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Abstract 

Tropical cloud forest streams are one of the most threatened and understudied ecosystems 

in the world.  Understanding how these ecosystems function is essential for effective 

conservation.  In this study, macroinvertebrate community composition, functional feeding group 

analysis, ecosystem attributes, and physicochemical parameters were used to evaluate 

biophysical stream conditions of 3 low-order Neotropical cloud forest streams at Reserva Las 

Gralarias in Mindo, Ecuador.  Additionally, food web structure was analyzed via stable isotope 

analysis and aquatic insect emergence rate was also examined.  As stream size increased from 1
st
 

to 3
rd

 order, the macroinvertebrate communities shifted from being collector-gatherer dominated 

(65.2 to 29.8%, respectively) to being scraper dominated (17.9 to 56.3%, respectively).  

Shredders were poorly represented in all streams (2.7, 3.3, and 2.0% for 1
st
, 2

nd
, and 3

rd
 order 

streams, respectively) similar to reports from other tropical systems.  The analyses used in this 

and other tropical stream studies are based on temperate-based theories, which have been found 

to be inapplicable to tropical systems.  Until tropical-based theoretical predictions are 

established, however, conservation efforts based on temperate theories should be implemented.  

Stable isotope analysis revealed a typical food web structure with basal resources having the 

lowest δ
13
C and δ

15
N signatures and these values increasing up the food web.  Generally, δ

15
N 

signatures in our systems were depleted when compared to other tropical studies.  Lastly, aquatic 

insect emergence was not correlated with rain or the moon cycle.  Results from this study 

provide base-line physical, chemical, and biological data on these streams that can be effectively 

used to track environmental changes in land-use via long-term monitoring.  Furthermore, results 

from this study provide basic data on tropical stream ecosystem function that will be valuable as 

stream theories with specific predictions for the tropics are created, which will lead to better 
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monitoring efforts and more effective restoration and protection of these threatened and 

disappearing systems. 
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Chapter 1: Introduction 

1. Introduction 

Tropical montane cloud forests (‘cloud forests’) are one of the most biodiverse 

ecosystems on the planet and contain an incredible number of endemic species (Bruijnzeel et al. 

2010, Hamilton et al. 1995).  Gentry (1992) suggests that local endemism in cloud forests is 10-

24% for plant species.  There are also high rates of endemism in animals.  For example, nearly a 

third of Peru’s endemic mammals, anurans, and birds are found in cloud forest habitats (Leo 

1995).  Cloud forests are also are one of the most threatened ecosystems and are considered a 

conservation priority.  The largest threats to these ecosystems are climate change, air quality, and 

land conversion (Hamilton et al. 1995).  Cloud forests provide numerous ecosystem services 

such as clean drinking water, nutrient cycling, and protection against erosion (Hamilton et al. 

1995, Bruijnzeel et al. 2010, Martínez et al. 2009) and the loss of these ecosystems means the 

loss of their ecosystem services as well.   

The river continuum concept (RCC) is a theory that examines longitudinal changes in 

macroinvertebrate community composition in streams and predicts the importance of basal 

resources as streams increase in size (Vannote 1980).  Methods based on these predictions have 

been established to assess ecosystem health and function.  For example, macroinvertebrates can 

be categorized into functional feeding groups (FFGs) based on how they acquire resources 

(Cummins and Klug 1979).  As several species may be redundant in how they obtain resources, 

focusing on FFGs is a more stable and predictable method to study ecosystem function than 

species abundance or composition alone (Hawkins and MacMahon 1989).  Exploring FFGs 

provides a way to examine food web structure and dynamics and can be used to assess how land-

use changes impact resource availability (Hawkins and MacMahon 1989, Bondada et al. 2006).  
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This approach reflects longer-term stream conditions than chemical data alone and thus better 

represents the effects of land-use change on an ecosystem (Bücker et al. 2010). 

The RCC is based-upon temperate streams and many studies have found specific 

predictions of this theory to be inapplicable to tropical systems (Dudgeon et al. 2010; Greathouse 

and Pringle 2006).  For instance, according to the RCC, low-order forested streams are 

dependent on coarse particulate organic matter (CPOM) that comes from allochthonous inputs 

(Vannote et al. 1980).  In low-order tropical streams, CPOM is the most dominant basal food 

source in terms of biomass but not in terms of consumption. Mantel et al. (2004) found that 

although CPOM was the dominant basal source in a stream in southern China, fine particulate 

organic matter (FPOM) and periphyton were more prominent in the gut content of 

macroinvertebrates. Other studies on tropical streams have determined CPOM to serve more as a 

substrate than a food source (Li et al. 2009, Uieda and Carvalho 2015). 

In terms of the macroinvertebrate community, shredding specialists and collectors are 

predicted to be codominant FFG in low-order forested streams according to the RCC (Vannote et 

al. 1980).  However, macroinvertebrate communities of low-order forested tropical streams are 

typically dominated by collectors while shredding specialists are a rarity (Dudgeon et al. 2010, 

Mantel et al. 2004, Ramírez and Pringle 1998).  Although not all tropical streams follow this 

trend (Cheshire et al. 2005, Cummins et al. 2005), the vast majority do (e.g. Dobson et al. 2002; 

Mathuriau and Chauvet 2002; Lau et al. 2009).  In most cases where shredding specialist 

macroinvertebrates are absent there is typically a larger macroconsumer, such as shrimp and fish, 

covering that niche (Moulton et al. 2010, Ocasio-Torres et al. 2015, Wright and Covich 2005).  

There is still more investigating to do in this area of tropical streams as basic questions about 

ecosystem function remain unanswered. 
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Furthermore, aquatic macroinvertebrates have been found to be more plastic in their 

feeding than their FFG implies (Dangles 2002).  Lancaster et al. (2004), for example, used gut 

content and stable isotope analyses to examine if omnivory was occurring in aquatic 

macroinvertebrates that are traditionally considered predatory.  Gut content results indicated that 

all 6 study taxa consumed large quantities of algae while stable isotope mixing models estimated 

3 of the 6 taxa to be true omnivores with nearly half of their nitrogen being derived from algae.  

On top of this, some tropical streams have higher rates of omnivory by macroinvertebrates than 

their temperate counterparts (Frauendorf et al. 2013, Blanchette et al. 2014, but see Dudgeon et 

al. 2010) potentially making the findings of temperate-based methods questionable in this region.   

An essential component of the RCC is the aquatic-terrestrial linkage.  This is the 

exchange of materials between the terrestrial and the aquatic ecosystems, such as a stream and its 

riparian zone.  Historically, it was thought that the aquatic ecosystem relied on terrestrial inputs 

more than riparian zones relied on aquatic inputs (Baxter et al. 2005).  This is due to the 

assumption that more material exchange occurs from the riparian zone to the stream (Power et al. 

2001).  However, just because materials are being exchanged between ecosystems does not mean 

they are being assimilated by organisms.  Stable isotopes analysis of carbon and nitrogen is a 

tool used by ecologists to quantitatively examine aquatic-terrestrial energy exchange and 

determine food web structure (Peterson and Fry 1987).  The amount of δ
13

C found in an 

organism gives insight into where the plant sources of carbon originate while the amount of δ
15

N 

indicates its trophic position in the food web (Fry 1991).  Bartels et al. (2012) conducted a meta-

analysis to determine whether terrestrial or aquatic ecosystems receive more energy.  In terms of 

quantity, aquatic ecosystems are receiving more inputs than terrestrial ecosystems.  However, 

stable isotope analyses revealed that in terms of carbon being assimilated by organisms, the two 
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ecosystems are equal.  Without conducting the stable isotope analyses, it is difficult to determine 

that both systems are in fact energetically contributing equally (Bartels et al. 2012). 

Before the meta-analysis from Bartels et al. (2012) quantified this energy exchange, 

Nakano and Murakami (2001) described this aquatic-terrestrial exchange of materials as 

“reciprocal subsidies,” meaning terrestrial inputs, such as falling leaves and insects, fuel the 

aquatic food web while emerging aquatic insects provide energy to the terrestrial food web.  In 

this groundbreaking study, they found the diets of terrestrial predators to follow the pattern of 

aquatic prey abundances over time.  When aquatic insects were emerging from their study 

stream, they comprised a larger portion of terrestrial predator’s diets than when they were not 

emerging from the streams.  The same was found for fish – as more terrestrial insects were 

falling into the stream, there were more of these terrestrial invertebrates incorporated into their 

diets (Nakano and Murakami 2001).  Other studies have also found this relationship to exist (e.g. 

Baxter et al. 2004, Nakano et al. 1999) and some found it to be so strong that the abundance of 

terrestrial predators is significantly influenced by the abundance of their aquatic prey (Sabo and 

Power 2002). 

 Bartels et al. (2012) developed a generalization about aquatic-terrestrial inputs based on 

their meta-analysis and the results suggested aquatic ecosystems receive more subsidies than 

terrestrial ecosystems.  However, of the over 200 studies analyzed in this paper only a handful 

were conducted outside of the temperate zone.  This illustrates the lack of study on energy flow 

between terrestrial and aquatic ecosystems in the tropics.  Bartels et al. (2012) acknowledge that 

the results from their study were biased towards temperate locations and that there is a need for 

further investigations in non-temperate regions.  Regardless, they believe their observed patterns 

are present globally.  As temperate and tropical streams seem to operate and function in different 
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ways (Dudgeon et al. 2010), this pattern cannot be considered a global generalization until the 

tropics are better represented in this area of research.  For example, Frauendorf et al. (2013) 

conducted a study on a headwater stream in Panama that quantified energy flow via tadpole and 

macroinvetebrate gut content and secondary primary production estimations.  After comparing 

their results with temperate streams of equal size, they found their Panamanian stream to have 

lower macroinvertebrate production.  The authors predicted that this was primarily due to 

hydrological disturbances, such as floods during the rainy season, as they reduce invertebrate 

biomass and resource availability.  Due to lack of flooding events in the dry season, greater 

amounts of food sources were ingested at higher rates during this time of year.   

Although these RCC-based analyses may not be as accurate in tropical streams, it does 

provide a starting point for ecological evaluation.  As more evidence piles up to support the 

inapplicability of the RCC predictions to tropical headwater streams, it is likely that they will 

require their own theories and predictions (Dudgeon et al. 2010, Mantel et al. 2004).  While the 

world waits for these breakthroughs to come about, using temperate-based practices provide a 

solid starting point in the management, restoration, and conservation of these systems.  

Ultimately, however, more basic research on ecosystem function is needed to create effective 

conservation plans for tropical streams (Moulton and Watzen 2006). 
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2.  Purpose 

 The purpose of this study was to examine and compare 3 low-order (1
st
-3

rd
) forested 

Neotropical streams located in Mindo, Ecuador.  Macroinvertebrate community composition, 

FFG analysis, ecosystem attributes, and physicochemical parameters were used to evaluate 

biophysical stream conditions.  Base-line stable isotope data was also examined in all 3 streams 

to determine how a typical Neotropical stream food web is structured.  Furthermore, aquatic 

adult insect emergence was monitored weekly for 6 weeks in the 2
nd

 order stream to examine 

emergence patterns.   
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3. Scope 

This study was conducted in the cloud forest of Reserva Las Gralarias (S 0°00’33”, W 

078°44’15”; 1750-2400 m a.sl.) in Mindo, Ecuador during the summer of 2015.  We had 3 

sample sizes: Kathy’s Creek (1
st
 order), Lucy’s Creek (2

nd
 order), and Rio Santa Rosa (3

rd
 order).  

Macroinvertebrate community composition, physicochemical parameters, and stable isotope 

analysis samples were collected from May 31
st
 – June 6

th
, 2015 during the transition from the 

wet to dry season.  Aquatic adult emergence rate was collected 6 times from June 8
th

 to July 21
st
, 

2015 at Lucy’s Creek. 
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4. Assumptions 

Our macroinvertebrate community composition sampling took place over a few days 

during the transition from the wet to dry season in 2015.  This means that the community 

composition we found is really only a snapshot of the community.  We assume that this snapshot 

is representative of what the community looks like, on average, for the entire wet season.  The 

same lack of seasonal replication can be applied to all of our sampling. 
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5. Hypotheses 

We hypothesized that 1) macroinvertebrate communities will change along a size (order) 

gradient and FFG analyses will reveal healthy systems, 2) stable isotope analyses will reveal 

typical aquatic food web patterns, and 3) aquatic emergence rates will be constant or correlate 

with the moon cycle. 
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6. Significance 

Results from this study provide base-line physical, chemical, and biological data on these 

streams and mark the beginning of a long-term monitoring effort.  The long-term monitoring 

data collected at these sites will be used effectively to track environmental changes in land-use in 

the area.  Results from this study will also provide basic data on tropical stream ecosystem 

function.  This is also the first study to conduct stable isotope analyses in Ecuador streams and 

cloud forest streams and will provide valuable information on aquatic food webs in this area.  

This information will be valuable as stream theories with specific predictions for the tropics are 

created and eventually lead to better monitoring efforts and more effective restoration and 

protection of these threatened systems 
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7. Definitions 

Bioindicator – an organism used as an indication of an ecosystem’s health 

Cloud forest – a type of rainforest characterized by persistent low-level clouds 

Collector-gatherers/gathering collectors – aquatic macroinvertebrates that feed by foraging the 

streambed 

Endemism – organisms that are unique to a defined geographic location 

Collector-filterers/filtering collectors – aquatic macroinvertebrates that feed by filtering the water 

column 

Functional feeding groups – classifications based on how organisms gather food 

Macroconsumers – larger omnivorous macroinvertebrates, such as shrimp and crabs, as well as 

small vertebrates, typically fish and tadpoles. 

Neotropical – the tropics located in the Western hemisphere 

Omnivory – consumption of many different types of food resources 

Predators – organisms that eat other organisms 

Riparian zone – the interface between a stream and the land/forest that surrounds the stream 

Scrapers – aquatic macroinvertebrates that physically remove their food source (most commonly 

periphyton) from physical surfaces such as rocks 

Shredders – aquatic macroinvertebrates that feed on coarse particulate organic matter 

Stable isotope analysis – a tool used by ecologists that looks at naturally occurring isotopes in 

organisms to determine where they belong in a food web as well as to examine how 

energy is transferred between ecosystems 
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Chapter 2: Macroinvertebrate community composition, food web structure, and emergence 

rate of Neotropical cloud-forest streams in Mindo, Ecuador 

 

1. Abstract  

Tropical cloud forest streams are one of the most threatened and understudied ecosystems 

in the world.  Understanding how these ecosystems function is essential for effective 

conservation.  In this study, macroinvertebrate community composition, functional feeding group 

analysis, ecosystem attributes, and physicochemical parameters were used to evaluate 

biophysical stream conditions of 3 low-order Neotropical cloud forest streams at Reserva Las 

Gralarias in Mindo, Ecuador.  Additionally, food web structure was analyzed via stable isotope 

analysis and aquatic insect emergence rate was also examined.  As stream size increased from 1
st
 

to 3
rd

 order, the macroinvertebrate communities shifted from being collector-gatherer dominated 

(65.2 to 29.8%, respectively) to being scraper dominated (17.9 to 56.3%, respectively).  

Shredders were poorly represented in all streams (2.7, 3.3, and 2.0% for 1
st
, 2

nd
, and 3

rd
 order 

streams, respectively) similar to reports from other tropical systems.  The analyses used in this 

and other tropical stream studies are based on temperate-based theories, which have been found 

to be inapplicable to tropical systems.  Until tropical-based theoretical predictions are 

established, however, conservation efforts based on temperate theories should be implemented.  

Stable isotope analysis revealed a typical food web structure with basal resources having the 

lowest δ
13
C and δ

15
N signatures and these values increasing up the food web.  Generally, δ

15
N 

signatures in our systems were depleted when compared to other tropical studies.  Lastly, aquatic 

insect emergence was not correlated with rain or the moon cycle.  Results from this study 

provide base-line physical, chemical, and biological data on these streams that can be effectively 
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used to track environmental changes in land-use via long-term monitoring.  Furthermore, results 

from this study provide basic data on tropical stream ecosystem function that will be valuable as 

stream theories with specific predictions for the tropics are created, which will lead to better 

monitoring efforts and more effective restoration and protection of these threatened and 

disappearing systems. 
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2. Introduction 

Tropical streams are extremely threatened ecosystems (Malmqvist and Rundle 2002) and 

those that are found in cloud forest are under even more pressure (Astudillo et al. 2016) as these 

forests are disappearing faster than any other ecosystem (Hamilton et al. 1995).  Deforestation is 

the biggest threat to cloud forest streams with effects of this process including increased nutrients 

and deposited sediments (Buss et al. 2014).  Although they only comprise 0.14% of the Earth’s 

land, cloud forests are considered biodiversity hot spots (Bruijnzeel et al. 2011).  Protection is 

essential in cloud forest stream conservation as these streams are extremely sensitive to change 

and even the smallest alteration in land use can have large ecological impacts (Astudillo et al. 

2016) including the loss of endemic species and a decrease in water quality (Martínez et al. 

2009).  Pristine tropical streams that are located within large protected areas deserve immediate 

attention by conservationists and researchers as they can be set aside and preserved before being 

impacted.  The preservation of undisturbed cloud forests will allow the collection of basic 

information that will aid in conservation of these imperiled systems (Dudgeon et al. 2006).  In 

order to effectively restore disturbed cloud forests, an understanding of how they function is 

essential (Moulton and Wantzen 2006).  However, tropical stream ecosystem function remains 

largely understudied (Jackson and Sweeney 1995). 

 Macroinvertebrate functional feeding groups (FFG) can be used as bioindicators to assess 

ecological function of aquatic systems and to examine how different land-use changes impact 

stream food web availability (Bonada et al. 2006).  Bioindicators were originally used in streams 

to assess human impacts such discharge sewage.  Original methods consisted of ranking 

organisms based on sensitivity levels and their abundances but has evolved to focus on function 

(Karr and Chu 1999).  Using macroinvertebrates as bioindicators reflects the longer-term 
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perturbations of a stream more so than chemical data alone and thus better represents the effects 

of land-use changes on an ecosystem (Bücker et al. 2010).  This approach is based on the river 

continuum concept (RCC), which examines longitudinal changes in macroinvertebrate 

community composition and predicts the relative importance of basal resources as a stream 

increases in size (Vannote et al. 1980).  However, the RCC is based upon temperate forested 

streams and studies have determined certain predictions of this theory to be inapplicable to 

tropical systems (Dudgeon et al. 2010, Greathouse and Pringle 2006).  Additionally, aquatic 

macroinvertebrates have been found to be more plastic in their feeding than their FFG implies 

(Dangles 2002) and tropical streams in particular have higher rates of macroinvertebrate 

omnivory than temperate streams (Frauendorf et al. 2013).  However, while the applicability of 

FFG analyses is questionable in these systems, it does provide a starting point for ecological 

evaluations and in particular, functional aspects of the stream ecosystem such as food web 

structure and energy flow. 

An essential element of a stream’s ecological function is the terrestrial-aquatic linkage.  

Terrestrial inputs, such as falling leaves and insects, fuel the aquatic food web while emerging 

aquatic insects provide energy to the terrestrial food web.  These inputs work with one another 

through a process described as a “reciprocal subsidy” by Nakano and Murakami (2001).  Stable 

isotope analysis of C and N is a tool commonly used by ecologists to quantitatively examine this 

energy exchange and determine food web structure.  The amount of δ
13

C found in an organism 

gives insight into where the plant sources of carbon originate while the amount of δ
15

N indicates 

its trophic position in the food web (Fry 1991).  Both δ
13

C and δ
15

N increase with each trophic 

transfer with δ
13

C increasing about 0.0-1.0 ‰ per trophic level and δ
15

N increasing by 3-5 ‰ per 

trophic level (Peterson and Fry 1987).  Because of this, when plotted on a figure, a typical food 
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web should create a positive slope with basal resources sitting in the bottom-left of the plot and 

the highest consumer positioned in the top-right.   

The purpose of this study was to examine and compare 3 low-order (1
st
-3

rd
) forested 

Neotropical streams located in Mindo, Ecuador.  Macroinvertebrate community composition, 

FFG analysis, ecosystem attributes, and physicochemical parameters were used to evaluate 

biophysical stream conditions.  Base-line stable isotope data was also examined in all 3 streams 

to determine how a typical Neotropical stream food web is structured.  Furthermore, aquatic 

adult insect emergence was monitored weekly for 6 weeks in the 2
nd

 order stream to examine 

emergence patterns.  We hypothesized that 1) macroinvertebrate communities will change along 

a size (order) gradient and FFG analyses will reveal healthy systems, 2) stable isotope analyses 

will reveal typical food web patterns, and 3) aquatic emergence rates will be constant or correlate 

with the moon cycle.  Results from this study provide base-line physical, chemical, and 

biological data on these streams and mark the beginning of a long-term monitoring effort.  The 

long-term monitoring data collected at these sites will be used effectively to track environmental 

changes in land-use in the area.  Results from this study will also provide basic data on tropical 

stream ecosystem function. This information will be valuable as stream theories with specific 

predictions for the tropics are created and eventually lead to better monitoring efforts and more 

effective restoration and protection of these threatened systems. 
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3. Methods 

3.1 Study area 

Reserva Las Gralarias (RLG) is a 405-ha Neotropical cloud forest reserve in the Mindo Parish, 

Pichincha province, Ecuador (S 0°00’33”, W 078°44’15”; 1750-2400 m a.sl.). It contains 

primary and secondary forests, regenerating pasture, several permanent and seasonal streams 

(Hutter and Guayasamin 2012) and is located within the Chocó/Western Ecuador biodiversity 

hotspot (Myers et al. 2000).  The wet season is from October to May with an annual total rainfall 

of 2400 mm.  Our sampling took place from May 31
st
- July 21

st
, 2015 during the transition from 

wet to dry season.  The 3 RLG streams sampled in this study included Kathy’s Creek (KC; 1
st
 

order), Lucy’s Creek (LC; 2
nd

 order), and Río Santa Rosa (RSR; 3
rd

 order).  These systems were 

selected based on accessibility.  The streams are independent tributaries that never connect and 

eventually drain into Esmeraldas River.  KC is the smallest of the 3 and has a streambed entirely 

composed of clay.  LC is larger than KC and is characterized by its large boulders.  RSR is the 

largest of the 3 systems in terms of depth and width and is the only one of the study streams to 

support fish.  These 3 systems are not anthropogenically impacted.  RSR has experienced some 

light grazing about 1 km in distance and 300 m in elevation upstream of the study location but no 

negative effects of grazing can be detected.  The land surrounding these systems includes 

primary and secondary cloud forest and old pasture land that is in a re-growth phase where active 

efforts have been put forth successfully for the last decade to plant trees and re-grow the cloud 

forest (personal communication, J. Lyons).  At the locations where sampling occurred there were 

no signs of impact to the riparian zones within 100 m or more of the stream.  
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3.2 Data collection 

3.2a Benthic macroinvertebrate community 

 Benthic macroinvertebrate abundance (individuals/m
2
) was measured using a modified 

Surber net sampler (area = 0.18 m
2
).  Three samples were taken within a 100-m reach at each 

stream during the morning (8:00 to 10:00 am). Contents of the samples were stored in 95% 

ethanol until the sorting and identification processes.  Specimens were enumerated and identified 

to family and FFG primarily using tropical-based references (e.g. Cummins et al. 2005, Encalada 

et al. 2011) and North American-based references when necessary (e.g. Merritt and Cummins 

1984).  Diversity was calculated for each Surber sample using Shannon’s diversity index. 

Richness (number of families present) was also determined for each sample. Ecosystem 

attributes were determined using FFG ratios as described in Hauer and Lamberti (1996).  This 

method allows for the monitoring of land-use practices as FFG ratios will respond to changes in 

food resource availability.  

3.2b Physicochemical parameters 

 Physicochemical parameters were measured on one occasion at each site at the time of 

benthic macroinvertebrate sampling (Table 1).  A YSI hand-held probe (Yellow Springs, Ohio, 

USA) was used to measure water temperature (°C), dissolved oxygen (percent and mg/L), 

conductivity (S/m), and total dissolved solids (ppm).  Elevation was determined using a GPS or 

topographic maps when necessary. Median substrate data were obtained from unpublished data 

collected in May 2014 (personal communication, E.B. Snyder) and was collected using the 

modified Wolman Pebble Count method (Wolman 1954).  Parameters obtained from the YSI 

were measured 3 times within each 100-m stream reach while elevation and substrate were only 

measured once. Discharge was determined by measuring cross sectional area and estimating 
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velocity of a floating object 3 times.  Light irradiance as photosynthetically active radiation 

(PAR) was measured 10 times at each site in the morning using a LiCor underwater quantum 

senor (Li 192 UWQ; Lincoln, Nebraska) and a LiCor hand-held meter (Li 250A).  Periphyton 

was scraped from rocks in LC and RSR.  At KC periphyton was collected off of large pieces of 

clay as rocks were not present.  Chlorophyll-α level was also measured at each stream.  

Periphyton was sampled from a 4.9 cm
2
 area of the rock (or clay) surface onto a 0.45 μm fiber 

glass filter and was kept in a freezer until transported to the Aquatic Ecology lab at the 

Universidad San Francisco de Quito for further analysis.  Pigment extraction methods were 

conducted with 100% ethanol and follow spectrophotometric analysis of Chlorophyll-α methods 

of Hauer and Lamberti (2006).  An Agilent Cary 60 spectrophotometer (Agilent Technologies) 

was used to measure chlorophyll-α levels.  

3.2 c Stable isotope analyses 

Coarse particulate organic matter (CPOM) and fine particulate organic matter (FPOM) 

were sampled using sets of nested nets (>1 mm for CPOM, 0.63 µm-1 mm for FPOM).  Nets 

were secured upstream of sampling sites for a minimum of 2 hours.  There was not enough 

biomass to create samples for FPOM at KC and LC (Table 5).  Periphyton was scraped off of 

rocks and collected on fiber glass filters (0.45 µm) using a hand-held vacuum pump.  In lab, 

periphyton was scraped off of the filters before the drying process.  Riparian plants and moss 

were randomly sampled from each stream.  Riparian plants were later identified to family and 

bulked to produce one composite sample per stream.  The δ
13
C for LC’s riparian plants was 

unable to be detected. To ensure mixing of isotopic signatures, moss was sampled from several 

different rocks at each stream and bulked to create one composite sample. Spiders near the 
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stream and within its riparian zone were collected at each stream and bulked to create a 

composite sample per stream. 

Aquatic benthic macroinvertebrates were sampled from random reaches of each stream 

using d-frame kick nets.  One composite sample per FFG (predators, shredders, collector-

gatherers, collector-filterers, and scrapers) was created using individuals large enough to identify 

without the use of a microscope to ensure there would be enough biomass to produce stable 

isotope samples after further processing.  Benthic organic matter (BOM) samples were collected 

from these same d-frame kick net samples.  RSR was the only stream in which enough biomass 

of all FFG was collected for analyses.  There was not enough biomass for shredders and 

collector-filterers in LC.  In KC, there was not enough biomass for collector-filterers, collector-

gatherers, or scrapers.   

Emerged aquatic insects and terrestrial insects were collected using a light trap.  The trap 

was set up for an hour after sunset (6:00-7:00 pm) at the edge of each stream.  Individuals were 

collected in plastic vials and transferred to the lab for identification.  Aquatic adults were bulked 

into one group regardless of functional feeding group.  While sampling for terrestrial insects at 

RSR and LC several large beetles were collected and also included in the analysis as a separate 

sample.  Cicadas (Cicadoidae) collected at RSR were also included in the analysis.   

Pristimantis appendiculatus was also sampled to examine how a common terrestrial 

amphibian in the area fits into the aquatic-terrestrial food web.  Three P.appendiculatus (total 

length = 21.0, 31.0. and 37mm) were sampled at least 100 m away from the streams and were 

included in the analysis.  After being captured, individuals were submerged in a clove oil 

solution for at least an hour before their stomachs were removed before the drying process.  

When sampling for aquatic benthic insects in RSR a fish (Astroblepus spp.) was captured (length 
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= 20.0 mm).  The stomach was removed and the fish was dried, ground up, and included in the 

stable isotope analysis.   

All samples were dried for at least 8 hours using a home-made oven composed of a large 

cooking pot and a 70 w light bulb.  Following drying, a mortar and pestle were used to grind up 

the samples into a fine powder.  Samples were stored in a freezer until August 2015 when they 

were returned to GVSU and were furthered processed for analysis.  Samples were weighed into 

tin capsules with 1.0 mg (+/- 0.05 mg) of each composite sample sent to USGS in Denver, CO 

for further analyses.  C and N signatures from composite samples were averaged with each 

stream acting as a replicate. 

3.2 d Aquatic adult emergence 

Lucy’s Creek served as a long-term emergence site where trapping events occurred 

weekly from June 8
th

 to July 21
st
, 2015 skipping the week of June 15 (6 trapping events total).  

LC was chosen as the long-term emergence site as it easier to access than RSR and has greater 

emergence than KC.  Just as for the light trapping events used for the stable isotope sampling, 

the trap was set up at the edge of the stream for an hour after sunset (6:00-7:00 pm).  Emergence 

was calculated for the overall amount of individuals and for each aquatic insect order 

(Ephemeroptera, Tricoptera, and Plecoptera) as the number of individuals captured per light 

trapping event.  Aquatic Diptera were not included in the analyses as it was not possible to 

distinguish them from terrestrial Diptera while sampling. “Capture” was defined as being placed 

in a plastic vial during the trapping event or still being attached to the light trap when being 

packed up at the end of the trapping event.  “Effort” was consistent as two people participated in 

capture efforts during all trapping events.  Individuals collected were stored in 95% ethanol and 

sorted into order.  
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3.3 Statistical Analysis 

 All analyses were performed on R version 3.1.2 (R Core Team, Vienna, Italy). One-way 

ANOVAs were used to test for differences in total abundance, FFG densities, taxon richness, and 

Shannon’s diversity index among sites.  If significant differences were found among streams (P 

< 0.05) a Tukey HSD was used for mean separation.  If data failed a normality test, a Kruskal-

Wallis test was used. A canonical correspondence analysis (CCA) was used to examine 

differences in macroinvertebrate community composition among sites and which environmental 

variables influenced these differences. Since several of the measured variables were highly 

intercorrelated, we used stepwise selection based on variance inflation factors (VIF) to determine 

which variables to include in the analysis.  Ultimately, the variables that were chosen were 

width, substrate, and DO (mg/L) as they were not highly correlated with one another, differed at 

least slightly between streams, and had VIF values less than 3.  Unique macroinvertebrate 

species (not present in all 3 streams) were eliminated from the analysis in order to increase plot 

clarity.  A permutation test with 1000 steps was performed on the final CCA plot to determine if 

the model, axes, and variables were significance.  C and N signatures were averaged for each 

composite sample with the streams serving as replicates.  Simple linear regression was used to 

examine the slope of the food web using the average C and N signatures.  Lastly, a multiple 

linear regression was used to determine if emergence rates were caused by the moon cycle and 

the presence of rain.  Trapping events where constant heavy rain occurred were coded as “1”, 

light or on-and-off rain during trapping events were coded “0.5”, and no rain was coded “0”.  

Trapping events were assigned a moon cycle number from 0.0 – 1.0 based on what the moon 

cycle was the night of the trapping event.  Shapiro-Wilk normality tests were run to ensure that 

the emergence data was normal before performing the regressions. 
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4. Results 

Total macroinvertebrate abundance ranged from 900-3983 individuals/m
2
 (Table 2) and was not 

significantly different among streams (Table 3).  Shredder and filtering-collector densities did 

not differ among streams while collector-gatherer, scraper, and predator densities did differ 

among streams (Fig. 1).  As stream size increased from 1
st
 to 3

rd
 order, the most abundant FFG 

shifted from collector-gatherers to scrapers with LC (2
nd

 order) having an intermediate density 

for both groups.  Taxon richness and Shannon’s Diversity Index were not significantly different 

among sites. 

 FFG ratio methods suggested that all 3 streams were low in CPOM (0.04-0.06) and low 

in transport fine particulate organic matter (TFPOM, 0.15-0.29; Table 4).  KC and LC were 

heterotrophic while RSR was autotrophic.  KC was the only stream to have an unstable channel 

(0.40).  Both KC and RSR had a lower than normal top-down predator control (0.05 and  0.08, 

respectively) while LC had normal top-down predator control (0.13).  

The CCA plot indicated some separation among study sites (Fig. 2).  A permutation test 

(steps=1000) determined the overall model to be significant (P=0.01).  The first two axes 

explained 93.5% of the variation (CCA 1 = 77.8%, CCA 2 = 15.7%).  Axis 1 was significant (P 

= 0.008) and positively correlated with stream width (r = 0.31), substrate (r = 0.83), and DO (r = 

0.35).  Axis 2 was not significant (0.09) and was positively correlated with stream width (r = 

0.86) and negatively correlated with substrate (r = -0.53) and DO (r = -0.84).  Stream width was 

the only significant environmental variable (P = 0.001) in the model.  RSR was separated from 

the other streams along axis 1, while KC and LC were separated from one another along axis 2. 

Linear regression showed that the relationship between δ
15

N and δ
13

C was positive (slope 

= 1.06) and significant (F = 37.74, P = 1.88 x10
-5

; Figure 3).  All basal resources (periphyton, 
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moss, FPOM, CPOM, BOM, and riparian plants) were similar in δ
13
C and δ

15
N signatures 

(overlapping standard deviations) and were the least enriched in both δ
13
C and δ

15
N (Table 6, 

Figure 4).  Aquatic primary consumers (scrapers, shredders, collector-gatherers, and collector-

filterers) were within the same range of δ
15

N and δ
13

C signatures and were more enriched in both 

than the basal resources.  Predators and aquatic adults were similar in δ
13

C to the basal resources 

and the primary consumers but were higher in δ
15

N.  Terrestrial insects were also similar in δ
13

C 

signature to the basal resources but were more enriched in δ
15

N.  The cicadas and beetles that 

were sampled in RSR had similar δ
13
C and δ

15
N signatures to the aquatic primary consumers.  

Spiders also had similar δ
13

C signatures as the aquatic primary consumers but were much more 

δ
15

N -enriched.  Spiders had the second highest δ
15

N signatures with the fish sampled in RSR 

having the highest δ
15

N signatures.  The fish was the most depleted in δ
13

N but was close to the 

range of the spiders’ δ
13

N signatures.  The δ
13
C and δ

15
N signatures of P.appendiculatus were 

within the range of the spiders. 

A total of 371 aquatic adults were captured during the 6 trapping events (Figure 5).  

Tricoptera composed 95.4% (354) of the insects collected. Only 16 Ephemeroptera and 1 

Plecoptera were sampled.  Shapiro-Wilk determined emergence data to be normal (P = 0.055).  

There was no correlation between emergence and moon cycle (R
2

Adj = 0.37, P = 0.20), rain (R
2

Adj 

= 0.37, P = 0.20), or moon cycle and rain (R
2

Adj = 0.68, P = 0.085). 
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5. Discussion 

As our stream size increased from 1
st
 to 3

rd
 order, the macroinvertebrate communities shifted 

from being collector-gatherer dominated to being scraper dominated, which follows predictions 

of the RCC.  As order increases and stream width widens, more light is available to support the 

periphyton community and thus scraping macroinvertebrates increase in abundance (Vannote et 

al. 1980).  The collector-gatherer dominance found in KC and LC is similar to what Ramírez and 

Pringle (1998) found in their Costa Rican streams.  They found gathering collectors to comprise 

59.5% and 56.4% in pool and riffle habitats, respectively.  However, the streams examined in 

Ramírez and Pringle (1998) are larger (4
th

 order) than all of our study systems.  Regardless, we 

argue that this comparison is still valid, as order increases, more light is available to support the 

periphyton community and thus scraping macroinvertebrates increase in abundance (Vannote et 

al. 1980) which appears to occur sooner in cloud forest streams as their canopies are of shorter 

stature than other types of tropical forests (Hamilton 1995).  PAR and chlorophyll-α 

measurements generally support these results with KC (1
st
 order) and RSR (3

rd
 order) having 

average PAR readings of 10.0 and 30.5, respectively, and average chlorophyll-α measures of 

2.23 μg/cm
2
 and 6.13 μg/cm

2
, respectively.  

The rarity of shredders in these low-order streams contradicts the predictions of the 

temperate systems of the RCC (Vannote et al. 1980) but matches patterns found in other tropical 

streams of similar sizes in Central America (Ramírez and Pringle 1998), Asia (Dudgeon et al. 

2010, Lau et al. 2009), Africa (Dobson et al. 2002), and South America (Mathuriau and Chauvet 

2002).  The role of shredding macroinvertebrates in low-order streams is to aid in the breakdown 

of leaf litter and while shredding macroinvertebrates are scarce in tropical streams, leaf litter is 

not (Dobson et al. 2002 and Mantel et al. 2004).  Although leaf litter was not measured in this 
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study, it was observed to be abundant at all 3 sites, all of which had riparian zones with closed 

canopy covers.  

There is evidence to suggest that leaf litter serves as physical substrate for 

macroinvertebrates rather than a food source in lowland tropical streams (Aggie et al. 2008, Li et 

al. 2009, Uieda and Carvalho 2015).  If this is the case and shredding specialist 

macroinvertebrates are not filling the role of leaf litter processing, then how is this material being 

incorporated into the food web in tropical streams? Several studies have shown macroconsumers, 

such as shrimps, crabs, and fish, to fill the shredding niche in tropical streams.  An exclusion leaf 

pack experiment by Moulton et al. (2010), for example, found macroconsumers in Brazilian 

streams to be more important in leaf litter processing than shredding specialist 

macroinvertebrates.  Using 3 different mesh sizes they found the leaf packs with the largest mesh 

sizes that did not exclude larger macroconsumers to have faster leaf litter processing rates than 

those that excluded larger macroconsumers.  In the 2 smaller mesh sizes, there was no difference 

in leaf litter processing rates between those that included macroinvertebrates and those that 

excluded them indicating that shredding macroinvertebrates are not significantly contributing to 

this process.  Similar results have been found in other leaf pack and exclusions studies 

throughout the tropics (Ocasio-Torres et al. 2015, Uieda and Carvalho 2015, Wright and Covich 

2005).  Crabs are present at all 3 RLG streams studied and RSR supports several types of fish.  

Future research on these systems should examine the abundances and potential importance of 

these macroconsumers in leaf litter processing in these small tropical streams.  

 According to the ecosystem attributes as determined by FFG ratios, it was found that as 

stream order increased the streams became more autotrophic.  This is to be expected and follows 

along with the predictions of the RCC that as streams increase in width they become reliant on 
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autochthonous materials (Vannote et al. 1980).  Stability also increased with order with KC (1
st
 

order) being categorized as unstable.  KC has the smallest median substrate size of the 3 systems 

and the streambed is entirely composed of clay whereas LC and RSR are characterized by large 

rocks and boulders.  Furthermore, 1
st
 order streams are more dramatically impacted by events 

such as flooding which only adds to their instability (Junk et al. 1989).  All 3 systems were 

characterized as having low TFPOM meaning the FPOM was either of poor quality or there 

simply was not much being made available for filtering collectors (Cummins et al. 2005).  The 

latter is likely the reasoning as low amounts of FPOM were observed in nested nets used to 

sample organic matter for the stable isotope analysis conducted at these sites at the same time 

macroinvertebrate collection occurred.   

Although CPOM was observed in high abundance, the FFG ratios predicted all 3 sites to 

be low in CPOM.  However, this attribute is determined by comparing the number of shredding 

specialist macroinvertebrates to the total number of collectors (filtering and gathering) and is 

therefore largely biased by the absence of shredders.  The analysis of this ratio according to 

Hauer and Lamberti (1996) assumes that if there are few shredders that their food source 

(CPOM) must also be in low abundance.  This would typically be the case in larger systems, not 

in 1
st
 and 2

nd
 order heavily forested streams such as KC and LC (Vannote et al. 1980).  Dobson 

et al. (2002) also found high levels of CPOM but few shredders in their African streams.  In 

addition, using a combination of stable isotope and gut content analyses, Mantel et al. (2004) 

determined that although CPOM was the dominant basal resource in their shredder-scarce study 

streams, FPOM and periphyton were more important in aquatic insect diets.   

The multivariate analysis showed some separation among the streams primarily due to 

median substrate size.  RSR was distinctly separated from KC and LC.  As previously 
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mentioned, KC is characterized by clay while LC is made up of large boulders.  RSR has an 

intermediate sized substrate which drives its macroinvertebrate community to differ from KC 

and LC.  KC and LC differed along axis 2 which was found to be insignificant.  Due to logistical 

constraints in the field, our sample size (n=9) was relatively low for a multivariate analysis and 

the data interpretation is not necessarily robust.  Regardless, we are confident that if sample size 

were increased a greater separation between KC and LC would exist.  Substrate type and stability 

has been known to influence macroinvertebrate communities (Beisel et al. 1998, Cobb et al. 

1992) even in the Neotropics where Buss et al. (2004) found substrate type to be more important 

for community composition than water quality or other environmental factors. (Buss et al. 2004).   

While this present study and several others use FFG analyses in tropical systems, this 

method was inspired by the RCC, which was derived in a temperate climate.  The majority of 

tropical studies, including this one, have found some predictions of the RCC to be inapplicable to 

tropical systems.  The RCC serves as a model to interpret longitudinal patterns in stream food 

webs (Vannote et al. 1980).  To best apply this concept to tropical systems, a study that examines 

longitudinal food web patterns in several tropical streams from throughout the world is necessary 

to generate predictions that are specific to the tropics (Greathouse and Pringle 2006).  

Additionally, omnivory is more common in tropical systems than in temperate systems 

(Frauendorf et al. 2013, Blanchette et al. 2014) so it is not clear if FFGs are even relevant in 

tropical streams. The development of tropical-based stream theories that focus on function will 

be essential in the successful conservation of these systems as management plans that focus on 

function are considered the most efficient way to preserve aquatic ecosystems (Moss 2000, 

Dudgeon et al. 2006).  When it comes to management, restoration, or conservation of tropical 

streams, temperate-based practices may provide a good starting point but more research on 
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ecosystem function is needed to create effective conservation plans (Moulton and Watzen 2006) 

and further advances our ecological knowledge, which is where the results from this study will 

be useful.   

The linear regression from the δ
13
C and δ

15
N signatures produced a positive slope, as 

expected (Figure 3), indicating that the food webs in these streams are typical.  Basal resources 

had the lowest δ
13
C and δ

15
N signatures and these values increased up the food web indicating 

that the FFGs are operating properly.  When comparing our δ
13
C and δ

15
N values to other stable 

isotope studies conducted in tropical streams, there were mixed results.  Our periphyton 

signatures were similar to what Verburg et al. (2007) found in Panamanian streams but were 

depleted in both δ
15

N and δ
13

C when compared to periphyton from studies conducted in Puerto 

Rico (March and Pringle 2003) and Mexico (Coat et al. 2009).  Our streams have very dense, tall 

canopies which limits the sunlight that reaches the water surface. This likely causes a decrease of 

in-stream primary production (Lau et al. 2009, March and Pringle 2003). Another explanation is 

low N content levels in the water of our streams which would lead to low N signatures in 

periphyton (Coat et al. 2009).  This was not directly measured in this study but the conductance 

of these streams ranged from 18.3-59.8 S/m (Table 1) potentially suggesting low levels of 

dissolved nitrogen fractions.  

FPOM isotopic signature was another basal resource that differed from the literature 

values.  The two Panamanian streams from Verburg et al. (2007) had δ
15

N values of 5.35 ‰ 

and 4.23 ± 0.77, while our FPOM δ
15

N signature was 0.3.  Because of limited capture efficiency, 

we only have a single composite sample for FPOM, however, the difference between the δ
15

N 

values is large.  Our FPOM δ
15

N signature was also depleted when compared to streams from 

Hong Kong where one stream had a δ
15

N value of 5.93 ± 0.84 for FPOM (Lau et al. 2009).  
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Higher δ
15

N values in FPOM can be due to high denitrification rates in stream sediments (Fry 

2006).  As our basal resources were depleted in δ
15

N when compared to the literature, low rates 

of denitrification could be occurring in these systems.  CPOM isotopic signature, on the other 

hand, was much more similar to the literature than FPOM.  All streams studied in March and 

Pringle (2003) and Burress et al. (2013) had signatures that matched our results.  Coat et al. 

(2009) had CPOM δ
13

C signatures that matched our results but was much more N-enriched (4.3 

± 1.4) when compared to our streams.   

As δ
13
C and δ

15
N signatures of basal resources differed from the literature, it was no 

surprise that the rest of the food web also differed from values found in the literature.  Our 

predator signatures matched the literature, while scrapers from literature were N-enriched when 

compared to our data (Verburg et al. 2007, Lau et al. 2009).  When compared to Panamanian 

streams, our collector-filterers had similar δ
13

C signatures but were N-depleted.  While we only 

had one sample for collector-filterers, again due to sampling constraints, the difference between 

δ
15

N signatures was large (1.4‰ versus 4.25 ± 0.61‰; Verburg et al. 2007).  Our collector-

filterers and collector-gatherers were also N-depleted when compared to data from streams in 

China and Uruguay (Lancaster et al. 2008, Burress et al. 2013). 

In conclusion, we found more support for the scarcity of shredding specialist 

macroinvertebrates in tropical streams and a dominance of collectors.  These findings match 

patterns found in other tropical streams and further question the applicability of specific RCC 

predictions in tropical streams.  Despite the differences in macroinvertebrate community 

composition, stable isotope analyses revealed a typical aquatic food web.  However, δ
13

C and 

δ
15

N signatures often differed from values observed in other tropical systems.  Currently, the best 

conservation plan for tropical streams is to maintain natural habitat that is minimally impacted, 
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such as the systems of RLG, and with the pressures faced by tropical cloud forest streams 

especially, this conservation strategy should be implemented immediately (Rawi et al. 2013).  

For example, our results suggest that shredding specialist macroinvertebrates are irrelevant in 

tropical stream ecosystem function and thus should not be a specific concern of conservationists.  

Instead, macroconsumers should be a focus of conservationists as they play a greater role in the 

shredding niche.  As pristine tropical streams are becoming a rarity, these and other protected 

sites can serve as reference sites for future research and restoration efforts.  It is especially 

important to protect low-order streams as they are the most easily affected by landscape changes 

and their impacts are accumulated downstream.  The long-term monitoring efforts that are now 

established at the RLG streams will allow for early detection of any land-use changes that may 

occur in the future.  As these ecosystems are slowly disappearing, theories with specific 

predictions for tropical streams are needed immediately so that tropical stream function can be 

properly monitored and more effectively restored and protected. 
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Table 1. Summary of mean physicochemical data for Kathy’s Creek (KC), Lucy’s Creek (LC) 

and Rio Santa Rosa (RSR), Mindo, Ecuador. Physicochemical parameters were taken on the 

same day as macroinvertebrate sampling.  PAR = photosynthetically active radiation. 

*PAR measurements for LC were taken on a day with heavy overcast.  

Physicochemical Parameters KC LC RSR 
Order 1

st
 2

nd
 3

rd
 

Elevation (m a.s.l.)  2011 1850 1771 

Temperature (°C) 15.4 15.8 15.6 

Width (m) 

Depth (m) 
0.9 

0.09 

1.6 

0.15 

4.5 

0.25 

Discharge (m
3
/s) 0.01 0.03 0.82 

PAR (µmol/m
2
/s) 10.0 1.57*  30.5 

Chlorophyll-α (μg/cm
2
) 2.23 2.47 6.13 

Median substrate (mm) < 2  256-512   45-64 

Specific conductance (μS)  18.3 59.2 59.8 
Total dissolved solids (ppm) 0.01 0.04 0.04 
Dissolved oxygen (%) 84.6 89.9 89.6 
Dissolved oxygen (mg/L) 8.47 8.93 8.77 
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Table 2. Macroinvertebrate taxa at Kathy’s Creek (KC), Lucy’s Creek (LC), and Rio Santa Rosa 

(RSR), Mindo, Ecuador.  Values are for mean abundance (individuals/m
2
) and the percent that 

each taxon contributes to the total macroinvertebrate abundance for each stream.  Values in 

parentheses represent the standard error (n=3 replicates per stream).  Aquatic taxon are 

categorized into the following functional feeding groups (FFG): shredders (SH), filtering-

collectors (FC), gathering-collectors (GC), scrapers (SC) and predators (PR).  Abundance and 

percent are also given for each FFG and order at each stream as well as the richness and 

Shannon’s diversity index found there.  Bolded values are those that significantly differed among 

streams (one-way ANOVA p<0.05) with Tukey HSD (p<0.05) groupings signified by 

superscript letters.   

 

      KC   LC   RSR 

Order Family FFG x  (±SE) %   x  (±SE) %   x  (±SE) % 

Ephemeroptera Baetidae GC 128 (14) 5.01 

 

61 (29) 4.02 

 

68 (13) 2.54 

 

Euthyplociidae GC 

   

2 (2) 0.12 

   

 

Leptohyphidae GC 28 (15) 1.09 

 

9 (2) 0.61 

 

91 (41) 3.36 

 

Leptophlebiidae SC 209 (11) 8.20 

 

111 (23) 7.32 

 

30 (24) 1.10 

 

Oligoneuriidae FC 

   

4 (2) 0.24 

 

15 (4) 0.55 

Odonata Calopterygidae PR 20 (10) 0.80 

    

2 (2) 0.07 

 

Coenagrionidae PR 2 (2) 0.07 

      

 

Gomphidae PR 

   

2 (2) 0.12 

 

4 (2) 0.14 

 

Libellulidae PR 

      

11 (8) 0.41 

 

Polythoriidae PR 

   

6 (3) 0.37 

   
Plecoptera Perlidae PR 33 (6) 1.31 

 

37 (11) 2.44 

 

43 (2) 1.58 

Trichoptera Calamoceratidae SH 20 (10) 0.80 

 

13 (5) 0.85 

 

4 (4) 0.14 

 

Ecnomidae PR 2 (2) 0.07 

      

 

Glossosomatidae SC 2 (2) 0.07 

 

2 (2) 0.12 

   

 

Heliopsychidae SC 161 (60) 6.31 

 

130 (26) 8.54 

 

1296 (867) 47.98 

 

Hydrobiosidae PR 11 (3) 0.44 

 

37 (15) 2.44 

 

4 (4) 0.14 

 

Hydropsychidae FC 111 (75) 4.35 

 

54 (34) 3.54 

 

39 (16) 1.44 

 

Hydroptilidae SC 37 (7) 1.45 

 

43 (37) 2.80 

 

43 (40) 1.58 

 

Leptoceridae PR 

   

46 (13) 3.05 

 

82 (43) 3.02 

 

Philopotamidae FC 4 (4) 0.15 

 

11 (6) 0.73 
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Polycentropodidae FC 37 (24) 1.45 

 

6 (6) 0.37 

   
Coleoptera Dytiscidae  PR 

      

2 (2) 0.07 

 

Elmidae (adults) SC 48 (8) 1.89 

 

111 (70) 7.32 

 

135 (35) 5.00 

 

Elmidae (larvae) GC 24 (5) 0.94 

 

43 (15) 2.80 

 

217 (80) 8.02 

 

Gyrinidae PR 2 (2) 0.07 

    

9 (9) 0.34 

 

Psephenidae SC 

   

9 (5) 0.61 

 

7 (5) 0.27 

 

Ptilodactylidae FC 15 (2) 0.58 

 

33 (22) 2.20 

 

44 (17) 1.64 

 

Scirtidae FC 11 (3) 0.44 

 

4 (2) 0.24 

   
Diptera Ceratopogonidae GC 19 (7) 0.73 

 

11 (6) 0.73 

 

31 (8) 1.17 

 

Chironomidae GC 1465 (621) 57.40 

 

526 (153) 34.63 

 

393 (143) 14.53 

 

Dolichiopididae PR 22 (15) 0.87 

 

4 (4) 0.24 

 

2 (2) 0.07 

 

Dixidae FC 17 (10) 0.65 

      

 

Empididae PR 2 (2) 0.07 

 

15 (15) 0.98 

   

 

Limoniidae SH 

      

2 (2) 0.07 

 

Simuliidae FC 63 (30) 2.47 

 

113 (56) 7.44 

 

72 (21) 2.67 

 

Tipulidae PR 24 (8) 0.94 

 

20 (15) 1.34 

 

26 (10) 0.96 

Other Crambidae SH 

   

2 (2) 0.12 

 

4 (2) 0.14 

 

Hyalellidae SH 

   

2 (20 0.12 

   

 

Naucoridae PR 

   

4 (4) 0.24 

 

7 (7) 0.27 

 

Planariidae SH 33 (6) 1.31 

 

50 (18) 3.29 

 

11 (6) 0.41 

 

Tetrigidae GC 2 (2) 0.07 

    

7 (7) 0.27 

  Veliidae PR 

 

    

 

    2 (2) 0.07 

  Total   2552 (721)     1518 (491)     2702 (1373)   

 

Richness 

 

23 (1) 

  

22 (2) 

  

21 (3) 

 
  Shannon's Diversity Index   1.82 (0.18)     2.29 (0.08)     1.96 (0.11)   

FFG Shredders 
 

69 (10) 2.7 
 

50 (25) 3.3 
 

54 (23) 2.0 

 
Filtering collectors 

 
243 (94) 9.5 

 
191 (99) 12.6 

 
126 (34) 4.7 

 

Gathering collectors 

 

1665 (629) 65.2b 

 

652 (198) 42.9a,b 

 

807 (288) 29.9a 

 

Scrapers 

 

457 (65) 17.9a 

 

456 (124) 30a,b 

 

1522 (959) 56.3b 

  Predators   118 (35) 4.6a   170 (54) 11.2b   193 (71) 7.1a,b 

Order Ephemeroptera 

 

365 (14) 14.30 

 

187 (16) 12.32 

 

204 (76) 7.54 

 

Odonata 

 

22 (12) 0.87 

 

7 (5) 0.49 

 

17 (6) 0.62 

 

Plecoptera 

 

33 (6) 1.31 

 

37 (11) 2.44 

 

43 (2) 1.58 

 

Trichoptera 

 

385 (99) 15.09 

 

341 (121) 22.44 

 

1467 (971) 54.28 

 

Coleoptera 

 

100 (3) 3.92 

 

200 (111) 13.17 

 

415 (139) 15.35 

 

Diptera 

 

1611 (645) 63.13 

 

689 (238) 45.37 

 

526 (184) 19.47 

  Other   35 (7) 1.38   57 (18) 3.78   31 (18) 1.17 
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Table 3. Results from one-way ANOVA measuring the differences in total abundance, richness, 

Shannon’s diversity index, predator densities, collector-gatherer densities, and scraper densities 

among 3 tropical streams in Mindo, Ecuador.  As shredder and filtering-collector densities failed 

normality tests, a Kruskal-Wallis was used to measure the differences in these values among 

sites.  All degrees of freedom are 2. 

One-way ANOVA P F 
Total abundance 0.42 0.51 
Family Richness 0.89 0.11 
Shannon's Diversity index 0.098 3.52 
Predators 0.012 10.2 
Scrapers 0.017 8.75 

   Kruskal-Wallis P χ
2

  
Shredders 0.96 0.089 
Filtering-collectors 0.73 0.62 
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Table 4. Ecosystem attributes for Kathy’s Creek (KC), Lucy’s Creek (LC), and Rio Santa Rosa 

(RSR) Mindo, Ecuador determined by using averaged functional feeding group ratios (n = 3 per 

stream) as described in Hauer & Lamberti (1984).  Abbreviations: P/R = Production/Respiration, 

CPOM = Coarse particulate organic matter, FPOM = Fine particulate organic matter, TFPOM = 

transport FPOM, and BFPOM = FPOM deposited in benthic macroinvertebrates.  General 

criteria: P/R > 0.75 = autotrophic, CPOM/FPOM > 0.5 = normal, substrate stability > 0.5 = 

stable, top-down predator control 0.10-0.20 = normal predator to prey abundance, 

TFPOM/BFPOM > 0.5 = FPOM available in suspension. 

  KC   LC   RSR 

Ecosystem attribute Ratio Evaluation   Ratio Evaluation   Ratio Evaluation 

P/R 0.23 heterotrophic 

 

0.51 heterotrophic 

 

1.54 autotrophic 

CPOM/FPOM 0.04 low CPOM 

 

0.06 low CPOM 

 

0.06 low CPOM 

Substrate stability 0.40 unstable 

 

0.92 stable 

 

1.91 stable 

Top-down predator 

control 0.05 low ratio 

 

0.13 normal ratio 

 

0.08 low ratio 

TFPOM/BFPOM 0.15 low TFPOM   0.29 low TFPOM   0.16 low TFPOM 
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Table 5. Contents of the composite macroinvertebrate stable isotope samples collected at each 

stream.  Describes the family (or order) and the number of individuals present in the composite 

samples. Plant families represented in the riparian plant composite samples are also described. 

 

  KC   LC   RSR 

  Family #   Family #   Family # 

Predators Calopterygidae 1 

 

Aeshnidae 1 

 

Corydalidae 1 

 

Gerridae 6 

 

Gerridae 10 

 

Gomphidae 5 

 

Perlidae 5 

 

Naucoridae 4 

 

Gyrinidae 1 

 

Veliidae 59 

 

Perlidae 4 

 

Naucoridae 2 

    

Polythoridae 9 

 

Perlidae 8 

  

 

    Veliidae 14       

Shredders Tipulidae 6       

 

Leptoceridae 18 

       

Tipulidae 2 

Collector-

gatherers       Ameletidae 1   Baetidae 8 

    

Hydropsychidae 23 

 

Elmidae (larvae) 7 

  

 

    Leptoceridae 1   Leptophlebiidae 2 

Collector-

filterers   

     

Hydrosychidae 18 

       

Oligoneuriidae 3 

              Psephenidae  1 

Scrapers             Elmidae (adults) 40 

       

Helicopsychidae 18 

Aquatic Adults Unknown Diptera 33   Calamoceratidae 8   Calamoceratidae 18 

 

Calamoceratidae 3 

 

Perlidae 

(Anacroneuria sp.) 0 

 

Unknown Diptera 15 

 

Philopotamidae 3 

 

Unknown 

Ephemeroptera 8 

 

Leptoceridae 10 

 

Unknown 

Ephemeroptera 1 

 

Philopotamidae 2 

 

Hydropsychidae 1 

 

Unknown 

Tricoptera 4 

 

Unknown Tricoptera 2 

 

Philopotamidae 2 

        Tipulidae 1   

Perlidae 

(Anacroneuria sp.) 1 

Terrestrial 

Insects Lepidoptera 17 

 

Lepidoptera 12 

 

Lepidoptera 13 

 

Hemiptera: 

Cicadellidae 1 

 

Hemiptera: 

Cicadellidae 1 

 

Unknown Diptera 2 

 

Coleoptera 1 

 

Blattodea 1 

 

Coleoptera 2 
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Unknown Diptera 1 

 

Cicadoidea* 3 

    

Unknown 2 

           Coleoptera* 4       

Spiders Uknown 21   Unknown 38   Unknown 25 

Riparian Plants Araceae     Araceae     Araceae   

 

Arecaceae 

  

Arecaceae 

  

Arecaceae 

 

 

Blechnaceae 

  

Blechnaceae 

  

Cyatheaceae 

 

 

Poaceae 

  

Campanulaceae 

  

Davalliaceae 

 

 

Cyatheaceae 

  

Melastomataceae 

  

Euphorbiaceae 

 

 

Euphorbiaceae 

  

Cyatheaceae 

  

Melastomataceae 

 

 

Fabaceae 

  

Moraceae 

  

Musaceae 

 

 

Melastomataceae 

  

Bromeliaceae 

  

Pteridaceae 

 

 

Heliconiaceae 

  

Marantaceae 

  

Smilacaceae 

 

 

Bromeliaceae 

  

Smilacaceae 

  

Solanaceae 

 

 

Polypodiaceae 

       

 

Pteridaceae 

       

 

Solanaceae 

         Borginaceae               

*denotes group that formed their own composite sample 
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Table 6. δ
15

N and δ
13

C signatures for composite samples from Kathy’s Creek (KC), Lucy’s 

Creek (LC), and Rio Santa Rosa (RSR).   

  KC   LC   RSR 

  δ
15

N δ
13

C   δ
15

N δ
13

C   δ
15

N δ
13

C 

Periphyton 0.1 -29.6 

 

1.8 -30.6 

 

-0.1 -29.7 

Moss 0.1 -31.2 

 

-1.7 -30.7 

 

-2.4 -30.2 

FPOM 

      
0.3 -27.1 

CPOM 2.8 -28.5 

 

0.9 -29.8 

 

-0.8 -29.4 

BOM 0.5 -29.0 

 

0.7 -29.9 

 

-2.2 -31.3 

Riparian Plants 1.1 -33.8 

 

0.8 

  

-1.4 -27.7 

Shredders 1.4 -28.6 

    

1.8 -27.3 

Collector-filterers 

      

1.4 -29.0 

Collector-gatherers 

   

2.4 -27.9 

 

1.2 -29.0 

Scrapers 

      

1.3 -26.9 

Predators 4.8 -27.6 

 

4.4 -28.0 

 

2.7 -26.8 

Aquatic Adults 5.1 -27.4 

 

3.8 -27.4 

 

2.7 -28.3 

Terrestrial Insects 4.7 -30.8 

 

1.0 -27.1 

 

1.5 -29.7 

Cicadas 

      

1.9 -27.4 

Beetles 

   

1.9 -27.5 

   Fish 

      

6.0 -25.3 

Spiders 4.6 -27.6   5.9 -26.9   4.1 -25.8 
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Figure captions 

Figure 1.  The average density (in percent) of each functional feeding group for Kathy’s Creek 

(KC), Lucy’s Creek (LC), and Rio Santa Rosa (RSR) Mindo, Ecuador as determined by Surber 

net samples (n=3 per site).  Letters represent significant groupings (One-way ANOVA, 

TukeyHSD p<0.05) per functional feeding group.  

Figure 2.  Canonical correspondence analysis triplot displaying how macroinvertebrate 

community structure differs among 3 streams in Mindo, Ecuador sites due to environmental 

variables. The first two axes explain 93.5% of the variation with axis 1 explaining 77.8% of the 

variation and axis 2 explaining 15.7%.  Total inertia for the plot was 0.5751. Site abbreviations: 

kc = Kathy’s Creek, lc = Lucy’s Creek, and rsr = Rio Santa Rosa. Species abbreviations: Bae = 

Baetidae, Cala = Calamoceratidae, Cera = Ceratopogonidae, Chir = Chironomidae, Doli = 

Dolichopodidae, Elm = Elmidae, Heli = Helicopsychidae, Hyb = Hydrobiosidae, Hyp = 

Hydropsychidae, Hypt = Hydroptilidae, Lepp = Leptophlebiidae, Leph = Leptohyphidae, Perl = 

Perlidae, Plan = Planariidae, Ptil = Ptilodactylidae, Sim = Simulidae, and Tip = Tipulidae.  

Figure 3. Average δ
15
N and δ

13
C signatures for all composite samples from RLG streams 

sampled in this study.  Error bars represent standard error (n=1, 2, or3, depending on the 

composite sample).   All FFG refer to aquatic macroinvertebrates. 

Figure 4. Average δ
15

N and δ
13

C signatures bulked into main groupings (basal resources, aquatic 

insects, and terrestrial insects) as well as the top consumers (fish, spiders, and frog).  Error bars 

represent standard error. 

Figure 5. The number of aquatic adults (Emphemeroptera, Tricoptera, and Plecoptera) captured 

during each emergence sampling event at Lucy’s Creek.  Catch per unit effort = 1 hour of net 

time from 6:00 to 7:00 pm, which corresponded to the onset of dusk into complete darkness. 
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Fig. 1 
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Fig 2. 
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Fig 3. 
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Fig. 4 
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Fig. 5 
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Chapter 3: Discussion 

 

1. Extended Review of Literature 

When searching for answers to differences between temperate and tropical streams 

ecosystems it is useful to keep the habitat template concept (Southwood 1977) in mind.  This 

concept describes the relationship between a habitat and the species that inhabit it.  Simply, if a 

habitat is suitable for a particular species or group of organisms, they should be present.  

Conversely, if the organisms are no longer present, the habitat may no longer be suitable for 

them to survive. This concept can also be applied to conservation efforts as alterations to 

ecosystems can create unsuitable conditions for certain species. 

There is evidence to suggest that CPOM is more often used as a physical substrate rather 

than a food source in tropical streams (Aggie et al. 2008, Li et al. 2009, Uieda and Carvalho 

2015).  In fact, Mantel et al. (2004) determined that although CPOM was the dominant basal 

resource, FPOM and periphyton were more prominent in gut content analyses.  In the present 

study, shredders were scarce although the dense closed canopies of the study sites provided an 

abundance of CPOM.  Patterns of low shredders and high amounts of CPOM have been found in 

other studies conducted in tropical stream as well (Mantel et al. 2004, Dobson et al. 2002).  If 

their food source is readily available, why are shredders a rarity in tropical streams? 

Some suggest that the microbial portion of the aquatic food web is playing a role in leaf 

litter processing (Marthuriau and Chauvet 2002, Dodson et al. 2002, Wright and Covich 2005).  

As the tropics are warmer than the temperate zone, microbial rates should be higher (Suberkropp 

and Chauvet 1995, Boyero et al. 2011).  Marthuriau and Chauvet (2002) found leaf litter 

breakdown rates to be fast, when compared to temperate rates, in their Colombian streams that 

were high in fungal biomass and low in shredders.  Wright and Covich (2005) examined the 
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influence of fungi and bacteria on tropical leaf decomposition and found that the fastest 

decomposition rates occurred in treatments with both bacteria and fungi.  Through the use of 

microcosms and different types of leaves, they determined fungi and bacteria have different roles 

in leaf litter decomposition.  Further information on the aquatic microbial community in RLG 

streams is needed to fully understand their potential role in leaf litter decomposition.  

Another explanation is that tropical leaf quality may not be suitable for shredding 

macroinvertebrates.  Leaf litter quality tends to be lower in the tropics than in the temperate zone 

(Bruder et al. 2014, Graҫa and Cressa 2010).  Aggie et al. (2009) tested the effects of toughness 

and nitrogen content of leaves to litter breakdown rates in Hong Kong and found a negative 

correlation between breakdown rates and leaf strength (tougher leaves decomposed more 

slowly).  There was also no link between litter quality and macroinvertebrate assemblage 

indicating that litter has a substrate role as opposed to a food source role, as previously 

discussed, and may be responsible for the lack of shredders in these ecosystems.  In addition, 

Boyero et al. (2011) surveyed 129 sites globally to examine diversity patterns for shredding 

macroinvertebrates.  Leaf toughness was not related to shredder abundance or richness.  

Although leaf toughness and quality does not seem to be related to shredder distribution, there is 

evidence to suggest chemical properties of leaf litter play an important role (Mathuriau and 

Chauvet 2002). 

Lastly, macroconsumers, such as crabs, shrimp, and fish, could be more important in leaf 

litter processing than shredding macroinvertebrates.  Several studies conducted in tropical 

streams found this to be true (Moulton et al. 2010, Uieda and Carvalho 2015, Wright and Covich 

2005).  In some cases, that not only are macroconsumers important in the breakdown of leaf 

litter, but shredding macroinvertebrates have little to no effect of leaf litter processing.  Moulton 
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et al. (2010) conducted a leaf pack experiment in Brazilian streams and packs that excluded 

macroconsumers but allowed shredding macroinvertebrates to forage were not significantly 

different than packs that excluded all fauna.  The few shredders that were present at those sites 

were not significantly contributing to leaf litter breakdown, the macroconsumers were. Crabs are 

present at all three RLG streams which could potentially contribute to the shredding niche in 

these systems.   

To our knowledge, this is the first stable isotope study conducted in Ecuador and perhaps 

in cloud forest streams as well.  We had mixed results when comparing our findings to the 

literature.  Overall, the components of our stream food webs seemed to be N-depleted when 

compared to the literature.  One explanation for this is low levels of in-stream primary 

production likely caused by the tall, dense canopies that surround these streams (Lau et al. 2009, 

March and Pringle 2003).  A second explanation is low N contents in the water which would 

create low N signatures in periphyton and continue up the food web (Coat et al. 2009).  N 

content in water was not measure in this study, however, conductance of our streams ranged 

from 18.3-59.8 uS/m which likely indicate low levels of N.  Regardless, the patterns found in our 

stable isotope analysis were typical of aquatic food webs and reveal a linkage between the 

streams and their riparian zones. 

 

 

 

 

 

 



70 
 

2. Study limitations and recommendations for future research 

This present study used numerical abundances to analyze macroinvertebrate community 

composition.  Some have suggested that biomass is more important than numerical abundance in 

determining the relative importance of shredding macroinvertebrates in processing leaf litter 

(Chesire et al. 2005, Tonin et al. 2014).  Using both methods to analyze FFGs in these systems 

may have altered our ecosystem attribute conclusions as numerical and biomass abundances can 

produce varied results.  For example, Ramírez and Pringle (1998) used both methods to examine 

community composition in their Costa Rican stream.  In terms of numerical abundances, 

collector-gatherers were the most dominant FFG in riffle habitats (56.4%) but in terms of 

biomass they composed only 18.77% of the community.  Biomass abundances determined 

predators to be the most dominant FFG in this habitat (61.03%) while numerical abundances 

determined predators to only constitute 8.91% of the community.  These discrepancies between 

methods highlights the importance of using various methods to examine community composition 

and future studies should aim to utilize both methods.  Future studies at these sites should also 

focus on potential role of macroconsumers in leaf litter processing.  For example, crabs are 

present at all 3 sites however their abundance and foraging strategies are currently unknown. 

 Stable isotope analyses revealed typical aquatic food webs that are linked to terrestrial 

ecosystems.  As this analysis aimed to provide base-line stable isotope data, future studies should 

expand upon these efforts to produce more thorough results.  For example, separating each 

macroinvertebrate into samples based on identification rather than FFG would provide more 

detailed results.  This approach has been used successfully in other tropical streams (e.g. Mantel 

et al. 2004, Lau et al. 2009, March and Pringle 2003). 
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 This study was also limited in seasonal and temporal repetitions.  Sampling took place 

during the transition from the wet to dry season of 2015 which ultimately was an el Niño year.  

As season has an impact on macroinvertebrate community composition and emergence rates in 

tropical streams (Lau et al. 2009, Ramirez and Pringle 1998), future studies should aim to sample 

during both seasons.  For effective monitoring of these sites, sampling should be conducted over 

several years so that changes in biophysical stream conditions can be properly reported and 

causes of such changes can be identified. 
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