
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Honors Projects Undergraduate Research and Creative Practice

4-2021

Making the Easy Accessibility Package Making the Easy Accessibility Package

Aaron G. Trudeau
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/honorsprojects

 Part of the Computer Sciences Commons

ScholarWorks Citation ScholarWorks Citation
Trudeau, Aaron G., "Making the Easy Accessibility Package" (2021). Honors Projects. 837.
https://scholarworks.gvsu.edu/honorsprojects/837

This Open Access is brought to you for free and open access by the Undergraduate Research and Creative Practice
at ScholarWorks@GVSU. It has been accepted for inclusion in Honors Projects by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/honorsprojects
https://scholarworks.gvsu.edu/urcp
https://scholarworks.gvsu.edu/honorsprojects?utm_source=scholarworks.gvsu.edu%2Fhonorsprojects%2F837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gvsu.edu%2Fhonorsprojects%2F837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/honorsprojects/837?utm_source=scholarworks.gvsu.edu%2Fhonorsprojects%2F837&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Running head: ACCESSIBILITY PACKAGE 1

Making the Easy Accessibility Package

Aaron G. Trudeau

Grand Valley State University

ACCESSIBILITY PACKAGE 2

Contents

Definitions ... 4

Making the Easy Accessibility Package ... 6

Research .. 6

Scholarly Literature .. 7

An Empirical Study of Issues and Barriers to Mainstream Video Game Accessibility 7

Improving Web Accessibility: A Study of Webmaster Perceptions 8

Non-Scholarly Web Sources .. 8

Game Accessibility Guidelines .. 8

UX Collective – Designing Main Menu Screens for Visually Impaired Gamers 9

Interviews .. 9

Jeff Sykes – Assistive Technology Coordinator .. 9

Clinton “halfcoordinated” Lexa – Freelance Gaming Accessibility Consultant 10

Features... 11

Remappable Controls .. 11

Adjusting Mouse Cursor Sensitivity .. 12

Saving and Loading Remapped Controls Between Play Sessions 13

Remapping Stick Directions .. 14

Mapping Stick Inputs to Button Actions ... 15

ACCESSIBILITY PACKAGE 3

Tutorial .. 16

Future Work .. 16

Screen Reader Functionality Using Tolk .. 16

Compiling Tolk ... 17

Integrating Tolk with Unity .. 18

Making Easily Usable Assets ... 19

Tutorial .. 19

Future Work .. 20

Conclusions ... 20

References ... 22

ACCESSIBILITY PACKAGE 4

Definitions

• Assets are code files, images, models, or any other files used to develop a game.

• Classes are programming constructs that bundle data and computer code together into a

reusable format to simplify the implementation of abstract features in code.

• Code libraries (or just libraries) are collections of code that are usable within other

programs or applications.

• Control mappings (or mappings) are programmed associations between inputs on

physical devices (such as keys on keyboards or buttons on gamepads) and corresponding

in-game actions (such as running or jumping). These may also change how the game

interprets and applies physical inputs.

• DLLs (dynamically linked libraries) are special files that provide libraries that are usable

by multiple applications at once.

• The Input System is a free package made by Unity designed to make retrieving player

input more versatile than Unity’s default input manager.

• Game engines are collections of programs and code libraries used to program video

games.

• Gamepads are standard controllers (usually containing face buttons, shoulder buttons,

and two joysticks) used to play a video game.

• Makefiles are special files containing compilation instructions that allow several code

files to be compiled at once.

• Packages are bundles of assets game developers can import into their games to add

functionality the developers would otherwise need to make from scratch.

ACCESSIBILITY PACKAGE 5

• Processors are a special type of class in the Input System that receive an input from the

player (such as a gamepad stick movement), modify it, and then apply it to the game.

• Remappable controls are video game settings that allow a player to change (or “remap”)

active control mappings from their default state.

• Screen readers are assistive software that give users of a computer auditory output in

place of (or supplementary to) standard visual output.

• Tab indexing is a system which allows users to navigate between items on a user

interface by pressing the Tab key on a keyboard.

• Tolk is an open-source screen reader code library that is used to output text to a variety

of screen readers (based on which screen reader the user has active).

• Unity is a free game engine commonly used by beginner game developers.

ACCESSIBILITY PACKAGE 6

Making the Easy Accessibility Package

The Easy Accessibility Package is a free, open-source package for Unity that aims to make

accessible video game development as simple as possible. Common obstacles preventing game

developers from implementing accessibility features are a lack of time to dedicate to the

features and a lack of knowledge about accessible game design. This package helps overcome

those obstacles by including both assets that simplify accessibility features and tutorials on how

to use those assets. Through academic research and interviews with workers in the field of

accessibility, I identified two accessibility features game developers often have trouble

implementing (remappable controls and screen reader support) and used that knowledge to

craft a Unity package that simplifies the work needed to include them in a game.

Research

 The research component of this project was vital to understanding the issues and best

practices surrounding accessibility. I came into this project without much previous experience in

accessibility, so it was important to gain at least a basic understanding of the field before writing

any code. My research into accessibility primarily came from three types of sources: scholarly

literature, unscholarly accessibility websites or blogs, and interviews with workers in the field of

accessibility.

 Once I made it past the research phase of my project and began writing code, I

referenced the Unity documentation1 (as well as the documentation for specific Unity packages

1 See https://docs.unity3d.com/Manual/index.html.

https://docs.unity3d.com/Manual/index.html

ACCESSIBILITY PACKAGE 7

I used)2 often. I also checked online coding forums (such as Stack Overflow)3 if I encountered

any issues while developing my project, which helped direct me towards official documentation

to find solutions.

Scholarly Literature

An Empirical Study of Issues and Barriers to Mainstream Video Game Accessibility

 This paper was a great way to view firsthand accounts on accessibility in video games

from both game developers and gamers with disabilities. In the paper, Porter and Kientz

interviewed game developers to gather data on how the industry treats accessibility (2013).

Then, Porter and Kientz surveyed a set of gamers with disabilities to synthesize statistics on the

needs of the greater community, collecting data on items such as what percentage of the set

had a certain disability, and what frustrations surveyed gamers experienced while playing video

games (2013). The conclusions Porter and Kientz reached from interviewing game developers

were helpful to my general understanding of accessibility in game development; the conclusions

they reached when surveying gamers with disabilities significantly motivated the direction of my

project.

The main lesson I took from the Porter and Kientz paper was that games not working

with the accessibility technologies players already have installed is a major roadblock for gamers

with disabilities (2013, p. 4). The only other screen reader package for Unity I’d found used its

own text-to-speech system and wasn’t directly compatible with major screen readers such as

2 See https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/api/index.html.
3 See https://stackoverflow.com/.

https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/api/index.html
https://stackoverflow.com/

ACCESSIBILITY PACKAGE 8

JAWS.4 This meant that there was no way for most players using screen readers to get them

working within Unity games, solidifying that a Unity package containing support for major

screen readers was a necessity.

Improving Web Accessibility: A Study of Webmaster Perceptions

 In this paper, Lazar et al. surveyed 175 webmasters to study how web developers view

accessibility (2004). In the paper, they find several major roadblocks web developers face when

trying to make a website accessible, including a lack of time and a lack of software tools (Lazar

et al., 2004). While these findings were for the field of web development, they generalize to

game development as well, as both fields deal with user interface design and user experience,

which are both heavily affected by accessibility. The findings affirmed that a Unity package that

simplified accessible design and saved developers’ time would be helpful in eliminating barriers

to accessibility in Unity game development.

Non-Scholarly Web Sources

Game Accessibility Guidelines

 This website contains a basic, descriptive list of accessibility features, categorized by

difficulty of implementation.5 The extent of my use of this website was browsing in my free time

to brainstorm project ideas. The website helped me directly when one of the sections I read led

me to discover the page for the Unity screen reader package I mentioned previously.6

4 The listing for this package is found at https://assetstore.unity.com/packages/tools/gui/ui-
accessibility-plugin-uap-87935.

5 See http://gameaccessibilityguidelines.com/.
6 See http://gameaccessibilityguidelines.com/ensure-screenreader-support-for-mobile-devices/.

https://assetstore.unity.com/packages/tools/gui/ui-accessibility-plugin-uap-87935
https://assetstore.unity.com/packages/tools/gui/ui-accessibility-plugin-uap-87935
http://gameaccessibilityguidelines.com/
http://gameaccessibilityguidelines.com/ensure-screenreader-support-for-mobile-devices/

ACCESSIBILITY PACKAGE 9

UX Collective – Designing Main Menu Screens for Visually Impaired Gamers

 This article contains a basic overview of best practices to follow when designing user

interfaces compatible with screen readers (Gantzer, 2020). Specifically, Gantzer covers the

challenges players using screen readers face when playing games (2020). These challenges fall

into four categories:

• knowing what menu screen the player is on;

• knowing what menu option the player has selected, and how to interact with it;

• knowing all the actions a player has on a given screen; and

• knowing if player input was registered in any way (Gantzer, 2020).

All these challenges are addressed within the screen reader feature in my project.

Interviews

Jeff Sykes – Assistive Technology Coordinator

 For my first interview, I wanted to speak to someone at the Grand Valley State University

(GVSU) Disability Support Resources (DSR) department to help me better understand accessible

technology. I emailed the department, and they suggested I interview Jeff Sykes, an Assistive

Technology Coordinator with the department (Disability Support Resources, personal

communication, November 13, 2020).

To start our meeting, Jeff told me about what he did in his role with DSR. One

responsibility he has is to set up hardware and software around the GVSU campus to assist

those with visual and audio impairments (J. Sykes, personal communication, November 19,

2020). One of the technologies he mentioned working with were screen readers, which are

provided on campus to aid people with visual impairments or people who are illiterate (J. Sykes,

ACCESSIBILITY PACKAGE 10

personal communication, November 19, 2020). He specifically mentioned a free screen reader

called NVDA, which ended up being crucial to the testing of my screen reader functionality in

the project (J. Sykes, personal communication, November 19, 2020). Later in the interview, he

recommended websites I could research to learn more about accessibility7 and suggested

features I could include in my project (J. Sykes, personal communication, November 19, 2020).

Two of his suggestions (screen reader support and providing speech feedback for actions)

ended up being implemented in the project (J. Sykes, personal communication, November 19,

2020).

Overall, my meeting with Jeff was incredibly helpful. He taught me a great deal about

accessible technology and played a large part in my decision to include screen reader

functionality within my project.

Clinton “halfcoordinated” Lexa – Freelance Gaming Accessibility Consultant

I was initially interested in meeting with Clinton because I was familiar with their

accessibility work from their online presence as a video game live streamer. In our meeting, we

discussed several aspects of how I could make my project as useful as possible, while covering

specifics of how I should implement certain aspects of the two main features of the project.

 For the remappable controls feature, Clinton informed me about several possible

options I hadn’t considered before, including adjustable mouse sensitivity, reorientable joystick

controls, and the ability to map button inputs to joystick inputs (C. Lexa, personal

7 Suggested websites included https://webaim.org/, https://docs.microsoft.com/en-
us/windows/win32/winauto/microsoft-active-accessibility, and https://www.w3.org/WAI/.

https://webaim.org/
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://www.w3.org/WAI/

ACCESSIBILITY PACKAGE 11

communication, February 11, 2021). Clinton told me these options could be difficult to

implement; this solidified that the options would be good to include in the package, since the

point of the package is to make difficult tasks easier for game developers (C. Lexa, personal

communication, February 11, 2021).

 For the screen reader feature, Clinton gave me many resources which ended up

drastically simplifying the feature’s implementation. The most prominent resource they

recommended was the Tolk library (C. Lexa, personal communication, February 11, 2021). Using

Tolk significantly cut down on the amount of work needed to support screen readers and

allowed me to dedicate more time to adding customizable options to the feature. These options

were based on another resource Clinton directed me towards (being Gantzer’s screen reader

user interface tutorial I mentioned previously) (C. Lexa, personal communication, February 11,

2021; Gantzer, 2020).

Overall, my meeting with Clinton shaped the course of my project significantly, and it

was the most valuable piece of research I conducted for this project.

Features

 There are two main features included in the Easy Accessibility Package: remappable

controls and screen reader support. To make the package more user-friendly for developers, I

created tutorials on implementing both features and included them within the package. The

development process for both features has been so enjoyable that I plan to continue working on

it after I graduate. I already have ideas in mind for improving the main features after graduation,

which I expand on below.

Remappable Controls

ACCESSIBILITY PACKAGE 12

 I began developing this feature by researching online for existing examples of

remappable controls in Unity. I found a few good examples,8 but they all involved workarounds

to get around roadblocks stemming from Unity’s default input manager (as there is no native

way to remap controls during runtime using the default input manager). Using a workaround

would’ve been unintuitive, so I kept searching for another way to implement remappable

controls, leading to my discovery of Unity’s Input System.

The Input System was the clear method of choice for implementing remappable controls

both due to its general versatility, and because the package comes with a working example of

remappable controls. Since the package’s license clarifies that I can modify and distribute code

from the package, I decided to use the included example as a base for the feature (Unity

Technologies, 2019). This allowed me to dedicate my efforts towards features more difficult to

implement than basic button remapping.

Adjusting Mouse Cursor Sensitivity

 Mouse sensitivity is easily implemented through the Input System for controls such as

player camera movement but adjusting sensitivity for an on-screen mouse cursor is a much

more complex issue. If one tries to adjust the sensitivity of the system mouse, either the mouse

location must be warped each frame (which looks quite jittery due to the operating system

moving the location between frames), or the mouse speed must be changed at a much lower

level using a system call. The latter option isn’t ideal, as it would change the mouse sensitivity

8 The most robust example can be found here:
https://www.youtube.com/watch?v=iSxifRKQKAA&t=610s.

https://www.youtube.com/watch?v=iSxifRKQKAA&t=610s

ACCESSIBILITY PACKAGE 13

system-wide on Windows. I decided the best course would be to implement a software mouse

cursor that takes input from the system mouse but displays in a different location than the

system mouse cursor.

 The Input System came packaged with a sample that demonstrated the use of a software

mouse cursor (referred to as a “virtual mouse”). While the sample was only set up to be

controlled by a gamepad, its features were so robust that I decided to modify it to be controlled

by the system mouse as well. This task was easily achieved, but I encountered a bug after

getting the positional controls working – each time I clicked the mouse, the virtual mouse would

never exit the clicked state. The problem stumped me for a while, since it would only occur

when controlling the virtual mouse with a system mouse, and not when controlling it with a

gamepad. The root cause was my misunderstanding of the Input System; when I told the virtual

mouse to accept input from the system mouse, the Input System gave it input from any mouse,

including itself. This led to the virtual mouse causing itself to click every frame. After fixing this

issue, the mouse worked as intended. I finished the feature when I added sensitivity to the

virtual mouse’s cursor movement by multiplying its change in position by a “sensitivity”

percentage each frame.

 Unfortunately, this feature goes unimplemented in the final version of the project due to

a limitation of the example it was based on. The virtual mouse doesn’t work on screen-scalable

user interfaces, which makes it practically unusable in a real game. Still, working on this feature

gave me a great deal of familiarity with the Input System, so I’m ultimately happy with the time I

spent on it.

Saving and Loading Remapped Controls Between Play Sessions

ACCESSIBILITY PACKAGE 14

 I decided to include this feature to expand on the Input System’s existing remappable

controls example and make it more suitable for a real game. To figure out what data I needed to

store to make this feature happen, I needed to know more about how the Input System worked

behind the scenes. This forced me to dig deeper into the Input System documentation, further

solidifying my knowledge of the system.

 My main difficulties while working on this feature stemmed from a misunderstanding of

how the Input System treats remapping at runtime. I hit a wall while working on this feature

because when querying the status of one of the controls that had been remapped at runtime, I

was receiving the old value of the control instead of the new value. The Input System stores the

default control options for a game separately from the modified control options created when a

player remaps controls at runtime, but at first, I was only asking for the default options. After

this realization, it was simple to retrieve the correct value, store it after a remapping occurred,

and retrieve it when the game next loaded, allowing me to finish implementing the feature.

Remapping Stick Directions

 This feature is made up of two key components: allowing the player to invert the X or Y

axes of a gamepad joystick input (making pressing “left” go to the right, etc.), and allowing the

player to change the orientation of the cardinal directions of a joystick. The latter feature

involved changing where “up” on the joystick was (for example, the feature could make a “left”

input register as “up”) and changing the rest of the cardinal directions on the joystick

accordingly. Both features were implemented using processors.

 Processors make implementing axis inversion simple – all one needs to do is accept the

two-dimensional vector input from a gamepad joystick and multiply the X or Y component of

ACCESSIBILITY PACKAGE 15

the vector by -1 to invert the vector along an axis. By default, the Input System comes with a

processor that does this, but to change the joystick orientation, I had to write my own processor

to apply a vector rotation to a joystick input. I knew how to do this from the Linear Algebra

course I took in Fall 2020, so I wrote the processor without issue.

 From here, my only tasks left were implementing a basic user interface, figuring out how

to apply the processors at runtime, and saving them between play sessions. The user interface

was implemented easily, but the other two features were tougher to figure out. The main

source of difficulty was that active processors on a specific input were stored as comma-

delimited strings, and there were no helper methods to facilitate working with these strings. I

was able to get around this by writing my own helper methods, which helped me apply

processors at runtime. After this, I used the same save system as in previous tasks to save and

load active processors between play sessions.

Mapping Stick Inputs to Button Actions

 This feature was easy to implement, as it’s implicitly included in the basic remappable

controls example from the Input System. The Input System provides synthesized binary button

controls that the joysticks on a controller trigger whenever they register a value in any of the

four cardinal directions. However, there’s a drastic limitation to this implementation: the inputs

are triggered by the slightest positive or negative movement on both the X and Y axes. It’s

practically impossible to move a joystick on one axis without moving it on the other, so adjacent

cardinal directions are guaranteed to register at the same time, which limits the feature’s

usefulness. Adding a joystick processor to make it so these inputs only trigger on significant

joystick movements would make the functionality better, but that’s not a possibility with this

ACCESSIBILITY PACKAGE 16

type of input (since the “inputs” generated by the Input System are considered buttons, not

joysticks). Overall, there’s a lot that could be done to make this feature better, but due to the

short timeframe of this project, the basic implementation provided by the Input System was all

that was possible.

Tutorial

 The tutorial I built to teach developers to use my package’s remappable control features

used a sample game included with the package. The game showed the player’s inputs on screen

whenever the player used a gamepad or keyboard to trigger them. From this game screen, the

player could navigate to a settings screen to remap their controls. The settings screen is empty

at the beginning of the tutorial, and through reading the tutorial, the reader uses the pre-built

assets I included in the project (some of which I repurposed from the Input System example) to

add options allowing the player to remap the game’s controls. This teaches the reader how to

implement all remappable control features included in the package except for mouse sensitivity.

Future Work

My main task immediately after graduation will be tweaking my implementation of

saving and loading remapped controls. The class structure of my current implementation is built

well, but it currently utilizes a pre-built Unity data saving and loading system that uses the

Windows registry. In general, it’s not recommended to use the Windows registry for most

purposes, so I will try to save the data in a different format (such as a JSON file) to avoid registry

use. I designed the saving and loading system to function all from a single class, so that class will

be the only one I need to change to implement this update.

Screen Reader Functionality Using Tolk

ACCESSIBILITY PACKAGE 17

 After learning about the Tolk library from Clinton, screen reader support seemed like it

would be trivial to include within my project. However, there was a barrier that initially

prevented me from using Tolk: compiled builds of the library (which were necessary to use it

within Unity) were not included with the library’s source code.9 This meant I needed to compile

the library myself.

Compiling Tolk

 Tolk is written in the language C++, but the library comes with classes and libraries

written in other languages (such as C# and Java) which allow those languages to interface with

the main C++ code. This made compiling Tolk much harder, since I needed to have tools installed

for each supported language to run Tolk’s Makefile. After installing all the necessary tools, I ran

the Makefile, which failed halfway through compilation. By inspecting the error this failure

generated, I found out this occurred because the necessary compilation tools for Tolk’s Java

library weren’t being properly linked from my computer’s Java directory. I spent some time

trying to resolve this, but I didn’t need the Java library (as Unity uses C#), so I decided to remove

its compilation instructions from the Makefile. This resolved the issue, which prompted me to

test to see if the library worked by running an example C# application included with the library.

 When I first ran the example application, it ended up crashing before passing any

commands to the screen reader I had running. While reading the example application’s error

logs, I discovered the crash occurred because I’d compiled Tolk for 32-bit CPU architecture (x86),

while the example application was being compiled for 64-bit CPU architecture (x86-64). Both

9 See https://github.com/dkager/tolk.

https://github.com/dkager/tolk

ACCESSIBILITY PACKAGE 18

architectures are used in modern computers, but x86-64 is newer than x86 (and faster, in some

cases). Initially, I wasn’t entirely sure why the x86/x86-64 mismatch caused the error, but I knew

I could get around the error by compiling the example application for x86. This resolved the

issue, allowing me to start working on integrating Tolk with Unity.

Integrating Tolk with Unity

 There were a couple of main issues standing in my way of getting Tolk working in Unity.

First, when Tolk is compiled, the main C++ library takes on the form of a C++ DLL. Additionally, a

C# DLL (which is dependent on the main C++ DLL) is compiled, allowing Tolk to be used within

C#. I’d never used DLLs before, so I researched online to learn how to integrate DLLs with Unity.

I found a tutorial for this process10, but after following the tutorial, another problem presented

itself.

 The new issue was that Unity games are built for x86-64 by default, but my Tolk DLLs

were compiled for x86. This made Unity incompatible with my DLLs. This was the second time

an architecture mismatch caused problems for me, so I did more research into which

architecture I should’ve targeted when compiling the DLLs. I found that my computer, like Unity,

targets x86-64 by default, which showed me that the Tolk DLLs being compiled in x86 was

unusual. This prompted me to recompile the DLLs in x86-64. Doing so was simple, as the

command line tool I used to compile Tolk had two separate versions: one for compiling in x86

(which I used accidentally), and one for compiling in x86-64. I compiled Tolk using the x86-64

10 See https://ericeastwood.com/blog/17/unity-and-dlls-c-managed-and-c-unmanaged.

https://ericeastwood.com/blog/17/unity-and-dlls-c-managed-and-c-unmanaged

ACCESSIBILITY PACKAGE 19

command line tool, and after importing the new DLLs into a Unity project, I made an example

game that triggered speech from a screen reader when the game loaded.

Making Easily Usable Assets

 From here, most of my work was spent making assets that would allow a game

developer to add screen reader functionality into their games with little effort. I did this by

reviewing the best practices listed in the Gantzer article and creating assets a developer could

use to easily implement those best practices. The two main assets I made during this process

were:

• Code that

o initializes the Tolk library on load;

o reads the purpose of the screen the player is on; and

o adds a tab indexing system which allows players to cycle through user

interface items to be read by the screen reader.

• Code that (a) makes game objects readable when the mouse cursor hovers over them;

and (b) makes game objects focusable in the tab indexing system.

Tutorial

 For the tutorial on this section, I included a sample game with the package. In the game,

the player navigated between a main menu and a game screen. The gameplay only involved

clicking a button to increment a counter. At the beginning of the tutorial, this game starts off

without screen reader support, and over the course of the tutorial, the reader uses the pre-built

assets I included in the project to make all the user interfaces within the game accessible by a

screen reader. The goal of this tutorial is to teach the reader how to use the package to add

ACCESSIBILITY PACKAGE 20

screen reader support to an existing game (as most developers would download my package to

use on an existing project).

Future Work

 When I continue working on this project after graduation, feedback from developers

who are using the package will determine which aspects of the feature I work on. This feedback

will come from support tickets opened through the package’s website.11 Additionally, I plan to

use screen readers more often, which will help me identify potential improvements.

Conclusions

 Working on the Easy Accessibility Package this semester has been the most valuable and

enjoyable learning experience I’ve ever had. The research phase of this project taught me how

to network with those in the field of accessibility, honing critical communication skills and

helping me discover my passion for a field I hadn’t ever engaged with before. This project

nurtured my existing passions as well - game development has always interested me, and this

project has allowed me to apply that interest to a real-world problem in a way no other

experience has. Ultimately, my work on this project serves quite poetically as a culminating

experience for my time in the Honors College, perfectly embodying all the lessons I’ve learned

over the past four years. Service, equity, leadership, interdisciplinarity – all these themes have

shaped my experience at GVSU, and I kept every one of them in mind while working on this

project. As I graduate and move on to tackling more real-world problems, I’m confident the

11 The section of the package’s website that developers can file support tickets at is
https://github.com/trudeaua21/EasyAccessibilityPackage/issues.

https://github.com/trudeaua21/EasyAccessibilityPackage/issues

ACCESSIBILITY PACKAGE 21

practice I’ve gained in applying these themes to my work will positively shape the work I do for

the rest of my life.

ACCESSIBILITY PACKAGE 22

References

Gantzer, T. (2020, January 12). Designing main menu screens for visually impaired gamers. UX

Collective. https://uxdesign.cc/designing-main-menu-screens-for-visually-impaired-

gamers-865a8bd76543

Lazar, J., Dudley-Sponaugle, A. & Greenidge, K. (2004). Improving web accessibility: a study of

webmaster perceptions. Computers in Human Behavior, 20(2), 269-288.

https://doi.org/10.1016/j.chb.2003.10.018

Porter, J. R. & Kientz, J. A. (2013, October). An empirical study of issues and barriers to

mainstream video game accessibility. Paper presented at ASSETS ’13: Proceedings of the

15th International ACM SIGACCESS Conference on Computers and Accessibility, Bellevue,

Washington. https://doi-org.ezproxy.gvsu.edu/10.1145/2513383.2513444

Unity Technologies (2019). License.

https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/license/LICENSE.html

https://uxdesign.cc/designing-main-menu-screens-for-visually-impaired-gamers-865a8bd76543
https://uxdesign.cc/designing-main-menu-screens-for-visually-impaired-gamers-865a8bd76543
https://doi-org.ezproxy.gvsu.edu/10.1016/j.chb.2003.10.018
https://doi-org.ezproxy.gvsu.edu/10.1145/2513383.2513444
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/license/LICENSE.html

	Making the Easy Accessibility Package
	ScholarWorks Citation

	Making the Easy Accessibility Package

