness level of

the individual solution in each generation, a new pool of parents is selected for breeding the next

generation using various operators adopted from natural evolution. Thus at each generation, GAs

try to generate offspring exhibiting better fitness level which are better suited to their environment

than the population they are generated from [1]. In various multi-objective optimization problems,

the applicability of GAs has been proven through numerous research works. Also, there are

competing optimization methods available to solve structural design problems. But certain

characteristics of this class of problems have made GAs popular in this research field. GAs are

suitable for continuous problems as well as for discrete and non-differentiable problems.

Additionally, GAs are very efficient for searching global optimal solutions.

However, there are some interesting areas related to the application of GAs to the structural

optimization problems which are not yet fully explored. The following areas require further

investigation

 In constrained optimization problems, application of penalty function is very common. GAs are

successfully used with penalty function applications. However, there is no systematic approach

to understand the influence of the magnitude and trend of penalty function on the convergence

towards the global optima.

15

 GAs have been used in numerous optimization problems having a discontinuity in the solution

space. It is important to observe the impact of the size of the discontinuity of the solution space

on the performance of GAs.

 Application of GAs in constrained optimization is a complex process. Proper selection of

different parameters, which is a prerequisite for getting a better optimal result, makes the process

more convoluted. Thus, the development of a method for a specific class of problems where

parameter selections are not required could be very beneficial for applying GAs in discrete

solution space [2].

1.1 Objective:

In this work, GAs have been used to solve for the support locations of a multi-objective

indeterminate structural model. The objectives of this research work are given below:

 Development of a test case with competing objective functions

 Development of a Genetic Algorithm based approach to solve the support locations

 Executing comparative analysis of the performance of flat, linear and non-linear penalty

functions in handling constraint in GAs

 Determination of the effect of the size of the discontinuous solution space on the

performance of GAs

 Development of a coding algorithm to handle constraint in GAs

1.2 Scope:

In this work, GAs have been applied for a specific class of optimization problem with unconstrained

and constrained conditions. Though there are various penalty functions to make GAs applicable in

constrained optimization, only flat, linear and non-linear penalties have been considered for this

thesis.

16

1.3 Organization of the Thesis:

The thesis is organized in the following five chapters:

 Chapter 1: In Chapter 1, the introduction, objectives of the thesis and limitation are

discussed.

 Chapter 2: Relevant theoretical background is described in this chapter which covers the

basic concept of optimization, single and multi-objective optimization, classical and

evolutionary methods of solving optimization problems, fundamentals of GAs, application

of GAs in constrained optimization and structural optimization problems etc. This chapter

provides a brief idea about the contextual reasoning of the thesis.

 Chapter 3: The methodology to carry on the work is discussed in this chapter.

 Chapter 4: The results obtained from the observation are illustrated and analyzed here.

 Chapter 5: Based on the findings, the conclusion of the work will be abridged and future

scope of the work will be discussed.

17

2. Literature Review:

2.1 Optimization:

Optimization is simply defined as a process to find a better solution. In technical terms,

optimization is a selection process to determine the best course of action for a decision problem

from some set of available alternatives under the restriction of limited resources. Here, a function,

which is called an objective function, cost function or fitness value, is minimized or maximized

relative to some set (which represents a range of alternatives available in a certain situation) and by

computing this function different choices are compared to determine which one is the “best”. Thus,

some inputs or variables are tweaked to find the maximum or minimum objective function.

Optimization is also referred as “Mathematical Optimization” as the generalization of the

optimization theory and techniques requires knowledge of a large area of applied mathematics.

Most of the optimization related research works have considered a single objective whereas most of

the real life optimization problems contain multiple objectives to satisfy. Some trade-off optimal

solutions are searched for multi-objective optimization problem as it is not possible to get one single

optimum solution to multiple conflicting components of the objective function. In this thesis, the

focus will be on multi-objective optimization.

2.1.1 Approaches to Solve Optimization:

Optimization problems can be solved using two major approaches which are Classical Methods and

Evolutionary Algorithms.

2.1.1.1 Classical Methods:

The classical methods update a single solution at each iteration by following a deterministic

approach to reach to the optimality [1]. The steps followed by most classical methods start with the

18

guess of a random solution. Then a search direction is intimated using a pre-specified deterministic

approach followed by a unidirectional search along a suggested direction. The same iteration is

repeated until the stopping criteria is met. Classical optimization methods are classified into two

groups which are direct methods and gradient-based methods [3]. The basic difference between

these two methods is that the direct methods use the objective function and constraint values to

direct the search method whereas the gradient methods use the derivatives of the objective function

and constraints for convergence. This difference has made direct methods slower than gradient

methods as they require the evaluation of many functions to guide the search process, but at the

same time, they can be applicable to a number of problems without making major changes in the

algorithm. Another drawback of the classical methods is that the selection of the initial solution

plays a vital role in the convergence to the optimal solution. These methods are inefficient for

optimization problems having a discrete solution space. Most of the cases, these methods have a

tendency to get stuck to a local solution. There is also a lacking of an appropriate general algorithm

for various classes of optimization problems [1].

2.1.1.2 Evolutionary Algorithms (EAs):

The concept of EAs was developed based on the processes of Darwinian evolution. EAs are

computer programs, and their components are developed in a suitably coded representation. Some

simulated creatures, known as individuals (fixed length vectors or strings), compete with each other

over the search space of a problem to find out better optimal areas in the search space. Each and

every individual has a possibility to be a solution to the given problem. At the very beginning, initial

individuals are generated randomly using random number generator. Then they are evaluated based

on how well they can satisfy the objective of the problem. Based on their performances, every

individual is assigned a score. The individuals with larger scores represent the better solutions to the

problem. A pre-determined number of better individuals are selected from this phase and undergo

19

other evolutionary operators named crossover and mutation to breed children. Based on the

performance of these children, a set of the population is selected from them and used as the current

population. Then, the same iteration is repeated until a stop criterion is met. Thus, in EAs,

individuals with better fitness score are selected, and less fit individuals are removed gradually.

2.1.2 Classification of EAs:

There are mainly three dialects of evolutionary algorithms [4, 5, 6], Genetic Algorithms (GAs),

Evolution Strategies (ESs), and Evolutionary Programming (EP), which follow the general outline

mentioned above. Each of these three algorithms has been proved capable of yielding approximate

optimal solutions for given complex, multimodal, non-differential, and discontinuous search spaces.

Another mentioned evolutionary algorithm is Genetic Programming (GP) [1]. These evolutionary

algorithms are explained below:

2.1.2.1 Genetic Algorithms (GAs):

The concept of GAs was developed by Holland [7] and first applied by Goldberg in his work [8].

GAs have become the most popular among all EAs. According to the established concept of GAs, a

population of random individuals are generated and based on their fitness score, participants to

breed next generations are selected using “Roulette wheel parent selection”. Recombination and

mutation operators perform to evolve the next generations and again more suited individuals are

selected to replace the parents in the population set. Same steps are followed until the termination

conditions are met. As GAs were used in this thesis work, they will be explained in more details

later.

2.1.2.2 Evolutionary Strategies(ESs):

ESs, developed by Rechenberg and Schwefel [9, 10], use real-valued vector representation to encode

individuals, and these strings of real numbers are called objective variables of the optimization

20

problem. Some strategy parameters (variances and covariance of individuals) are used to direct the

actions of the mutation operator. Mutation operator acts on the strategy parameters first and then

the object variables are mutated using the probability distribution generated from the mutated

strategy parameters. With these self-adapted strategy parameters and deterministic selection process,

ESs evolve to optimal solution and stop when any stopping criteria are met. Though only one

application of ESs has mentioned in computational chemistry [11], they have the potential to be an

alternative to GAs, especially in parameter optimization.

2.1.2.3 Evolutionary Programming (EP):

In EP, limited symbolic alphabets are used to represent the finite state machines. It was first

developed by Fogel et al. [12] and later modified by D. B. Fogel to represent real numbers [6].

Though it deals with a string of real numbers similar to ESs, the main difference between them is

that EP does not use any recombination operator. Thus, the convergence to better solution depends

only on mutation operator by using Gaussian probability distribution. EP is suitable for parameter

optimization and has been applied in some other areas too [13, 14].

2.1.2.4 Genetic Programming (GP):

Individuals are embodied as computer programs in GP. Based on a given problem, GP generates

computer program automatically to solve that problem. Here, a computer program is encoded as

chromosome and evaluated to measure its fitness to meet predefined objectives or goals. It is also

considered as an application of GAs for problems having computer programs as the individuals. In

1985, Cramer [15] first developed the modern “Tree-based” GP where programming languages are

organized in tree-based arrangements and modified using various GA operators. Koza [16] showed

its application in various complex optimization problems along with in modeling DNA expression.

21

2.1.3 Differences between Evolutionary Algorithm and Classical Methods:

EAs are different from classical methods in several ways, which are mentioned below [8],

 EAs normally do not use any derivatives of the objective function and constraints in its

search process.

 EAs follow a population approach to search for an optimal solution which implies that

instead of working with a single solution in every iteration, they work with a set of initial

solutions. But, most of the classical methods start their searching process with one initial

solution (point approach). Evolutionary methods become computationally quick because of

its parallel processing of a set of solutions and are more suitable for multi-objective

optimization problems. Another advantage is, these algorithms can normalize decision

variables along with objective and constraint functions within a population by using the

information of the best and worst performed individuals of that population.

 EAs use stochastic operators instead of the deterministic approach used in classical

optimization. Thus, classical methods use a fixed transition rule to guide the search direction.

On the other hand, the operators in EAs reach towards the desired outcome by applying

higher probabilities which provide them with the capability to deal with multiple optima and

other complexities in a better way than classical methods.

2.2 Multi-Objective Optimization Problem (MOOP):

A MOOP has more than one objective function. In the real world, most of the optimization

problems are multi-objective, for example, machine learning (accuracy vs. speed vs. complexity),

finance (expected return vs. standard deviation) etc. In most of the engineering problems, many

decisions involve multiple objectives which may conflict each other, such as minimize cost,

maximize efficiency or performance, maximize reliability, etc. For these type of problems, one

22

optimal solution of one objective may not provide the best solution of other objectives. As one

extreme solution would not provide the optimal solution for all objectives, a set of solutions which

compromises between different objectives is required to present optimal solutions of all objective

functions [1].

In the past, due to the lacking of a proper algorithm, MOOPs were modified as a single objective

problem. As the working principles of the single and MOOP are different, a single optimal solution

can satisfy the single objective problem, but a MOOP requires an optimal solution for each

objective.

2.2.1 Formulation of Multi-Objective Optimization Problem:

An MOOP has more than one objective function. In this thesis, two objectives have been

considered in the unconstrained problem, and three objectives have been used for the constrained

problem. The problem has been formulated as a minimization problem. These type of problems

have a number of constraints including inequality, equality and/or variable bounds which determine

the feasibility of any solution. The general form of MOOPs is given below,

Minimize/ Maximize ݂ሺݔሻ,																																												݉ ൌ 1,2, …… ;ܯ,

Subject to ݃ሺݔሻ 0,																																								݆ ൌ 1,2, …… , ;ܬ

݄ሺݔሻ ൌ 0,																																								݇ ൌ 1,2,…… ;ܭ,

ݔ
ሺሻ 	 ݔ 	 ݔ

ሺሻ																																														݅ ൌ 1,2, …… , ݊;

Here, ݔ is the vector of ݊ design variables, ݔ
ሺሻand ݔ

ሺሻ are the lower and upper boundaries of the

design variables respectively, the number of inequality and equality constraints are ݆ and ݇

23

respectively, ݃ሺݔሻand ݄ሺݔሻare the constraint functions, and ݂ሺݔሻ is the objective function to be

optimized.

2.2.2 Basic Concepts and Terminology:

Some basic concepts are required to understand the multi-objective optimization algorithm in more

depth, which are given below:

 Decision Variable Space:

The space generated by the lower and upper limit of each decision variable is called decision variable

space. The variable bounds restrict each variable within its boundary limit.

 Objective Space:

In a MOOP, values of objective functions generate a multidimensional space which is called

objective space. For each solution in the decision variable space, there is a point in the objective

space.

 Feasible and Infeasible Solution:

A feasible solution satisfies all constraints (linear and non-linear, equality and inequality) and variable

bounds. The solution having the opposite characteristic of the feasible solution is called the

infeasible solution.

 Linear and Non-linear MOOP:

A linear MOOP having linear objectives and constraint functions is called Multi-objective Linear

Problem (MOLP). On the other hand, if any constraint and/or objective functions are non-linear, it

is called a non-linear MOOP [1].

24

 Convex and Nonconvex MOOP:

A MOOP is convex if all the objective functions and feasible region are convex. For a convex

function: ܴ → ܴ , any two pair of solutions ݔଵ, ଶݔ ∈ ܴ will satisfy the following conditions:

݃ሺݔߙଵ ሺ1 െ ଶሻݔሻߙ ଵሻݔሺ݃ߙ ሺ1 െ ଶሻ………. where 0ݔሻ݃ሺߙ ߙ 1

Both spaces (decision and objective function spaces) of a MOOP problem should be evaluated to

test their convexity. Even one of them can be non-convex while another one is convex. A MOLP

has been defined as a convex problem [1].

 Ideal Objective Vector:

The ideal objective vector consists of an array with the lower bound of all objective functions of a

MOOP resulting in non-conflicting objective functions. It can only be possible for a feasible

solution when the minimum of all objective functions are identical. Otherwise, it does not exist. If

 ሺሻis a solution vector of variables that minimize or maximize the ith objective in a MOOP having∗ݔ

M conflicting objectives,

ሺሻ∗ݔ∃ ∈ ,ߗ ሺሻ∗ݔ ൌ ቂݔଵ
∗ሺሻ, ଶݔ

∗ሺሻ, …… . ெݔ
∗ሺሻቃ

்
:	 ݂൫ݔ∗

ሺሻ൯ ൌ ܱܲܶ	 ݂ሺݔሻ

Thus the ideal vector is defined as following,

∗ݖ ൌ ሺ݂∗ሻ ൌ ሺ ଵ݂
∗, ଶ݂

∗, … . . ெ݂
∗ ሻ்

where ெ݂
∗ is the optimum value of Mth objective function and the point in decision variable space

which determines this vector is the ideal solution.

 Utopian Objective Vector:

The objective vector having components slightly less than that of an ideal objective vector for the

minimization of a MOOP problem is called the utopian objective vector. It is used for algorithms

25

requiring a better solution than any other solution in the search space strictly. The utopian objective

vector, ݖ∗∗ is expressed as following:

∀	݅ ൌ 1,2,3,… . . , 							ܯ ∶ 							 ∗∗ݖ ൌ 	 ∗ݖ െ ߳			,				߳ 0.

 Nadir Objective Vector:

The nadir objective vector is expressed as ݖௗand this vector contains an array of the upper

bounds of each objective function in the Pareto-optimal set. It does not consider the entire solution

space. So, the mth component of the nadir objective vector ݖௗ is the constrained maximum of the

following problem:

max ݂ሺݔሻ

subject to ݔ ∈ ܲ

where ܲ is the Pareto-optimal set. The objective functions can be normalized by using ideal and

nadir objective vectors by using the following equation:

݂
 ൌ 	 ݂ െ ݖ

∗

ݖ
ௗ െ ݖ

∗

 Dominance Relation:

For multi-objective optimization, one optimal solution for one objective function might not

necessarily be optimal for other objective functions. In MOOP, ⊲ is used to show the dominance of

one solution over others. In general, if two feasible solutions of a MOOP having M conflicting

objectives are ݔଵand ݔଶ and ݔଵ is defined to dominate ݔଶ, then the following statements must be

true:

1. The solution ݔଵis no worse than ݔଶin all objectives, or mathematically, ݂ሺ	ݔଵ) ⋭ ݂ሺ	ݔଶ) for all

i=1,2,3,….,M

26

2. The solution ݔଵis strictly better than ݔଶin at least one objective, or mathematically, ݂ሺ	ݔଵ) ⊲

݂ሺ	ݔଶ) for at least one ݆ ∈1,2,3,….,M

The dom inance relation does not have reflexive property as no solution dominates itself. It also

does not exhibit symmetric characteristic as the dominance of one solution x over another solution y

does not mean the dominance of y over x. If x dominates y and y dominates z (a third solution),

then x dominates z which shows the transitive property of the dominance relation.

 Pareto-Optimal Set (Non-dominated set):

A set is said to be a non-dominated set or Pareto-optimal set if it is not dominated by any other

solution that belongs to the solution set. The Pareto-optimal set is the best optimal solution for all

objective functions and cannot be improved with respect to one objective by worsening another

one. Mathematically, if P is a set of solutions, the non-dominated set of solutions P* comprises those

solutions which are not dominated by any member of the set P. The non-dominated set of solutions

can be generated by comparing all possible pairs of a given solution set and determining which

solutions dominate which, and which are not dominated by each other. The Pareto-optimal set, P*

can be written as:

ܲ∗ ൌ ሼݔ ∈ ᇱݔ	∃	|	ߗ ∈ ᇱሻݔሺܨ	ߗ ≼ ሻሽݔሺܨ

Pareto-optimal sets are called global when the set of solutions, P, is the entire search space. If for

every member x in a set P, there exist no solutions y in the neighborhood of x, then‖ݕ െ ‖ݔ ,ߝ

dominating any member of the set, then P establishes a locally Pareto-optimal set.

 Pareto-front:

The Pareto-front contains the values of objective functions for all solutions in the Pareto-optimal set

in the objective space. If the Pareto-front is ܲܨ∗ for a given MOOP having objective function F(x),

then mathematically:

27

∗ܨܲ ≔ ሼݑ ൌ ݔ|ሻݔሺܨ ∈ 	ܲ∗ሽ

 Methods for solving the non-dominated set:

In each iteration of a MOOP, the non-dominated set is needed to be determined. Thus, a

computationally efficient approach is required to perform the determination step. Three different

approaches were mentioned which are (i) Naïve and slow, (ii) Continuously updated and (iii) Kung

et al.’s efficient method [1]. All of these methods use the concept of domination to determine the

non-dominant set with respect to different objective functions. But the most efficient [17] and least

computationally complex method is the third one.

2.2.3 Approaches to solve Multi-objective Optimization:

Extensive studies have been conducted in multi-objective optimization algorithms. But most of the

research work has avoided the complexity by transforming the problem into single- objective

optimization with the use of some user-defined parameters. Deb [1] classifies the approaches

towards solving multi-objective optimization in two groups.

 Ideal multi-objective optimization, where a set of solutions in the form of a trade-off curve is

obtained, and the desired solution is selected based on some higher level information of the

problem.

 Preference based multi-objective optimization, where using the higher level information a

preference vector transforms the multi-objective problem to a single-objective optimization. The

optimal solution is obtained by solving the single-objective problem.

The ideal approach is less subjective than the preference-based approach. It requires analysis of non-

technical, qualitative and experimental information to find the preference vector. In the absence of

higher level information in an optimization problem within the ideal approach, none of the Pareto-

optimal solutions is preferred over others. Therefore, in the ideal approach, the main objective is to

28

converge to a set of the solution as close as possible to the true Pareto-optimal set, which is the

common objective of all optimization tasks. However, diversity in the obtained Pareto-optimal set is

the second objective specific to multi-objective problems. With a more diverse set of solutions that

covers all parts of the Pareto-front in the objective space, the decision-making process at the next

level using the higher level information is easier. Since two spaces are involved in MOOP, diversity

of solutions in both decision and objective space is defined. Solutions with a large Euclidean

distance in variable and objective space are referred to as a diverse set of solutions in variable and

objective space, respectively. The diversity in the two spaces is often Symmetric, however in

complex and non-linear problems this property may not be true. Hence, Deb [1] assumes that there

are two goals in multi-objective optimization:

a. To find a set of non-dominated solutions with the least distance to the Pareto-optimal set.

b. To have maximum diversity in the non-dominated set of solutions.

2.2.4 Classification of Multi-Objective Optimization Algorithm (MOOA):

In section 2.1.1 it was mentioned that optimization solving methods are classified into the classical

and the evolutionary methods. That classification is also valid for multi-objective optimization

problems.

2.2.4.1 Classical Method for MOOA:

In the classical method, objectives are transformed into one objective function using different

techniques. The classical methods for MOOA will not be discussed in detail as this research work is

based on the EAs.

2.2.4.2 Evolutionary Algorithms (EAs) for MOOA:

The characteristic of EAs of using a population of solutions that evolve in each generation is well

suited for multi-objective optimization problems. Since one of the main goals of MOOP solvers is

29

to find a set of non-dominated solutions with the minimum distance to Pareto-front, evolutionary

algorithms can generate a set of non-dominated solutions in each generation.

The requirement of little prior knowledge about the problem, less vulnerability to shape and

continuity of Pareto-front, easy implementation, robustness and the ability to be carried out in

parallel are some of the advantages of evolutionary algorithms listed in Goldberg’s study [18].

The first goal in multi-objective optimization is achieved by a proper fitness assignment strategy and

a careful reproduction operator. Diversity in the Pareto-set can be obtained by designing a suitable

selection operator. Preserving the elitism during generations to directly carry over the elite solutions

to the next generation shall be carefully considered in evolutionary algorithms [1].

Coello [19] presents the basic concepts and approaches of multi-objective optimization evolutionary

algorithms. The book further explores some hybrid methods and introduces the test functions and

their analysis. Various applications of multi-objective evolutionary algorithms (MOEA) are also

discussed in the book. Deb’s book [1] is another comprehensive source of different MOEAs. The

book divides the evolutionary algorithms into non-elitist and elitist algorithms.

2.3 Genetic Algorithm:

Genetic Algorithms, one of the popular optimization techniques, are stochastic global search

procedures which impersonate the “Natural Theory of Evolution” developed by Charles Darwin via

three basic operations: selection, recombination, and mutation [20]. They deal with a population of

prospective solutions concurrently following the evolution theory “Survival of the fittest” and

produce better approximations to the solution for the next generation based on the fitness of the

objective function. At each generation a new collection of individuals is generated based on the level

of fitness using natural operators such as crossover, mutation, etc. and thus those features that make

an individual more suited are preserved and better competent individuals survive until a satisfactory

result is obtained. GAs are the most widely known evolutionary algorithms [7, 21, 22]. In the areas

30

of management science, operations research, and industrial and system engineering, the application

of GAs is increasing day by day because of the advantages of GAs over the conventional methods

[8, 20, 22]. They have also been successfully applied in different real-world scenarios, for example in

aeronautics, electrical engineering, scheduling and signal processing, etc. The concept of using GAs

was first introduced by Holland [7]. Then it was developed theoretically [7] and applied in various

fields [8]. Simpson et al. [23] used simple GAs and Dandy et al. [24] experimented with the fitness

function, mutation operator, and gray codes. Abdel-Gawad [25] showed and explained the effect of

different selection, crossover and mutation schemes of the GAs on the network optimization.

2.3.1. GA Operators:

2.3.1.1. Initialization:

In GAs, decision variables or parameters are encoded and a set of initial solutions, called the

population, is generated. GAs operate on the population simultaneously. A random generator is

used to generate the required number of initial individuals or population within the desired range.

Bramlette [26] suggested an approach of generating individuals where for each individual a number

of individuals are generated, and the best-performed one is selected for the initial population.

Another approach, which is only applicable to well-known problems, is to initialize the population

with some individuals from the vicinity of global optimal results [27, 28]. The binary string

representation is the most popular representation where each variable is encoded in the binary string

and concatenated to form a complete chromosome. In traditional binary representation, one

problem is that the hamming distances between adjacent values are constant which affect the search

space by deceiving it while searching global optima [29]. Gray coding is used to improve the

standard system.

31

There are some other approaches which can replace the binary string representation such as real-

valued representation, integer representation, etc. Sometimes, application of integer representations

is more suitable and convenient for some classes of problems such as subset selection, route

selection problems, etc. as binary representation might obfuscate the nature of the problem [26].

Application of real-valued representation has some advantages over binary representation such as

increased efficiency, the requirement of less computational time and less memory, no loss of

precision which happen while discretizing to binary or other values and a wide range of operators to

be used.

2.3.1.2. Objective and Fitness Functions:

The decision to select an individual for the next generation is made based on the objective function.

The objective or fitness function measures the performances of individuals. If the problem is a

maximization problem, the best-performed individual will have the maximum numerical value of the

objective function. The fitness function is used to transform the objective function to a relative

fitness, which can be expressed as:

ሻݔሺܨ ൌ ݃ሺ݂ሺݔሻሻ

where, x is the decision variable, f is the objective function, g is the function to transform the

objective function, and F is the resulting relative fitness. In proportional fitness assignment, the ratio

of the raw performance of each individual and the performance of all individuals of the population

is used to transform the objective function, thus:

ሻݔሺܨ ൌ
݂ሺݔሻ

∑ ݂ሺݔሻேௗ
ୀଵ

32

Here, ݔ is the value of individual i and ܰ݅݊݀ is the size of the population. Before this fitness

assignment, the objective function goes through a linear transformation using the following

equation:

ሻݔሺܨ ൌ ݂ܽሺݔሻ ܾ

Here, the sign of	ܽ, the scaling factor, depends on the optimization type, if it is maximization

problem, ܽ will be positive, and vice versa. The combination of this scaling and fitness assignment

ensures rapid convergence to the optimal results. Another approach to transforming the objective

function is power law scaling, mathematically:

ሻݔሺܨ ൌ ݂ሺݔሻ

Here, k is the problem dependent variable and can be changed to control the range of fitness

measures if required. Baker [27] suggested a rank based approach to prevent premature convergence,

where instead of using raw performance, the rank of individuals in the population is used to measure

relative fitness.

2.3.1.3. Selection:

Selection is the determination process of how many times a particular individual will participate in

reproduction. It comprises of two processes. In the first process, the raw fitness values are

converted into a real-valued expectation of an individual’s probability to be chosen for reproduction.

The second process, also known as “sampling”, selects an individual probabilistically for

reproduction based on its fitness relative to other individuals. The performance of the selection

algorithm can be determined by using three measures which are bias, spread, and efficiency. The

absolute difference between the actual and expected probability of an individual for getting selected

is defined as bias. Spread can be defined as the range of the possible number of times in which the

33

individual may be selected. And the efficiency depends on the GAs overall time complexity. Thus, a

selection algorithm will be appropriate with zero bias, minimum spread and a minimum contribution

to the GAs time complexity.

Roulette wheel mechanism is one of the popular approaches used in the selection method. In

Stochastic Sampling with Replacement (SSR) method, an interval with a range from 0 to “Sum” is

used to map the individuals one to one adjacently where “Sum” can be measured as the summation

of either the individuals’ raw fitness values over all the individuals in that population or individuals’

expected selection probabilities. A random number is generated within the interval [0, Sum] and the

individual having that random number in its area is selected. This selection process stops when the

required number of individuals are selected.

In Stochastic Sampling with Partial Replacement (SSPR), an individual’s segment size is reduced by

1.0 for each time it is selected. Another method, Remainder Sampling method, comprises of integral

phase and fraction phase. In the first phase, a deterministic approach based on the integer part of

individuals’ expected trials is used to select the sample. Then the remainders are selected

probabilistically based on the fractional part of their expected trials. In the latter phase, roulette

wheel mechanism is used. In Remainder Stochastic Sampling without Replacement (RSSWR) after

selecting an individual, its fractional part is reduced to zero. Another widely used algorithm is

Stochastic Universal Sampling (SUS) with zero bias. It is a single phase method where instead of one

selection pointer N pointers are used which are spaced equally by a distance determined by a

random number generated in the range [0, Sum/N]. If the generated number is “a”, N pointers are

equally spaced by one starting from “a” [28].

34

2.3.1.4. Crossover:

GAs use “Crossover or Reproduction” operator for producing new offspring from the parent

population having some parts of both parents’ chromosome. Single point crossover is the most

common method for binary chromosome where parents exchange their parts of chromosomes after

a pre-specified point. Other common crossover methods are multipoint crossover, uniform

crossover, shuffle crossover, surrogate crossover, intermediate recombination, etc.

In the multipoint crossover, multiple crossover points are chosen randomly without duplication and

sorted in an ascending manner. Then the bits between successive crossover points are exchanged

between the two parents and thus new offspring are generated from their parents though the bits

between the first allele position and the first crossover point are not exchanged. It may happen that

the parts of a chromosome exercising most impact on the performance of a particular individual

might not be located adjacently, which makes the multipoint crossover more suitable for various

optimization problems.

In uniform crossover, every locus has a potential to be a crossover point. A crossover mask is

generated randomly and based on the value of a particular bit of the mask it is decided from which

parent bits will be supplied for offspring for that location. The uniform crossover can be

parameterized by applying a probability to the swapping of the bits. It can reduce the biasedness

towards the length of the chromosome representation by controlling the disruption during the

crossover. Another crossover method, shuffle crossover [29], shuffles the bits before performing the

recombination at a single cross point and after recombination the bits are unshuffled. In reduced

surrogate operator, recombination occurs at only those points where gene values differ [30].

Intermediate recombination and line recombination are two other types of crossover operators.

35

2.3.1.5. Mutation:

Mutation is a random process which replaces one allele of a gene by another to produce a new gene.

In GA, mutation is performed with a very low probability. A mutation operator is mainly used for

two purposes. One is to ensure that the probability of searching any particular solution is never zero.

At the same time, it may recover the good candidates if they are lost due to selection and crossover

operations.

2.3.2. Genetic Algorithm with Multi-objective Optimization:

In real engineering challenges, most of the optimization problems are multi-objective, for example,

minimization of cost, maximization of profit, maximization of utilization, etc. There are two basic

approaches to handling multi-objective optimization problems. All individual objective functions are

combined into a single function in the first approach where a weighted sum method can be used to

determine a single objective function. One inherent problem with this is to determine the weightage

value precisely and effectively as it affects the optimal result tremendously if changed even a little

amount.

Another approach is to determine an entire Pareto optimal solution set comprising sets of solutions

having no dominance over each other. This approach is preferred as decision makers are given a set

of optimal solutions allowing them to choose by trading-off various parameters. Being a popular

metaheuristic approach, GAs are well suited for multi-objective optimization problems and Jones et

al. [31], mentioned that 70% of all metaheuristics approaches use evolutionary algorithms as their

fundamental basis. Various regions of the solution space are being searched simultaneously resulting

in a diverse set of solutions. In most cases, prioritization, weightage or scaling are not required in

multi-objective GA which makes it more useful for solving non-convex, discontinuous and multi-

modal solutions spaces [32].

36

David Schaffer [33] proposed the first multi-objective GA in 1980, named Vector evaluated GA

(VEGA), with a limitation of having the search direction parallel to the axes of the objective space.

Two approaches were suggested to improve VEGA. Following the work of Schaffer, a good

number of multi-objective GAs has been developed and suggested by various researchers with

variation in framework and operator [1, 19]. A complete list of these popular multi-objective GA

approaches with their advantages and disadvantages have been discussed by Konak et.al [32]. Some

of them are mentioned here [33-44]: Vector Evaluated GA (VEGA), Vector Optimized Evolution

Strategy (VOES), Weight-Based GA (WBGA), Multiple Objective GA (MOGA), Niched Pareto GA

(NPGA, NPGA2), Non-dominated Sorting GA (NSGA,NSGA-II), Distance-Based Pareto GA

(DPGA),Thermo-dynamical GA (TDGA), Strength Pareto Evolutionary Algorithm (SPEA,

SPEA2), Multi-Objective Messy GA (MOMGA-I, II, III), Pareto Archived Evolution Strategy

(PAES), Pareto Enveloped Based Selection Algorithm (PESA, PESA-II), and Micro GA-MOEA

 .(GA2ߤ	,GAߤ)

Among all these methods, determining which one is the best-performed technique has become a

very common question in the research field of multi-objective optimization. Several test problems

have been designed and developed by scientists and researchers and these techniques have been

applied to solve them. However, the most representative, discussed and compared evolutionary

algorithms are Strength Pareto Evolutionary Algorithm (SPEA, SPEA2), Pareto Archived Evolution

Strategy (PAES), Pareto Enveloped Based Selection Algorithm (PESA, PESA-II), and a Non-

dominated Sorting GA (NSGA-II). Several comparison studies and numerical simulations using

various test cases exhibit NSGA-II and SPEA2 as better MOEA technique than other methods.

Even for multi-objective optimization having more than two objectives, SPEA2 seems more

advantageous over NSGA-II.

37

Multi-objective genetic algorithms have been used in a variety of fields including a bi-criteria

transportation problem [45], electric power dispatch problem [46], vehicle routing problem with

time windows [47], structural design problems [48-55], etc.

2.3.3. Genetic Algorithm in Structural Design Problem:

Being a simple and easily applicable method, GAs have gained popularity in the research field of

structural design optimization because of their proficiency to search for a global optimal solution.

There are numerous optimization methods available which can be applied to solve structural design

problems. But certain characteristics of this kind of optimization have made GAs popular in this

research field. GAs are suitable for continuous problems as well as for discrete and non-

differentiable problems. Additionally, these methods are very efficient for searching global optimal

solutions. Though GAs are competent with optimization problems having continuous and discrete

variables [48, 49], in most of the cases the simple GA has been used to solve structural design

optimization problems having a discrete design space [50-54]. The modification of the simple GA

has been performed to improve the reliability of the performance of the continuous GA where

incremental design variables along with a Novel Genetic Algorithm were used [55]. The

performance of this method was tested for several optimization problems including structural design

problems, but none of the cases was multi-objective. Some other examples show the application of

GAs by combining them with other approaches.

2.3.4. Genetic Algorithm for Constrained Optimization Problem:

GAs are structured in a way that they cannot be directly used for the problems with constraint. For

solving classical optimization problems with constraints, there are basically two methods which are i)

Generic Methods and ii) Specific Methods. Penalty function, Lagrange multiplier, and complex

search methods are the example of the Generic Methods which do not interrupt the mathematical

38

structure of the constraint. Specific Methods are the cutting plane method, the reduced gradient

method, and the gradient projection method. These methods are only applicable for the special type

of constraint. Straightforwardness and ease of execution have put some advantages to Generic

Methods over Specific methods [56].

Coello [57] categorized various constraint handling optimization methods into five groups which

are, Penalty Functions, Special Representations and Operators, Repair Algorithms, Separations of

Objectives and Constraints, and Hybrid Methods.

The evolutionary constraint handling methods have been classified again by Michalewicz [58] and,

then Michalewicz and Schoenauer [2] into five categories: Methods based on preserving feasibility of

solutions, methods based on penalty functions, methods making a distinction between feasible and

infeasible solutions, methods based on decoders, and hybrid methods.

According to Takahama and Sakai [59] optimization problem with constraint can be handled using

four methods which are: penalty functions, methods based on the preference of feasible solutions

over infeasible solutions, methods that use constraint violations and objective functions separately,

and methods based on multi-objective optimization techniques. In the following section, penalty

functions are discussed in more details as in this thesis penalty functions have been used to handle

constraints.

2.3.5. Penalty Function:

Among all generic methods, the penalty function method is the most popular one to apply to GAs

as genetic algorithms follow generic search methods [7, 55, 60]. Penalty factors, being highly

problem oriented, need to be tweaked to manipulate the severity of penalties for the different level

of infeasibility [61].

39

In 1940, Courant [62] first had the idea of a penalty function to penalize each infeasible solution

based on their amount of infeasibility ranging from completely rejecting the individual to decreasing

its fitness based on the degree of violation. Afterward, the algorithm of the penalty function was

enlarged by Carroll [63] and, Fiacco and McCormick [64]. In classical optimization, there are two

types of penalty functions which are the interior penalty function and exterior penalty function. The

interior penalty function performs better for a single constraint as for multiple constraints execution

of the interior penalty function is more complex. It penalizes feasible solutions so that an optimal

solution is obtained between the boundary of feasible and infeasible solutions. On the other hand,

by penalizing infeasible solutions, the exterior penalty function starts with an infeasible solution and

moves towards the feasible region. This penalty function has three degrees which are (1) barrier

methods considering only the feasible solution (2) partial penalty functions where the penalty is

applied to the solutions near to the feasibility boundary, and (3) global penalty functions effective to

the entire infeasible region [65, 66]. The general formulation of the exterior penalty function can be

expressed as follows:

߮ሺݔറሻ ൌ ݂ሺݔറሻ േ ݎ ൈ ܩ

ୀଵ

 ܿ ൈ ܮ

ୀଵ

where ߮ሺݔറሻ is the new objective function, ݂ሺݔറሻ is the main objective function to be optimized, ܩ

and ܮ are functions of the constraints ݃ሺݔറሻ and ݄ሺݔറሻ, respectively and ݎ and ܿ are penalty

factors. ܩ and ܮ are normally formed as follows:

ܩ ൌ ,ሾ0ݔܽ݉ ଵ݃ሺݔറሻሿఉ

ܮ ൌ 	 ห ݄ሺݔറሻห
ఊ

where, ߚ and ߛ are normally 1 or 2.

40

Schoenauer and Xanthakis [67] showed that the penalty function is the best and easiest solution

technique for the larger feasible region and smooth problems. The penalty function is not only used

in Genetic Algorithms, but it was also proved by Golalikhani, Ali and Zhuang [68] that static and

dynamic penalty function could be used and perform efficiently for solving constrained optimization

problems with the Electromagnetism-like method (EM).

Because of its appropriateness in various optimization problems with the constraint, researchers

have worked in this particular area for a long time and formulated various penalty functions such as

static, multi-level [69], dynamic [70], adaptive, co-evolved, fuzzy-adapted, etc. [71].

2.3.5.1. Static Method:

In a simple static method, a constant penalty is applied to all infeasible solutions. Thus, the objective

function is a combination of the un-penalized objective function and penalty for violating feasibility.

It remains constant during the entire process. Afterward, instead of using the constant penalty, a

function of a number of constraint violations was proposed to use as the penalty function. Thus an

individual is evaluated using the following equation:

Fitness ሺݔറሻ ൌ ݂ሺݔറሻ 	∑ ሺܴ, ൈ ,ሾ0ݔܽ݉ ݃ሺݔറሻሿଶሻ

ୀଵ

where, ܴ, are the penalty coefficients, the number of constraints violation is m, ݂ሺݔറሻ is the main

objective function which is to be penalized, l is the level of constraint violation. Here, not only

number of violations is considered, the level of violation is also evaluated.

Later Richardson et al. [60] introduced another idea to penalize infeasible solutions based on the

distance from the feasibility. The distance metric is another effective approach to applying the

penalty function which can be continuous, discrete, linear or non-linear. Penalties that are functions

of the distance from feasibility perform better than those that are merely functions of the number of

41

violated constraints. If a problem has few constraints and few feasible solutions, penalties which are

solely functions of the number of violated constraints are not likely to find solutions. The success of

the static penalty method depends on the proper penalty coefficients chosen for constraints

2.3.5.2. Dynamic Method:

In this method, the penalty function increases with time thus severity of the penalty increases with

the progression toward the optimum solution. Highly infeasible solutions can be considered at initial

generation, but gradually it converges to the feasible solution. In an approach proposed by Joines

and Houck [70], individuals are evaluated using the following equation:

Fitness (ݔറ) =݂ሺݔറሻ 	ሺܥ ൈ ሻఈݐ ൈ ,ߚሺܥܸܵ റሻݔ

Where C, ߙ and ߚ are constants defined by the user and ܸܵܥሺߚ, :റሻ is defined asݔ

,ߚሺܥܸܵ റሻݔ ൌܦ
ఉሺݔറሻ

ୀଵ

ܦሺݔറሻ

ୀଵ

And ܦሺݔറሻ= ൜
0,															݃ሺݔറሻ 0,
|݃ሺݔറሻ|,						݁ݏ݅ݓݎ݄݁ݐ

							1 ݅ ݊

റሻ= ቊݔሺܦ
			0,														െ∈ ݄ሺݔറሻ ∈,

ห ݄ሺݔറሻห,										݁ݏ݅ݓݎ݄݁ݐ,
							1 ݆

A dynamic penalty function requires fine tuning of many parameters to solve a problem efficiently

otherwise it may result in an infeasible solution [72].

2.3.5.3. Death Method:

The most simple penalty function is known as ‘‘death penalty’’ and may be used for the convex

solution space. Under this scheme, the infeasible solutions are assigned the worst possible fitness

values or are simply eliminated from the optimization process [10, 73]. As the infeasible solutions

42

are not considered for the selection process for the next generation, if the initial population does not

contain any feasible solutions the whole population is rejected and a new generation is generated

again [56].

2.3.5.4. Adaptive Method:

An adaptive penalty function changes the value of penalty based on the feedback from the search

progress [56]. In this penalty function, each individual is evaluated by using the following equation,

Fitness (ݔറ) = ݂ሺݔറሻ ∑ሻൣݐሺߣ ݃
ଶሺݔറሻ ∑ ห ݄ሺݔറሻห

ୀଵ

ୀଵ ൧

where ߣሺݐሻis updated at every generation t using the following way,

ݐሺߣ 1ሻ=൞
ቀ ଵ
ఉభ
ቁ . 1	݁ݏܽܿ	݂݅											ሻݐሺߣ

.ଶߚ 2	݁ݏܽܿ	݂݅														ሻݐሺߣ
3	݁ݏܽܿ	݂݅																			ሻݐሺߣ

Here, the best individual in the last k generations is always feasible in case 1 and in case 2 the best

individual is never feasible. If there are some feasible and infeasible individuals that stand in the best

position in the population, the penalty is not changed.

Later, the severity of the penalty was designed to modify dynamically according to the fitness of the

best solution obtained till that progression [56]. Crossley and Williams showed that the best

approach for the adaptive penalty function is to apply it based on the corresponding specific

problem [74]. Birak Girma [75] tried to solve some drawbacks of adaptive penalty function by

proposing a more reliable, free of any parameter tuning and easily implementable method.

Various penalty function methods have various advantages and disadvantages. Michalewicz [57]

discussed demerits of each method and compared the performance of these algorithms on a number

43

of test problems with a conclusion that the static penalty function method (without any

sophistication) is a more robust approach than the sophisticated methods.

While using the penalty function, it is very important to define the relationship between infeasible

solution and feasible solution area as this is the basis of the value of the penalty factor. An individual

solution can be penalized in a different way such as [58]:

1. It can be penalized irrespective of how much infeasible it is. That means if it is infeasible it will

be penalized.

2. It can be penalized based on the amount of infeasibility which creates a proportional relationship

between severity of penalty and amount of infeasibility.

3. An effort can be made to make that infeasible individual a feasible one.

If the degree of parameters is tuned according to the problem, the obtained result will be more

satisfactory.

2.3.5.5. Exact Absolute Value & Augmented Lagrangian Penalty Methods:

Normal penalty functions consider infinitely large penalty values to limit the optimal solution in the

feasible region which can cause numerical difficulties and other side effects on the optimization

process. To obtain a reasonable finite value for the penalty parameter, “Exact absolute value penalty

method” has been introduced. In “Augmented Lagrangian Penalty Methods”, the penalty function

enjoys the property of being differentiable and is also known as a multiplier penalty function. These

approaches were first introduced for problems with equality constraints. Later, their scope was

extended for inequality constraints also. As in this approach, the ordinary Lagrangian function is

augmented by a quadratic penalty term; it is called “Augmented Lagrangian Penalty Function” [76].

44

3. Methodology:

3.1. Developing an Indeterminate Structure with an Unconstrained

Solution Space:

The objective of the work was to formulate Genetic Algorithms based multi-objective optimization

methodology for solving a support location problem of an indeterminate structure. To reach that

goal, the first step was to develop a generic and simplified indeterminate structure. The support

locations of that structure were determined by satisfying multiple objectives. These multiple

objectives were not apparent to solve and posed competing nature. Having contending multiple

objectives means the optimal value of one objective might negatively impact the optimality of other

objectives. The balancing of all objectives in a proper way was a prerequisite to lead towards the

acceptable optimal results. The structure required to be designed in such a way that the heuristic

calculation could provide a benchmark to evaluate the optimal objective solution.

3.1.1. Test Case:

An 8x6 meter rectangular shaped solid indeterminate plate was considered as a simple and generic

test case in this work. A myriad of similar examples would be found in real life including decorative

overhung lights. The target was to overhang this structure, made out of aluminum, with three cables

in a way that the load is evenly distributed among the cables while ensuring maximum stability. So,

the objectives included the minimization of the tension difference in the supports and the

maximization of the area enclosed by the support locations to increase stability. It was assumed that

the support locations in the geometric coordinate system were ሺݔଵ, ,ଶݔସሻ, ሺݔ ,ଷݔହሻ and ሺݔ ሻ, andݔ

the reactive forces acting upon the supports were ܴଵ, ܴଶ and ܴଷ, respectively. These reactive forces

and the force due to the self-weight of the plate (F) were assumed to be acting in the z- direction

45

(Though in figure 3.1, due to 2D drawing it seems that F is working along y axis). The indeterminate

structure is shown in Figure 3.1.

Figure 3.1: (a) Top view and (b) Isometric view of the indeterminate plate

3.1.2. Conflicting Objectives:

The two objectives mentioned in section 3.1.1 were conflicting in a sense that the minimum tension

differences in the supports might end up with a much smaller enclosed area (Figure 3.2(a)). Similarly,

the enclosed area could have a very good value while the reactive forces were not evenly distributed

(Figure 3.2(b)). One of the challenges faced while formulating the problem was to satisfy both

objectives in a balanced way to reach optimality. Figure 3.2 shows this contradictory behavior of the

objectives.

(a) (b)

46

(a) (b)

Figure 3.2: (a) Balanced reactive forces with smaller enclosed area and (b) Bigger enclosed

area with unbalanced reactive forces

3.2. Developing the Genetic Algorithm Based Approach to Solve the Support

Locations:

After developing the test case, the next step was to develop the GA based optimization

methodology. For solving the optimal support locations of the test case, a code was developed using

GA. At that phase, the objective function, GA parameters, and various GA operators were

determined. While generating the objective function, the most critical challenge was to develop one

single objective function from multiple objectives. If the impact of each component of the objective

function on the optimal value was not treated properly, it could put more focus on a single

component and thus hamper the optimality of other elements. The primary challenge for this multi-

objective optimization was to ensure the simultaneous convergence of all elements. Taking that into

consideration, the objective function was developed.

47

GA operators, such as population initialization, selection method, crossover, and mutation were

selected carefully based the requirement of the problem.

GA parameters such as the number of generations, population size, probability of crossover and

mutation are very much important to obtain good optimal results. There is no particular standard

value for these parameters which can be used for any arbitrary optimization problem. As the GA

parameters are problem dependent, several runs were performed varying GA parameters and the

combination for which the simple GA converged to the optimal solution with more efficiency and

fastness than others was selected as the suitable one.

3.2.1. GA based Methodology:

Genetic algorithm toolbox of Scilab 5.5.0 was used to write code to obtain the optimal support

locations for this multi-objective problem.

3.2.1.1. Design Variable:

At the very beginning of the development of a GA-based methodology, design variables were

needed to be set. Here, the design variables consisted of the abscissa and the ordinate of each

support location. Thus, the chromosome comprised of real-valued genes of abscissa and ordinates

of the support locations and it was represented as follows:

ܺ= ሼݔଵ, ,ଶݔ ,ଷݔ ,ସݔ ,ହݔ ሽ ……………………………….(i)ݔ

 where, first three components (ݔଵ, ,ଶݔ ,ସݔ) ଷ) represented the abscissa and rest of themݔ ,ହݔ (ݔ

were for the ordinates.

48

3.2.1.2. Objective Function:

This structural optimization problem was to be formulated by satisfying all implicit and explicit

constraints. The equations of static equilibrium supplied the implicit constraints which were:

റܨ∑ ൌ 0 and ∑ܯሬሬሬሬሬറ ൌ ∑൫ݎറ ൈ റ൯ܨ ൌ 0……………………….(ii)

where, ܨറ was the force, ܯሬሬሬሬሬറ was the moment with respect to the origin and ݎറ was the position vector

between the origin and the point where the force was acting. In 3D space, these two vector

equations contributed six scalar constraint equations.

Now, for the three supports, the reaction forces were represented by a vector, ሬܴറ where,

ሬܴറ=[ሬܴറଵ, ሬܴറଶ, ሬܴറଷ]’ and the total force acting downward was ܨറ. It was assumed that the only force

acting downward was the self-weight of the structure, F. The length and width of the rectangular

structure were L and W respectively. As the plate was homogeneous, the co-ordinate of the center

of gravity of this plate was (L/2, W/2). In this study, the center of gravity was assumed to be the

origin. Supports as well as the weight of the plate were assumed to be acting in the z-direction.

Thus, equations formulated using static equilibrium were as follows:

∑ ሬܴറ
ଷ
ୀଵ ൌ (iii).………………………………………… ܨ

	ሬሬറ௫ܯ∑ ൌ 0, or ∑ ݔ ൈ ሬܴറ
ଷ
ୀଵ ൌ 0……………………………..……...(iv)

and ∑ܯሬሬറ௬	 ൌ 0, or ∑ ାଷݔ ൈ ሬܴറ
ଷ
ୀଵ ൌ 0..(v)

The matrix representation of these three equations was used to solve reaction forces acting on three

supports, which is shown below:

49

ሬܴറ ൌ ܣ , ,റ, whereܨଵିܣ ൌ
1 1 1
ଵݔ ଶݔ ଷݔ
ସݔ ହݔ ݔ

൩, ሬܴറ ൌ ൣ ሬܴറଵ ሬܴറଶ ሬܴറଷ൧ and ܨറ 	ൌ 	
ܨ
0
0
൩

The objective function of this problem was written as:

min Z =(݉ܽݔ { iR i ∈ 	߮ } – ݉݅݊ { iR i ∈ 	߮ })+ ሺ∆௫ െ ∆௨௧ሻ…….………(vi)

where, ߮ was the set of the supports and expressed as {1,2,3}, ∆௨௧ was the area generated by

the three support locations and ∆௫ was the maximum possible area. Different units, huge

numerical differences, and disparate requirements of the two components of the objective function

made it quite difficult to assign preference weightage to the components of the objective function.

Therefore a no-preference strategy [77] defining global criteria by semi-norm mapping [78] of the

functions was chosen.

It was assumed that when Ri = ܨത ∀ i ∈ ߮ ∃ ∆௫, the upper bound of the enclosed area by any

subset of supports and a reasonable value of ∆௫ can be heuristically determined. If F was equally

distributed among the three supports, ܴଵ ൌ ܴଶ ൌ ܴଷ ൌ തܨ	 ൌ ܨ	 3⁄ . Now, using these values in

equation (iii), (iv) and (v), it was expressed as:

ଵݔ ଶݔ ଷݔ ൌ0………………………(vii)

and ݔସ ହݔ ݔ ൌ0…………………………………..(viii)

Using these two conditions, the heuristically calculated maximum possible area (∆PQR) enclosed by

the supports with equal reaction forces was 18 m2 (Figure 3.3 b), though the maximum possible area

was 24 m2.

50

Figure 3.3: (a) Location of three supports which generates an area on the surface (b)

heuristically calculated maximum possible area with equally loaded supports

But, it may happen that GAs converge to an optimal solution with unbalanced reaction forces where

∆௨௧ is bigger than 18 m2 .Then, the overall impact on the objective function gets worst. To

avoid that problem, a slightly bigger value than 18 m2, 20 m2, was used. Thus, the objective function

became,

Z = ሺ݉ܽݔ { iR i ∈ 	߮ } – ݉݅݊ { iR i ∈ 	߮ })+ ሺ20 െ ∆௨௧)….………(ix)

3.2.1.3. Continuous Method:

To search for the optimal solution while minimizing the difference between the reactive forces and

maximizing the stability of the structure, the “Continuous Method”, simple GA was selected. In this

method, the GA searched optimal solutions in a continuous solution space considering each and

every location in the solution space as a candidate. Here, explicit constraints, the boundary

conditions, were the upper and lower limit of the design variables. As the center of gravity was taken

as the origin, the boundary constraints for the design variables of the continuous solution space

could be expressed as:

െܮ 2⁄ ൏ ݔ ൏ ܮ 2⁄ and െܹ 2⁄ ൏ ାݔ ൏ ܹ 2⁄ …………………….(x)

51

3.2.1.3.1. GA Operator:

In the “Continuous Method”, the initial populations were generated by satisfying the boundary

constraints. After generating the initial population, the fitness of each individual was evaluated using

the objective function and the required number of individuals were selected for crossover and

mutation to breed the next generation.

The stochastic acceptance with elitist selection method was used to select the population for the

next generation. In this process, a small portion of the fittest individuals was chosen to pass to the

next generation without any crossover and mutation. Sometimes, it might happen that the best

candidates are lost due to the crossover and mutation operations which may result in a less fit new

generation than the parents. GA may regain those individuals later, but it may take more time to

converge. The elitist selection method has overcome this problem, and sometimes it exhibits patent

impact on the performance of the GA as it avoids the lost time required to regain the lost good

individuals.

To perform the crossover operation, a random number m was generated using a uniform

distribution within the range of (0, 1) which could be expressed as, ݉ ∈ ܷሺ0,1ሻ. Now, if the

individuals selected for crossover were ܺ and ܺ , where i, j could take any value in the range of [1,

number of population], individuals obtained after crossover were:

ଵ݈݄݀݅ܥ ൌ ሺ݉ ൈ ܺሻ ൫ሺ1 െ ݉ሻ ൈ ܺ൯ ……………………(xi)

and ݈݄݀݅ܥଶ ൌ ሺሺ1 െ ݉ሻ ൈ ܺሻ ൫݉ ൈ ܺ൯………………….(xii)

The mutation for the continuous variable was performed by changing an individual by a very small

amount using a random number, p. This random number was generated using uniform distribution

within a range of [0, 1]. The mutation was performed on an individual with a defined probability.

52

After that, the fitness of the generated population was evaluated and, using the elitist selection

method, parents were selected to produce next generation. These steps were repeated until the stop

criteria were satisfied.

3.2.1.3.2. GA Parameter:

After selecting the operators, the next step was to determine suitable GA parameters. The generated

objective function was evaluated to obtain the optimal result using the following control parameters

(Table 3. 1):

Table 3.1: GA parameter

Parameter Value Parameter Value

Population size 100 Crossover probability 0.7

Generation number 40 Mutation probability 0.1

These GA parameters were determined based on some preliminary observations which exhibited

that this specific combination provides better optimal values than other combinations.

3.3. Introducing Physical Discontinuity to the Structure and Applying Penalty

Functions:

The next step was to introduce physical discontinuity to the structure which converted the multi-

objectives unconstrained optimization problem into a constrained one. Several structural design

optimization problems can be mentioned where the solution space is not continuous, and thus the

problems become more interesting.

53

In reality, objects, similar to the test case, have lots of discontinuities in the form of fixtures, holes,

etc. which makes the solution space discontinuous. That is why, to make the test case more realistic

and complex, physical discontinuities were added to it. For simplicity, it was assumed that the shape

of the discontinuities was circular, and three circular holes with 1 m, 0.5 m, and 0.75 m radius

respectively were considered for the further inspection. Similar to the previous study, the center of

mass was considered as the origin.

When the solution space for an optimization problem is not continuous, it becomes a constrained

problem. GAs have been developed in a way that they cannot be directly used for constrained

problems. As per the discussion made in section 3.3, three different penalty functions were used to

make GAs suitable for the modified constrained test case in this work. As the solution space

contained three discontinuous areas, it was important to make sure that the optimum results were

not in those areas. So, the flat, linear & non-linear penalty functions were used to ensure the

feasibility of the results. If the location of any support was in those discontinuous spaces, penalty

function would add some penalty value to the objective function. The structure used in this case is

shown in the Figure 3.4,

Figure 3.4: Modified test case with circular discontinuities

Circular Discontinuity

(-4.06,-3.03) (3.94,-3.03)

(3.94,2.97) (-4.06,2.97)

(-2.06,-1.03)

(0.94,1.47)

(2.94,-1.53)

(0, 0)

54

The application of GA in a constrained optimization problem requires the handling of various

parameters in a proper way. In this work, to maintain the feasibility of the subsequent generations,

an exterior penalty function was applied to the objective function evaluation routine. This is one of

the most commonly used penalty functions in GA based optimization because it has no restriction

to start the searching process with an initial feasible solution. The exploration begins with an

infeasible solution and gradually moves toward a better feasible solution. In this work, three

different types of penalty functions were used which are (i) Flat, (ii) Linear and (iii) Non-Linear

penalty functions.

3.3.1. Flat Penalty:

In this method, if there is any infeasible solution, the objective function will be penalized with a

fixed amount for each infeasible solution. This type of penalty function only considers the presence

of the infeasibility, not the intensity or distance of the infeasible solution from the feasible zone. In

the present investigation, as there were q discontinuities, the feasibility of each location was checked

on each of these restricted areas. For each support location, a fixed penalty was added if there was

any infeasibility. Otherwise, the assigned penalty remained zero. So, the flat penalty function of ith

support location for jth discontinuous area can be expressed as follows:

ܲ,	 = 0, if the solution is feasible

1, if the solution is infeasible

Then adding penalties for all support locations, total penalty is obtained which is:

 ൌ ∑ ∑ ܲ,

ୀଵ

ୀଵ ……………………………………(xiii)

55

So, if there are n supports, the total penalty of a population can take any value between 0 and n as in

the best situation all of the support locations will be in the feasible area and in the worst case all of

them will take place in the infeasible region.

3.3.2. Linear Penalty:

Linear penalty function not only considers the presence of infeasibility but also linearly increases the

penalty value with the increase in the distance of the infeasible solution from the boundary between

the feasible and the infeasible region.

This penalty function can be expressed as,

ܲ, ൌ ,൫0ݔܽ݉ ݁,൯………………………………………(xiv)

where, ܲ, is the penalty of ith support location for jth discontinuous area and ݁, can be expressed as

the intensity of the infeasibility of that specific support location. At first, each support location was

tested for each discretized area, and the corresponding penalty value was assigned. After that, the

total penalty value was calculated using equation (xiii).

3.3.3. Non-Linear Penalty:

The third penalty function used was a non-linear penalty function which penalizes the infeasible

solution by maintaining a non-linear relationship with the distance of the infeasible solution from

the feasible region boundary. Here, the penalty function can generally be expressed as follow:

 ܲ, ൌ ,൫0ݔܽ݉ ݁,൯
ଶ
………………………………………(xv)

All the nomenclatures of this equation are the same as for the linear penalty function. The only

difference is that the amount of penalty will increase in a non-linear fashion with the intensity of the

infeasibility. Similar to the linear penalty, the total penalty value for all the support locations was

56

calculated using equation (xiii). The performance of all penalty functions was evaluated which

provided a clear indication that whether making the penalty function more complicated provided

any better result or not. After doing that, the effect of the size of the discontinuous spaces on the

performance of these penalty functions was observed.

The three penalty functions were added to objective function separately. The objective function was

modified as follows:

Z =ሺ݉ܽݔ{ i ∈ ߮} – ݉݅݊{ i ∈ ߮ })/2241+ሺ20 െ ∆௨௧) /	20 ሺ
ଷ
ሻ………(xvi)

Here, ܲ is the total penalty calculated for all support locations. In the worst case, all the supports are

in infeasible regions. So the maximum possible penalty value is 3, thus the total penalty was

normalized by dividing it by 3. The modified algorithm was run for 30 trials.

3.4. Developing a Coding Algorithm to Handle Constraints in Genetic Algorithms

The last step of this research was to develop a coding algorithm to apply GA in the constrained

optimization problem. Various methods including penalty functions require the proper selection of

relevant parameters which makes the overall process time consuming and complex. A standard,

generic and simple methodology was developed which eliminated these time-consuming steps and

directly applied GA for a class of structural design optimization problem.

iR iR

57

4. Results & Discussion:

4.1. Unconstrained Problem:

4.1.1. Implementation of the Continuous Method:

After performing the test several times, it was found out that the multi-objectives nature of the

objective function was preventing it from satisfying both objectives. The reactive forces had very big

numeric value compared to that of the generated area. Thus, the difference among reactive forces

had more impact on the overall objective function than the area. So, the GA focused more on to the

balance of the reactive forces. GA was designed in a way that it eliminated the negative forces as

they increased the value of the objective function. That is why the optimal results obtained using the

objective function (ix) provided almost balanced reactive forces, but the area values were poor

(Figure 4.1).

(a)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35D
if
fe
re
n
ce
 in

 R
ea
ct
iv
e
fo
rc
es
 (
N
)

No of Trial

Difference in Reactive Forces for Continuous
Method

Target value

58

(b)

Figure 4.1: (a) Differences among reactive forces and (b) enclosed area by support locations

for the “Continuous Method.”

In Figure 4.1 (a), it was observed that the reactive forces were almost equally balanced in most of the

cases. But at the same time, the area generated by the support locations were very small, less than

half of the target value, 20 m2.

4.1.2. Normalized Objective Function:

Thus, one of the critical challenges for this multi-objective optimization problem became to handle

all components of the objective function in a proper way to guide the GA towards the optimal

solution.

To address that problem, a heuristic based normalization technique was used in such a way that the

contributions of each component to the objective function remained in the range of 0 to 1. Therefore,

Z ∈ (0, 2). It should be noted that Z can assume a negative value if ∆௫ is grossly underestimated by

the heuristics. On the other hand, the worst case scenario of Z may be lower than 2 if ∆௫ is

overestimated.

-1

4

9

14

19

24

-4 1 6 11 16 21 26 31

A
re

a
en

cl
os

ed
 b

y
su

pp
or

t
lo

ca
ti

on
s

(m
2)

Number of Trial

Enclosed Area for Continuous Method

Initial Target
value

59

Heuristically, it was assumed that the maximum tension difference can be equal to the difference

between the average reaction force and zero (it was ensured that no reaction force could take a

negative value which results in a minimum reaction equal to zero). The force, F, due to the self-

weight of the plate was assumed to be approximately 6726 N. Thus, for normalizing the force

component, it was divided by 2242 which is one-third of the total force.

It is already mentioned that the maximum possible area generated by support locations was assumed

to be 20 m2. Thus, the objective function became,

Z =ሺ݉ܽݔ{ iR i ∈ ߮} – ݉݅݊{ iR i ∈ ߮ })/2241+ሺ20 െ ∆௨௧) /	20…….………(xvii)

This normalized equation was used to solve the support locations, and the obtained results showed

significant improvement. But, still the results were not consistent. For 30 runs, the optimal values

obtained by using continuous GA along with normalized objective function is shown in Figure 4.2,

Figure 4.2: Optimum objective value obtained by using “Continuous Method” from 30 run

0

7

6

7

8

2

0-0.1236 0.1236-0.2472 0.2472-0.3708 0.3708-0.4944 0.4944-0.618 0.618-0.7416

N
u

m
b

er
 o

f
ru

n
s

Optimum Objective value

60

It is apparent from Figure 4.2 that the optimal results were scattered with a wide range having few

good results. In the continuous GA method, each and every possible position can be a candidate for

the optimal solution. Thus the size of the search space is huge and sometimes the continuous GA is

successfully getting closer to the optimal results and sometimes not. One way to delimit this

problem was to reduce the search space while ensuring that the optimality of the results was not

impeded. This observation led to the development of the proposed method, named “Discretized

Method,” which is discussed in the next section.

4.1.3. Discretized Method:

The discretized method is a simple modification of the conventional continuous method where the

continuous search space is assumed to be a sum of a number of very small horizontal and vertical

strips. The intersections of these strips are called nodal points which are the possible options for the

support locations instead of the whole search space. Thus, in the continuous method, support

locations can take any place on the structure. But in the discretized method, only the nodal points

are the possible values of support location. Figure 4.3 illustrates the conceptual difference between

the search space of the continuous method and the discretized method.

(a) (b)

Figure 4.3: Solution space for (a) continuous method and (b) discretized method

Nodal PointsAll positions are
candidates of

optimal solution

61

The nodal points were generated in a matrix form using an increment of δ between the lower and

upper bound of each variable. Thus, each nodal point had a corresponding position number, called

the index number, in its matrix. In “Discretized Method”, index numbers were used as design

variables (genotypes) and, then corresponding nodal locations were determined from the matrix.

Here, chromosomes were made of index numbers which indicated the abscissa and the ordinate of

the support locations, and thus the GA operated on the coded chromosomes which were decoded

later to evaluate the objective function.

The matrices were developed for abscissa and ordinate of three support locations with an increment

of δ=0.05 within the range of ሺെܮ 2ൗ , ܮ 2ൗ ሻ and ሺെܹ 2ൗ ,ܹ 2ൗ ሻ respectively.

Where,

ܯ ൌ	 ሼܾܽܽݏݏ݅ܿݏ	݂	ݐݎݑݏ	݀݁ݐܽݎ݁݊݁݃	ݕܾ	݄݁ݐ	ݐ݊݁݉݁ݎܿ݊݅	݂	δሽ,

 Ɲெ ൌ ,ܯ	݂	݁ݖ݅ݏ

ܰ ൌ	 ሼ݁ݐܽ݊݅݀ݎ	݂	ݐݎݑݏ	݀݁ݐܽݎ݁݊݁݃	ݕܾ	݄݁ݐ	ݐ݊݁݉݁ݎܿ݊݅	݂	δ	ሽ

and Ɲே ൌ .ܰ	݂	݁ݖ݅ݏ

Thus, to represent the abscissa and the ordinate of a support location the chromosome comprised

two index numbers and in total 2*3= 6 components for the three supports. The chromosome can

be represented as follows:

ܺ= ሼ݈ଵ, ݈ଶ, ݈ଷ, ݈ସ, ݈ହ, ݈ሽ

Ii is the set of index numbers indicating the abscissa and the ordinate of the location of the ith

support on the surface of the structure according to the coordinate scheme. So,ܫ can be written as:

62

iI =ሼ݈, ݈ାሽ, where, 1 ൏ ݈ ൏ Ɲெ and 1 ൏ ݈ା ൏ Ɲே

For the evaluation of the objective function, decoding of the design variables was done by finding

the corresponding abscissa and ordinate from the generated matrices. For example, if the abscissa

and ordinate of the ith support is xi and xi+n, then,

ݔ ൌ ାݔ ሺ1ሻሻ andܫሺܮ ൌ ܹሺܫሺ2ሻሻ

4.1.3.1. Objective Function:

The normalized objective function was used for the “Discretized Method”.

4.1.3.2. GA Operators for “Discretized Method”:

For the breeding of the initial population, random numbers were generated for each design variables

satisfying the boundary conditions and the integers of those generated numbers were considered for

the rest of the calculation.

After generating the initial population, the binary conversion was performed using an 8-bit

representation for each variable. Thus the chromosome became a string of 48 bits representing 6

design variables.

The fitness of each individual was evaluated using the objective function. Before evaluating the

objective function, the support locations were searched from M and N matrix using index numbers

generated by GA. Similar to the “Continuous Method”, the elitist selection was used to select

parents for crossover and mutation operation in the “Discretized Method”.

Single point binary crossover was performed on the selected parents to breed a new child. The

parents were ܺ and ܺ where i and j indicate the population number and ݈݄݀݅ܥଵ and ݈݄݀݅ܥଶ were

offspring generated after crossover. Each parent is split into two parts at a point. ܺ was splitted into

63

 ଶ. So, theܮ ଶandܪ ଵ, which were the head and the tail of the parent. Similarly ܺ producedܮ ଵandܪ

offspring generated from the crossover can be represented as:

ଵ݈݄݀݅ܥ ൌ ሾܪଵ ଶ݈݄݀݅ܥ ଶሿ andܮ ൌ ሾܪଶ ଵሿܮ

After the crossover was complete, the binary mutation was performed with a predefined probability.

If an individual was selected for the mutation, a random number was generated to obtain the

position of a bit to be mutated, and that bit value was flipped.

After performing these operations, the fitness of the objective functions was evaluated and based on

that the new population was selected to pass for breeding the next generation. The same process

was repeated until the stop criteria were met.

4.1.3.3. GA Parameter:

The parameters used in the “Continuous Method” were also selected for the “Discretized Method”.

4.1.4. Implementation of the Discretized Method:

Using “Discretized Method,” the support locations were solved for 30 trials, and the results showed

that the application of the proposed method dramatically improved the performance of the GA

which is illustrated in Figure 4.4.

64

Figure 4.4: Optimum objective value obtained by using two methods

Figure 4.4 shows that discretized method provided optimal results with a more narrowerer range

than the continuous method, which might imply that the proposed method was more reliable. The

average and standard deviation of the objective function obtained from the 30 trials of the

discretized method were significantly smaller than the continuous method, which is tabulated in

Table 4.1.

Table 4.1: Objective function obtained using Continuous and Discretized Method

Parameter Method Minimum Average Maximum
STD.

DEV

Objective

Function

Continuous 0.17 0.405 0.723 0.162

Discretized 0.105 0.147 0.218 0.034

9

21

0 0 0 00
7 6 7 8

2

0-0.12 0.12-0.24 0.24-0.37 0.37-0.49 0.49-0.61 0.61-0.74

N
u

m
b

er
 o

f
ru

n
s

Optimum objective value

Discretized Continuous

65

These two approaches were also compared based on the two components of the objective function

separately. Table 4.2 shows area values, and the difference of maximum and minimum reaction values

for both approaches and Figure 4.5 shows the distribution of the objective function components.

Table 4.2: Area and reaction difference obtained from two Methods

Parameter Method Minimum Average Maximum
ST.

DEV

Area (m2)
Continuous 5.55 12.14 18.41 3.382

Discretized 15.64 17.19 18.06 0.751

Reaction

Difference

(N)

Continuous 0.91 27.32 244.29 42.643

Discretized 0 15.28 77.080 18.023

(a) (b)

Figure 4.5: (a) Distribution of optimal area value and (b) reaction differences by two

methods

0

5

10

15

20

25

30

<10 10-12 12-14 14-16 16-18 18-20

F
re

q
u

en
cy

Obtained Area Value (m2)

Obtained area value

Discretized Continuous

0

5

10

15

N
u

m
b

er
 o

f
ru

n

Difference of Reactions in supports (N)

Reactions differences among the
supports

Discretized Continuous

66

It is evident from Table 4.2 and Figure 4.5 that the discretized method consistently produced support

layouts that enclosed a higher area while equalizing the force distribution among the supports. It was

observed that for both the components of the objective function, the standard deviations of the

discretized method were significantly smaller than that of the continuous method. It implies that the

discretized method is more reliable and stable than the continuous one. It should be noted that, out

of 30 samples, 27 samples of the discretized method provided an area value bigger than 16 m2, whereas

26 samples of the continuous method generated an area value smaller than 16 m2. Although the

continuous method balanced the reaction forces among three supports almost equally, it is worth

mentioning that the discretized method provided exactly equal reactions for 11 times out of 30 samples

while the continuous method never did. Also, the narrow ranges for both the area value and the

reaction difference values bolster the observation that the discretized method worked better with more

consistency than the continuous method for this optimization problem.

Generally, it is expected that the progession time of discretized method should be less than the

continuous method. To compare the rate of progression towards optimality two randomly selected

runs from each method were observed. Minimum (best) objective values of each generation were

plotted against the generation number Figure 4.6 shows the graphical representation of the minimum

objective value of each generation of the selected samples.

67

Figure 4.6: Graph of minimum (best) objective value vs. generation number for continuous

and discretized method

From the graph, it was evident that the progression of the best objective value for the discretized

method was faster than for the continuous method. Its minimum objective value started from a

comparatively better position. While for the continuous method, the best result in each generation

decreased its value almost linearly, the discretized method showed a sudden fall and then gradually

converged to the optimal solution. This graph conspicuously demonstrated that after the 20th

generation, the discretized method almost converged to the optimal solution whereas the continuous

method reached its optimal value only after 40 generations. So, the hypothesis was proved that the

discretized method takes less time to converge.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40M
IN

IM
U

M
 V

A
L

U
E

 O
F

 O
B

JE
C

T
IV

E

F
U

N
C

T
IO

N

GENERATION NUMBER Sample 1

Sample 2

Sample 1

Sample 2

Continuous
Discretized

68

4.2. Constrained Problem:

4.2.1. Continuous Method:

Results are shown in Table 4.3.

Table 4.3: Average of the optimal results of 30 trials

Penalty Function Average Objective
Function

Flat 0.44

Linear 0.39

Non-linear 0.41

Based on the average objective function, it was observed that the linear penalty function provided

better results regarding the average value of the objective function than the other two penalty

functions. But, no significant difference was observed. The impact of the penalty functions on the

enclosed area by the supports and the reaction differences also showed similar results.

Again, the continuous method could not provide better optimal results for the constrained

optimization problem as the obtained objective function’s value for all penalty functions were

comparatively larger. In all cases, the continuous method almost balanced the reaction forces but

generated very poor area values.

The next step of this work was to investigate the effect of the size of the discontinuous areas of the

solution space on the performance of GA. The area of the discontinuous spaces was increased by

25% and 50% (shown in Figure 4.7) to observe the impact of the increased discontinuous areas on

the optimal result.

69

(a) (b) (c)

Figure 4.7: Indeterminate structure with (a) previous discontinuous areas (b) 25%

increased circular discontinuities and (c) 50% increased circular discontinuities

No significant difference was observed among the performances of the three different penalty

functions with three different radius size. Similar results for the average value of the objective

function, the area value and the reaction differences were obtained.

4.2.2. Discretized Method:

The “Discretized Method” was also applied to the modified test case using equation (xvii) and

Figure 4.8 shows the obtained objective values for the three penalty functions for 30 trials.

70

Figure 4.8: Results of applying three different penalty functions- flat, linear and non-linear

with discretized method

Figure 4.8 shows that there was no significant difference in the performance of the three different

penalty functions because they had almost similar numeric optimal results with a sample size of 30.

The average value of the objective function of the flat, linear and non-linear penalty functions were

0.1456, 0.1472 and 0.1410 respectively. These penalty functions also performed in a similar fashion

for the components of the objective functions separately. Thus for this particular optimization

problem, it was observed that the type of penalty function used had no significant effect on the

performance of the GA.

This method was again tested for different sizes of the discontinuities in a similar fashion to that

described in section 4.2.1. Though the size of the discontinuous spaces was increased, it had no

significant impact on the performance of the GA. All three penalty functions successfully provided

similar optimum results.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30

O
bj

ec
tiv

e
F

un
ct

io
n

No of Trial

Flat Linear Non-linear

71

As one of the objectives was to maximize the enclosed area, support locations took place almost at

the boundaries of the rectangular plate. The circular holes were not located on the boundaries, so,

their increased size might have had some effect on the population generated in the initial

generations, but no significant impact on the optimal results. Figure 4.9 represents the same concept

by illustrating the results obtained by increasing the size of the circular holes by 25% and 50%.

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35

O
bj

ec
ti

ve
 F

un
ct

io
n

No. of Trial

Objective values for Flat, Linear and Non-Linear
penalties for 25% increased discontinuous area

Flat Linear Non-Linear

72

(b)

Figure 4.9: Objective functions for the three penalty functions after increasing the

discontinuous space by (a) 25% and (b) 50%

In Figure 4.9, it can be observed that all penalty functions acted similarly and provided results with

no significant differences. The average optimum objective function for the flat, linear and non-

linear penalties were 0.12, 0.14 and 0.14 for 25% increased discontinuity, and 0.12, 0.13 and 0.13 for

50% increased discontinuity. Thus, the “Discretized Method” determined the optimal results

successfully irrespective of the type of the penalty function and the size of the discontinuous areas.

4.3. Coded Algorithm for Constrained Optimization:

4.3.1. Coded Discretized Algorithm:

It has been discussed already in section 1 and 2 that GAs are not directly compliant to constrained

optimization. Though various methodologies have been developed and implemented to apply GA in

these optimization areas, some adjustments are always required based on the type of the methods. In

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35

O
bj

ec
tiv

e
F

un
ct

io
n

No. of Trial

Objective values for Flat, Linear and Non-Linear
penalties for 50% increased discontinuous area

Flat Linear Non-Linear

73

this thesis work, one of the popular methodologies, penalty functions, was applied. While setting the

parameters, it was patent that even a slight change in a single parameter affected the optimal result

immensely. So, selection of these parameters was not only critical but also very time-consuming.

Thus, the last step of this work was to develop a coded algorithm for GA which can eliminate the

requirement of using various methods for a specific class of constrained optimizations.

The proposed method, “Discretized Method,” was designed in such a way that it was applicable

without any penalty function while ensuring the feasibility of the optimum results. The basic concept

of this method was to divide the whole search space into very small horizontal and vertical strips,

and the intersection points of those strips comprised the set of the possible solutions instead of the

whole solution space. At the beginning of the GA search, that set of possible solutions was

generated and later used for the rest of the process. Index numbers of the intersection points were

used as design variables.

To eliminate the penalty function, the discretized method was coded and modified to remove the

strips located in the discontinuous areas from the set of the possible solutions. Thus, in this method

GAs started to work on only the feasible solutions and thus no penalty function or other techniques

were required to maintain feasibility. In Figure 4.10, the steps are shown:

74

Figure 4.10: Steps followed in coded discretized algorithm

Thus, infeasible locations were not even considered which invalidated the use of penalty functions

or other techniques to get feasible solutions. After applying this coded method, the following results

(Table 4.4) were obtained,

Table 4.4: Results obtained from Coded discretized method

1. Divide the solution space into smaller strips

2. Generate matrices of the abscissa and ordinate of the intersection of all strips

3. Make new matrices for both abscissa and ordinate by removing the strips located in the
discountinuous areas

4. GAs perform on the index numbers and based on the generated numbers corresponding
abscissa and ordinates are used to calculate the fitness

 Average Std Dev

Normalized Area 0.131 0.957

Normalized Reaction Difference 0.033 0.026

Normalized Objective Function, Z 0.164 0.037

75

Paired t-test (ߙ ൌ 5%) was conducted to observe any difference between this coded algorithm with

the discretized method. No statistically significant difference was observed between the objective

values of these two methods. So, the coded algorithm provided the same result without using any

penalty functions. Thus the coded algorithm saved unnecessary time required to calculate the

feasibility of each solution.

4.3.2. FEA Integrated Coded Discretized Method (FEAICDM):

Though the developed coded algorithm successfully provided a very good optimal result, one

limitation of this method is that it is easily applicable to simple and regular shaped discontinuous

areas (circular, rectangular, etc.) only. If a problem has irregular shaped discontinuous space, it will

be very difficult to eliminate the infeasible locations from the possible solution list. This problem

could be solved if the manual generation of the list of possible solutions is replaced by using an FEA

(Finite Element Analysis) software to generate the list.

FEA software generates a mesh by dividing the whole object into very small units. The location of

those units can be directly used as the list of a possible solution.

Solid Work 2015 x64 Edition was used to draw the test case and then the mesh was generated by

setting mesh density at “Fine”. After generating the mesh, locations of all nodes on the upper

surface of the test case were extracted from the model and saved in an Excel file. Later, these

locations were used as the possible solution list for the GA to start the search process. This way, the

complexity of the shape of the discontinuous space cannot affect the fastness of the solution

approach. This FEAICDM can solve any irregular shape.

The implementation of the FEAICDM provided the results shown in Table 4.5,

76

Table 4.5: Results obtained from FEA Integrated Coded Discretized method

 Average Std Dev

Area (m2) 17.12 0.88

Normalized Area 0.144 0.956

Reaction Difference (N) 53.53 47.97

Normalized Reaction Difference 0.024 0.021

Normalized Objective Function, Z 0.168 0.040

Table 4.5 shows almost similar results to the coded discretized method. The average value of the

enclosed area was 17.12 m2, which was very close to the heuristic value, 20 m2. The difference

among the reaction forces of the supports was minimal. A paired t-test (ߙ ൌ 5%) also showed that

these two methods are statistically same which implies that both methods are capable of providing

optimal results.

Thus, this method requires no penalty functions or other approaches to make GAs suitable for

constrained problem. It only considers the feasible solution and saves the time required to calculate

the fitness function for every solution. Moreover, any irregular shaped discontinuous search space

can be easily solved by using this method.

77

5. Conclusion:

In this work, a standard and simplified test case with multiple competing objectives have been

developed. The optimal values of these objectives were not so obvious to determine. A Genetic

Algorithm based methodology has been developed to minimize the reactive forces acting upon the

supports of the test case and to maximize the stability of the structure by maximizing the enclosed

area of the supports. The continuous GA has been applied to a predetermined set of GA parameters

to obtain the optimal support locations using a no-preference, normalized objective function. The

efficiency of the continuous method did not meet a satisfactory level, which has led towards a

coding based approach named “Discretized Method”. This method considered the entire continuous

solution space as a sum of smaller grids. The performance of this method has been compared with

the continuous simple GA method. It has been observed that the discretized method provided

better optimal results compared to the previous one. The proposed method was able to achieve

excellent results at 20th generations. Later, both methods were used for the same test case with

discontinuities applied to make the problem more pragmatic. Flat, linear and non-linear penalty

functions were used to handle the constrained problem for the GA. Results have shown no

mentionable differences among different penalty functions for both methods. The effect of the size

of the discontinuous areas on the optimality and the performance of the GAs have also been tested

which have also shown insignificant differences. Finally, the discretized method has been coded to

eliminate the infeasible areas from the entire search space. Thus feasible optimal results have been

obtained without using any penalty functions. This coded method provided very good consistent

results. To make this method applicable for any irregular shaped discontinuous search space, a FEA

integrated method has been developed. Statistical analysis has shown that this method provides

similar results to the coded discretized method. This modification makes discretized method more

78

robust and less complex by eliminating the necessity of the selection of the suitable penalty function

and its parameters. In this work, the developed discretized method has been tested only for a

specific class of problem and require more investigation regarding its applicability to other sets of

problems too. However, it can be concluded that the proposed FEAICDM has made GA more

sturdy and effective for a class of constrained problems by eliminating penalty functions.

79

Appendices

A. Table 4.7 Results of the indeterminate structure without discontinuity using

Continuous Method

 Run Z-value
(Maximum Force-

Minimum Force) (N)
Normalized

force
Area
(m2)

Normalized
Area

1 0.272 2.23 0.001 14.57 0.27
2 0.588 9.91 0.004 8.34 0.58
3 0.593 1.56 0.001 8.15 0.59
4 0.293 15.61 0.007 14.29 0.29
5 0.393 26.08 0.012 12.38 0.38
6 0.57 32.22 0.014 8.9 0.56
7 0.57 24.5 0.011 8.82 0.56
8 0.215 19.71 0.009 15.87 0.21
9 0.291 13.15 0.006 14.29 0.29
10 0.592 13.94 0.006 8.28 0.59
11 0.227 29.33 0.013 15.73 0.21
12 0.52 6.53 0.003 9.65 0.52
13 0.429 28.16 0.013 11.68 0.42
14 0.465 30.77 0.014 10.97 0.45
15 0.17 15.28 0.007 16.74 0.16
16 0.555 15.68 0.007 9.05 0.55
17 0.431 46.67 0.021 11.8 0.41
18 0.292 26.03 0.012 14.39 0.28
19 0.442 18.51 0.008 11.32 0.43
20 0.342 45.83 0.020 13.57 0.32
21 0.178 29.29 0.013 16.7 0.17
22 0.269 14.56 0.006 14.75 0.26
23 0.656 9.67 0.004 6.96 0.65
24 0.45 16.09 0.007 11.14 0.44
25 0.188 244.29 0.109 18.41 0.08
26 0.207 16.9 0.008 16.02 0.20
27 0.595 39.01 0.017 8.44 0.58
28 0.246 15.38 0.007 15.22 0.24
29 0.388 11.84 0.005 12.34 0.38
30 0.723 0.91 0.001 5.55 0.72

80

B. Table 4.8 Results of the indeterminate structure without discontinuity using
Discretized Method

Run Z-value
(Maximum Force-

Minimum Force) (N)
Normalized

force Area (m2)
Normalized

Area
1 0.11 11.27 0.005 17.89 0.11
2 0.17 26.28 0.012 16.84 0.16
3 0.145 0 0.000 17.1 0.15
4 0.217 0 0.000 15.65 0.22
5 0.168 0 0.000 16.64 0.17
6 0.124 0 0.000 17.52 0.12
7 0.112 5.66 0.003 17.81 0.11
8 0.193 0 0.000 16.14 0.19
9 0.155 5.89 0.003 16.95 0.15
10 0.132 0 0.000 17.36 0.13
11 0.107 11.19 0.005 17.97 0.10
12 0.151 33.18 0.015 17.27 0.14
13 0.152 0 0.000 16.97 0.15
14 0.171 8.02 0.004 16.65 0.17
15 0.105 0 0.000 17.9 0.11
16 0.218 0 0.000 15.64 0.22
17 0.117 27.88 0.012 17.91 0.10
18 0.134 43.43 0.019 17.71 0.11
19 0.128 39.03 0.017 17.79 0.11
20 0.114 20.1 0.009 17.9 0.11
21 0.105 16.98 0.008 18.06 0.10
22 0.138 23.13 0.010 17.45 0.13
23 0.216 0 0.000 15.68 0.22
24 0.119 34.32 0.015 17.93 0.10
25 0.191 21.84 0.010 16.38 0.18
26 0.156 17.76 0.008 17.04 0.15
27 0.139 77.08 0.034 17.92 0.10
28 0.132 5.62 0.003 17.41 0.13
29 0.173 0 0.000 16.54 0.17
30 0.117 30.01 0.013 17.92 0.10

81

C. Paired t-test analysis of Discretized Method and Coded Discretized Method

 Objective Function
Run Discretized Method Coded Discretized Method Difference

1 0.153 0.197 0.044
2 0.165 0.162 -0.003
3 0.173 0.224 0.051
4 0.115 0.183 0.068
5 0.185 0.148 -0.037
6 0.130 0.223 0.093
7 0.120 0.169 0.049
8 0.173 0.146 -0.027
9 0.125 0.195 0.070
10 0.155 0.140 -0.015
11 0.157 0.155 -0.002
12 0.116 0.121 0.005
13 0.112 0.141 0.029
14 0.202 0.129 -0.073
15 0.148 0.243 0.095
16 0.089 0.126 0.037
17 0.134 0.217 0.083
18 0.296 0.152 -0.144
19 0.140 0.142 0.002
20 0.127 0.183 0.056
21 0.085 0.149 0.064
22 0.119 0.215 0.096
23 0.162 0.124 -0.038
24 0.142 0.124 -0.018
25 0.132 0.131 -0.001
26 0.246 0.152 -0.094
27 0.103 0.212 0.109
28 0.101 0.100 -0.001
29 0.115 0.142 0.027
30 0.149 0.180 0.031

Average 0.146 0.164 0.019
Std Dev 0.044 0.037 0.059

Sample number 30 30 30
t value 2.045 2.045 2.045

alpha, α 0.050 0.050 0.050
95% C. I. Lower Bound 0.129 0.150 -0.004
95% C. I. Upper Bound 0.162 0.178 0.041

82

D. Paired t-test analysis of Coded Discretized Method and FEAICDM

 Objective Function
Run Coded Discretized Method FEAICDM Difference

1 0.197 0.135 -0.062
2 0.162 0.153 -0.009
3 0.224 0.184 -0.040
4 0.183 0.192 0.009
5 0.148 0.108 -0.040
6 0.223 0.152 -0.071
7 0.169 0.146 -0.023
8 0.146 0.152 0.006
9 0.195 0.144 -0.051
10 0.140 0.180 0.040
11 0.155 0.111 -0.044
12 0.121 0.101 -0.020
13 0.141 0.207 0.066
14 0.129 0.213 0.084
15 0.243 0.242 -0.001
16 0.126 0.121 -0.005
17 0.217 0.219 0.002
18 0.152 0.132 -0.020
19 0.142 0.269 0.127
20 0.183 0.178 -0.005
21 0.149 0.113 -0.036
22 0.215 0.184 -0.031
23 0.124 0.201 0.077
24 0.124 0.180 0.056
25 0.131 0.159 0.028
26 0.152 0.181 0.029
27 0.212 0.174 -0.038
28 0.100 0.178 0.078
29 0.142 0.134 -0.008
30 0.180 0.190 0.010

Average 0.164 0.168 0.004
Std Dev 0.037 0.040 0.048

Sample number 30.000 30.000 30.000
t value 2.045 2.045 2.045

alpha, α 0.050 0.050 0.050
95% C. I. Lower Bound 0.150 0.153 -0.014
95% C. I. Upper Bound 0.178 0.183 0.022

83

 References

[1] Deb, Kalyanmoy. Multi-objective optimization using evolutionary algorithms. Vol. 16. John Wiley & Sons,

2001.

[2] Dasgupta, Dipankar, and Zbigniew Michalewicz, eds. Evolutionary algorithms in engineering

applications. Springer Science & Business Media, 2013.

[3] Kalyanmoy, D., and K. Amarendra. "Real-coded genetic algorithms with simulated binary

crossover: studies on multimodal and multiobjective problems." Complex Systems 9.6 (1995): 431-454.

[4] Bäck, Thomas, and Hans-Paul Schwefel. "An overview of evolutionary algorithms for parameter

optimization." Evolutionary computation 1.1 (1993): 1-23.

[5] Back, Thomas. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming,

genetic algorithms. Oxford university press, 1996.

[6] Fogel, David B. Evolutionary computation: toward a new philosophy of machine intelligence. Vol. 1. John

Wiley & Sons, 2006.

[7] John, Holland. "Adaptation in natural and artificial systems." (1992).

[8] Goldberg, David E. "Genetic algorithms in search, optimization and machine learning ‘addison-

wesley, 1989." Reading, MA (1989).

[9] Vent, W. Rechenberg, Ingo. "Evolutionsstrategie Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart

1973. Broschiert." Feddes Repertorium 86.5 (1975): 337-337.

[10] Schwefel, Hans-Paul. Numerical optimization of computer models. John Wiley & Sons, Inc., 1981.

84

[11] Schneider, Gisbert, Johannes Schuchhardt, and Paul Wrede. "Artificial neural networks and

simulated molecular evolution are potential tools for sequence-oriented protein design." Computer

applications in the biosciences: CABIOS 10.6 (1994): 635-645.

[12] Fogel, Lawrence J. Artificial Intelligence Through Simulated Evolution.[By] Lawrence J. Fogel... Alvin J.

Owens... Michael J. Walsh. John Wiley & Sons, 1966.

[13] Luke, Brian T. "Evolutionary programming applied to the development of quantitative

structure-activity relationships and quantitative structure-property relationships." Journal of Chemical

Information and Computer Sciences 34.6 (1994): 1279-1287.

[14] Gehlhaar, Daniel K., et al. "Molecular recognition of the inhibitor AG-1343 by HIV-1 protease:

conformationally flexible docking by evolutionary programming." Chemistry & biology 2.5 (1995): 317-

324.

[15] Cramer, Nichael Lynn. "A representation for the adaptive generation of simple sequential

programs." Proceedings of the First International Conference on Genetic Algorithms. 1985.

[16] Koza, John. “What is Genetic Programming (GP).” Genetic Programming Inc., 08 July, 2007.

Web 10 May, 2016, http://www.genetic-programming.com/

[17] Kung, Hsiang-Tsung, Fabrizio Luccio, and Franco P. Preparata. "On finding the maxima of a

set of vectors." Journal of the ACM (JACM) 22.4 (1975): 469-476.

[18] Goldberg, Robert (ed.), A. A. e. J. L. “Evolutionary Multiobjective Optimization: Theoretical

Advances and Applications”. Springer London Ltd, 1st edition. (2005).

[19] Coello, Carlos Coello, Gary B. Lamont, and David A. Van Veldhuizen.Evolutionary algorithms for

solving multi-objective problems. Springer Science & Business Media, 2007.

85

[20] Rawlins, Gregory J. E. Foundations of Genetic Algorithms. Vol. 1. San Mateo, CA: M. Kaufmann,

1991.

[21] Gen, Mitsuo, and Runwei Cheng. "A survey of penalty techniques in genetic

algorithms." Evolutionary Computation, 1996., Proceedings of IEEE International Conference on. IEEE, 1996.

[22] Venkatraman, Sangameswar, and Gary G. Yen. "A generic framework for constrained

optimization using genetic algorithms." IEEE Transactions on Evolutionary Computation 9.4 (2005): 424-

435.

[23] Simpson, Angus R., Graeme C. Dandy, and Laurence J. Murphy. "Genetic algorithms compared

to other techniques for pipe optimization." Journal of water resources planning and management 120.4

(1994): 423-443.

[24] Dandy, Graeme C., Angus R. Simpson, and Laurence J. Murphy. "An improved genetic

algorithm for pipe network optimization." Water Resources Research 32.2 (1996): 449-458.

[25] Abdel-Gawad, HOSSAM AA. "Optimal design of pipe networks by an improved genetic

algorithm." Proceedings of the Sixth International Water Technology Conference IWTC. 2001.

[26] Bramlette, Mark F. "Initialization, Mutation and Selection Methods in Genetic Algorithms for

Function Optimization." ICGA. 1991.

[27] Baker, James Edward. "Adaptive selection methods for genetic algorithms."Proceedings of an

International Conference on Genetic Algorithms and their applications. 1985.

[28] Chipperfield, Andrew, et al. "Genetic algorithm toolbox for use with MATLAB." (1994).

[29] Caruana, Richard A., Larry J. Eshelman, and J. David Schaffer. "Representation and hidden bias

II: Eliminating defining length bias in genetic search via shuffle crossover." Proceedings of the 11th

international joint conference on Artificial intelligence-Volume 1. Morgan Kaufmann Publishers Inc., 1989.

86

[30] Booker, Lashon. "Improving search in genetic algorithms." Genetic algorithms and simulated

annealing (1987): 61-73.

[31] Jones, Dylan F., S. Keyvan Mirrazavi, and Mehrdad Tamiz. "Multi-objective meta-heuristics: An

overview of the current state-of-the-art." European journal of operational research 137.1 (2002): 1-9.

[32] Konak, Abdullah, David W. Coit, and Alice E. Smith. "Multi-objective optimization using

genetic algorithms: A tutorial." Reliability Engineering & System Safety 91.9 (2006): 992-1007.

[33] Schaffer, J. David. "Multiple objective optimization with vector evaluated genetic

algorithms." Proceedings of the 1st international Conference on Genetic Algorithms. L. Erlbaum Associates

Inc., 1985.

[34] Fonseca, C. M., and P. J. Fleming. "Multiobjective genetic algorithms. In: IEE colloquium on

Genetic Algorithms for Control Systems Engineering." (1993).

[35] Horn, Jeffrey, Nicholas Nafpliotis, and David E. Goldberg. "A niched Pareto genetic algorithm

for multiobjective optimization." Evolutionary Computation, 1994. IEEE World Congress on Computational

Intelligence., Proceedings of the First IEEE Conference on. Ieee, 1994.

[36] Hajela, Prabhat, and C-Y. Lin. "Genetic search strategies in multicriterion optimal

design." Structural optimization 4.2 (1992): 99-107.

[37] Srinivas, Nidamarthi, and Kalyanmoy Deb. "Muiltiobjective optimization using nondominated

sorting in genetic algorithms." Evolutionary computation2.3 (1994): 221-248.

[38] Knowles, Joshua D., and David W. Corne. "Approximating the nondominated front using the

Pareto archived evolution strategy." Evolutionary computation8.2 (2000): 149-172.

87

[39] Deb, Kalyanmoy, et al. "A fast and elitist multiobjective genetic algorithm: NSGA-II." IEEE

transactions on evolutionary computation 6.2 (2002): 182-197.

[40] Deb, Kalyanmoy, Ashish Anand, and Dhiraj Joshi. "A computationally efficient evolutionary

algorithm for real-parameter optimization." Evolutionary computation 10.4 (2002): 371-395.

[41] Corne, David W., et al. "PESA-II: Region-based selection in evolutionary multiobjective

optimization." Proceedings of the genetic and evolutionary computation conference (GECCO’2001. 2001.

[42] Corne, David W., Joshua D. Knowles, and Martin J. Oates. "The Pareto envelope-based

selection algorithm for multiobjective optimization."International Conference on Parallel Problem Solving

from Nature. Springer Berlin Heidelberg, 2000.

[43] Zitzler, Eckart, Marco Laumanns, and Lothar Thiele. "SPEA2: Improving the strength Pareto

evolutionary algorithm." Eurogen. Vol. 3242. No. 103. 2001.

[44] Zitzler, Eckart, and Lothar Thiele. "An evolutionary algorithm for multiobjective optimization:

The strength pareto approach." (1998).

[45] Gen, Mitsua, Kenichi Ida, and Yinzhen Li. "Solving bicriteria solid transportation problem by

genetic algorithm." Systems, Man, and Cybernetics, 1994. Humans, Information and Technology., 1994 IEEE

International Conference on. Vol. 2. IEEE, 1994.

[46] Tamaki, Hisashi, et al. "Multicriteria optimization by genetic algorithms: a case of scheduling in

hot rolling process." Proceeding of the Third APORS. 1995.

[47] Abido, Mohammad A. "Multiobjective evolutionary algorithms for electric power dispatch

problem." Computational Intelligence. Springer Berlin Heidelberg, 2009. 47-82.

[48] Camp, Charles, Shahram Pezeshk, and Guozhong Cao. "Optimized design of two-dimensional

structures using a genetic algorithm." Journal of structural engineering 124.5 (1998): 551-559..

88

[49] Nanakorn, Pruettha, and Konlakarn Meesomklin. "An adaptive penalty function in genetic

algorithms for structural design optimization." Computers & Structures 79.29 (2001): 2527-2539.

[50] Choi, Byung Gun, and Bo Suk Yang. "Optimum shape design of rotor shafts using genetic

algorithm." Journal of Vibration and Control 6.2 (2000): 207-222.

[51] Dharmadhikari, Sagar R., et al. “Design and Analysis of Composite Drive Shaft using ANSYS

and Genetic Algorithm” A Critical Review." Int. J. Mod. Eng. Res 3.1 (2013): 490-496.

[52] Ohsaki, M. "Genetic algorithm for topology optimization of trusses."Computers & Structures 57.2

(1995): 219-225.

[53] Rajan, S. D. "Sizing, shape, and topology design optimization of trusses using genetic

algorithm." Journal of Structural Engineering 121.10 (1995): 1480-1487.

[54] Nagendra, Somanath, et al. "Improved genetic algorithm for the design of stiffened composite

panels." Computers & Structures 58.3 (1996): 543-555.

[55] Al-Shihri, M. A. "Structural Optimization Using a Novel Genetic Algorithm for Rapid

Convergence." International Journal of Civil and Structural Engineering1.2 (2010): 123.

[56] Deb, Kalyanmoy. "An efficient constraint handling method for genetic algorithms." Computer

methods in applied mechanics and engineering 186.2 (2000): 311-338.

[57] Coello Coello, Carlos A. "Theoretical and numerical constraint-handling techniques used with

evolutionary algorithms: a survey of the state of the art."Computer methods in applied mechanics and

engineering 191.11 (2002): 1245-1287.

[58] Michalewicz, Zbigniew. "Genetic algorithms, numerical optimization, and constraints." Proceedings

of the sixth international conference on genetic algorithms. Vol. 195. Morgan Kaufmann, San Mateo, CA, 1995.

89

[59] Takahama, Tetsuyuki, and Setsuko Sakai. "Constrained optimization by the ε constrained

differential evolution with gradient-based mutation and feasible elites." Evolutionary Computation, 2006.

CEC 2006. IEEE Congress on. IEEE, 2006.

[60] Richardson, Jon T., et al. "Some guidelines for genetic algorithms with penalty

functions." Proceedings of the third international conference on Genetic algorithms. Morgan Kaufmann Publishers

Inc., 1989.

[61] Runarsson, Thomas P., and Xin Yao. "Stochastic ranking for constrained evolutionary

optimization." Evolutionary Computation, IEEE Transactions on4.3 (2000): 284-294.

[62] Courant, Richard. "Variational methods for the solution of problems of equilibrium and

vibrations." Bull. Amer. Math. Soc 49.1 (1943): 1-23.

[63] Fiacco, Anthony V., and Garth P. McCormick. "Extensions of SUMT for nonlinear

programming: equality constraints and extrapolation." Management Science 12.11 (1966): 816-828.

[64] Carroll, Charles W. "The created response surface technique for optimizing nonlinear, restrained

systems." Operations Research 9.2 (1961): 169-184.

[65] Schwefel, Hans-Paul Paul. Evolution and optimum seeking: the sixth generation. John Wiley & Sons, Inc.,

1993.

[66] Smith, Alice E., and David W. Coit. "Penalty functions." Handbook on Evolutionary Computation,

pages C 5 (1997): 1-6.

[67] Schoenauer, Marc, and Spyros Xanthakis. "Constrained GA optimization."ICGA. 1993.

90

[68] Ali, M. M., Mohsen Golalikhani, and Jun Zhuang. "A computational study on different penalty

approaches for solving constrained global optimization problems with the electromagnetism-like

method." Optimization 63.3 (2014): 403-419.

[69] Homaifar, Abdollah, Charlene X. Qi, and Steven H. Lai. "Constrained optimization via genetic

algorithms." Simulation 62.4 (1994): 242-253.

[70] Joines, Jeffrey A., and Christopher R. Houck. "On the use of non-stationary penalty functions to

solve nonlinear constrained optimization problems with GA's." Evolutionary Computation, 1994. IEEE

World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on. IEEE, 1994..

[71] Mezura-Montes, Efrén, and Carlos A. Coello Coello. "Constraint-handling in nature-inspired

numerical optimization: past, present and future." Swarm and Evolutionary Computation 1.4 (2011): 173-

194.

[72] Hart, Emma, Peter Ross, and Jeremy Nelson. "Solving a real-world problem using an evolving

heuristically driven schedule builder." Evolutionary Computation 6.1 (1998): 61-80.

[73] B. Dack, Thomas, Frank Hoffmeister, and Hans—Paul Schwefel. "A survey of evolution

strategies." Proceedings of the 4th international conference on genetic algorithms. 1991.

[74] Crossley, William A., and Edwin A. Williams. "A study of adaptive penalty functions for

constrained genetic algorithm based optimization." AIAA 35th aerospace sciences meeting and exhibit.

Reno, Nevada, 1997.

[75] Tessema, Biruk Girma. "Self-adaptive Genetic Algorithm for Constrained Optimization." (2006).

[76] Bazaraa, Mokhtar S., Hanif D. Sherali, and Chitharanjan M. Shetty.Nonlinear programming: theory and

algorithms. John Wiley & Sons, 2013.

91

[87] Hwang, C-L., and Abu Syed Md Masud. Multiple objective decision making—methods and applications: a

state-of-the-art survey. Vol. 164. Springer Science & Business Media, 2012

[78] Cochrane, James L., and Milan Zeleny. Multiple criteria decision making. Univ of South Carolina Pr,

1973.

	Application of Genetic Algorithm in Multi-objective Optimization of an Indeterminate Structure with Discontinuous Space for Support Locations
	ScholarWorks Citation

	tmp.1474655430.pdf.gZ_lY

