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Abstract 

 

Histamine is a biogenic amine that functions as a neurotransmitter in a number of 

vertebrate and invertebrate systems and is synthesized from its precursor histidine by the enzyme 

histidine decarboxylase (HDC). In Drosophila, histamine has been shown to have function in 

photoreceptors, mechanoreceptor cells, as well as centrally located neurons. Mutations of the 

Hdc gene, such as HdcJK910, exhibit defects in histamine synthesis and display altered behaviors 

such as blindness, inability to groom, impaired thermal tolerance, and altered sleep rhythms. 

However, all Hdc mutants obtained thus far demonstrate some transcriptional activity.  

In order to remove Hdc expression completely, part of the Hdc gene was removed via 

Minos transposon-excision mutagenesis using the Mi{ET1}HdcMB07212 fly, which bears a Minos 

transposon within the Hdc gene (a hypo-morphic allele). Minos excision mutagenesis of Hdc was 

achieved by mating flies from the HdcMB07212 strain with another fly carrying the Minos-specific 

transposase gene – to induce imprecise excision in the progeny's genome to cause a deletion. The 

Mi{ET1} transposon also contains a gene encoding the green fluorescent protein (GFP) under 

the control of an eye-specific promoter, the loss of which can be used to visually identify a 

potential Minos excision. Once loss of GFP (GFP-) individuals were identified, breeding lines 

were established and flies from each line examined using histamine immunostaining to 

determine the presence or absence of histamine in the ventral nerve cord of larvae.  

Progeny obtained fell into the following categories: (1) flies with wild-type levels of 

histamine, indicating rescue of Hdc expression due to a precise Minos excision from Hdc; (2) 

flies with trace levels of histamine, indicating an excision event that disrupted GFP expression 

from the Mi{ET1} transposon but did not rescue Hdc expression; (3) flies having no histamine, 
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indicating an imprecise excision with an associated loss of expression from the Hdc gene. 

Molecular lesions associated with each class of flies were characterized using a PCR approach. 

Results indicate that of the 98 GFP- strains examined thus far each fell into one of the 3 expected 

categories, with 29 exhibiting elimination of Hdc expression.  
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Chapter 1: Introduction 

 

Introduction 

 Histamine functions as a neurotransmitter in fruit flies and is produced from its precursor, 

histidine, by the enzyme histidine decarboxylase. The gene responsible for the histidine 

decarboxylase enzyme in the fruit fly is the Hdc gene. Mutant flies defective for histamine 

synthesis ability display traits such as blindness, inability to groom, and impaired temperature 

tolerance. Thus far, all of the mutations that disrupt the Hdc gene have been caused by point 

mutations that were induced chemically over 30 years ago.  A new set of mutations that remove 

(or delete) the Hdc gene will be useful in the examination of the effects that removal of Hdc has 

on the viability of the fly, as has been traditionally done when characterizing genes as essential 

to an organism’s viability.  Additionally, deletions of the Hdc gene will be useful in studying the 

regulation of Hdc gene function in the fruitfly, Drosophila melanogaster.  

 

Purpose 

 The purpose of this study was to eliminate Hdc gene function by generating a deletion of 

the gene using transposon-excision mutagenesis. A Minos transposon has been reported to be 

present within the Hdc gene, and has been used to generate deletions of other genes through 

transposon mutagenesis. 
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Scope 

 Putative deletion mutants were generated by crossing flies with the Minos transposon to 

flies with a heat-inducible transposase gene. Those mutants were then analyzed for histamine in 

nervous system tissue using histamine immunofluorescence staining, with a result of no 

histamine indicating a disruption of the gene.  Secondly, examination of the DNA structure 

surrounding the Minos insertion using a polymerase chain reaction (PCR) approach in flies that 

were shown to have a disrupted Hdc gene function has revealed removal of the region containing 

the Minos transposon.   

 

Assumptions 

It has been reported that only 1.5 – 3.6% of Minos excision events result with imprecise 

excisions, so it was estimated that 90 – 100 mutant lines would need to be generated using 

transposon-excision mutagenesis in order to identify a deletion within the Hdc gene. Negative 

results for both histamine staining and PCR would be considered evidence of an Hdc deletion 

mutation.  As a result of this work, approximately 29 deletion mutants of the Hdc gene have been 

identified and are available for further molecular analysis.   

 

Research Question 

 The research question that drove this project was “Is it possible to isolate a homozygous 

fly with a deletion containing only the Hdc region, or will elimination of Hdc activity cause 

lethality in the fly?”  
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Significance 

There are existing mutants that exhibit Hdc deficiency, but all of them still have some 

residual expression. Deletions of most, if not all, of the Hdc gene should enable gene regulation 

studies to move forward, as there has been some evidence generated by the Burg lab (personal 

communication, M. Burg) that multiple copies of the Hdc promoter can suppress endogenous 

Hdc expression.  If available, deletions in the promoter control region of the gene may aid in this 

scientific question. 

 

Definitions 

 Transposons are sometimes referred to as “jumping genes” because they can excise and 

then re-insert into various regions within a genome. If a transposon excises imprecisely, it takes 

adjacent genetic material along with it and causes a deletion.  
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Chapter 2: Literature Review 

 

Neurotransmitters are the foundation of neural function and play an important role in 

effecting mechanical function, sensory function, and cognition (reviewed in: Ludwig and 

Pittman 2003). While numerous neurotransmitter substances have been studied in humans, 

histamine’s role as a neurotransmitter is less understood (Haas et al., 2008).  Currently, lack of 

histamine has been shown to have some role in neurological function for example in some 

seizure disorders (Kenji et al., 1992) and has been implicated in one rare form of Tourette’s 

syndrome (Baldan et al., 2015). Overall, there are still many questions that exist regarding 

histamine’s role in the vertebrate nervous system and what implications it may have on human 

health.  We have focused on examining the role of histamine in the fruitfly Drosophila 

melanogaster as it represents a robust and accessible model system.  

Histamine is a biogenic amine that has been shown to function as a neurotransmitter in a 

number of invertebrate systems (Stuart 1999). Histamine can be produced from histidine, by the 

enzyme histidine decarboxylase (HDC) (Sarthy 1991).  In Drosophila, histamine is the 

transmitter used by photoreceptors in the compound eye (Nässel et al., 1988; Pollack and 

Hofbauer, 1991; Sarthy 1991; Burg et al., 1993), and is also used by mechanoreceptors of the 

macrochaeta sensilla (Buchner et al., 1993; Melzig et al., 1996).  Mutant flies have been derived 

and studied, such as the HdcJK910 mutant, which exhibit defects in histamine synthesis ability 

(Burg et al., 1993), and display traits such as blindness, inability to groom (Buchner et al., 1993; 

Melzig et al., 1996), impaired temperature tolerance (Hong et al., 2006), disrupted circadian 

rhythm, and trouble with courtship (Oh et al., 2013).   However, all of the Hdc mutants identified 

by sequence analysis (Birdsey et al, 2006) have some detectable transcriptional activity (Boozer 
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et al., 2008), leaving to question what complete elimination of Hdc expression (a transcriptional 

null mutation) could cause in the fly. According to the online fly community resource, Flybase 

(dos Santos et al., 2015), there are no small deletions available that remove only the Hdc gene.  

Thus, an approach to generating small deletions in the Hdc gene needed to be employed in order 

to obtain an Hdc deletion mutation. 

 One potential approach to generating mutations is chemical mutagenesis. The ability of 

chemicals like ethyl methanesulfonate (EMS) to reliably induce mutagenesis made it a favorite 

technique used by geneticists for some time. EMS induces transition mutations predominantly, 

changing G-C nucleotide base pairs to A-T (Pastink et al., 1991). All of the originally isolated 

Hdc mutations were generated using this method (Pak 1975). The challenge of this approach is 

the random nature of the mutations generated (Blumenstiel et al., 2009), as well as the effort 

required to identify the mutation location. A second, more convenient method is the exploitation 

of transposons, sometimes called “jumping genes.” Transposons exist in the genomes of many 

species, and during times of stress can provide the host with useful local genetic variation to aid 

in survival (McClintock 1984). When utilized by geneticists, transposon insertion usually 

interferes with gene function and results in a mutant phenotype, and therefore is extremely useful 

in analyzing gene regulation and function (Cooley et al., 1988; Bellen et al., 1989; Bier et al., 

1989). Once identified in a position of a particular gene, the subsequent removal (or excision) of 

the transposon can lead to a deletion (or removal) of the gene through imprecise excision of the 

transposon (Loukeris et al., 1995a; Vanrobays et al., 2010).  
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One recent large-scale effort in Drosophila genetics research using transposon 

mutagenesis techniques is the Drosophila Gene Disruption Project (Bellen et al., 2011); its goal 

was to use transposon insertions to disrupt every Drosophila gene identified. Transposable 

elements differ in their target site specificity (Bellen et al., 2004; Thibault et al., 2004), the P-

element for example inserts near promoters on actively transcribed gene “hotspots” (Spradling et 

al., 1995; Liao et al., 2000; Tower et al., 1993), whereas the piggyBac transposon shows very 

little target site specificity (Horn et al., 2003). Both the P-element and piggyBac transposons 

frequently disrupted the gene in which they were inserted, but it was the P-element’s proclivity 

to cause deletions through imprecise excision that made it the most used in transposon 

mutagenesis studies during the early years of the Drosophila Gene Disruption Project (Lin et al., 

2014). But in 1991, a new transposon belonging to the Tc1/mariner superfamily (Minos) was 

isolated from Drosophila hydei (Franz and Savakis 1991). Tc1/mariner transposons do not 

require any host-specific factors for transcription and were potentially active in all organisms 

(Lampe et al., 1996; Vos et al., 1996). For instance, Minos became the first transposon to 

successfully transform a species (the medfly, Ceratitis capitata) outside of the element’s original 

host genus (Loukeris et al., 1995b). Unlike the piggyBac transposon, Minos has the ability to 

sometimes cause deletions through imprecise excision (Pastink et al., 1991). It was soon 

predicted that Minos elements would enable genome-wide mutagenesis (Venken et al., 2011), 

and today more than 95% of Drosophila melanogaster genes now contain at least one transposon 

insert (Bellen et al., 2011). The existence of a line with the Minos element in the Hdc gene (5 

base pairs 5’ to the second intron) provided an opportunity to use transposon-excision 

mutagenesis using Minos as a suitable method for generating a deletion in the Hdc gene of 

Drosophila melanogaster. 
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According to the online fly community resource, Flybase (dos Santos et al., 2015), one of 

the sites of Minos transposon insertion was in the Histidine decarboxylase (Hdc) gene – 4 base 

pairs 5’ to the second intron (see Fig. 1). Because there is a Minos transposon (MB07212) within 

the Hdc gene, it was possible to follow procedures previously described to induce an imprecise 

excision of the Minos transposon (Metaxkais et al., 2005) from the Hdc locus. Transposase 

expression in remobilization experiments can be controlled using heat shock and show rates of 

transposition between 30 – 50% (Metaxkais et al., 2005). Excision of the Minos element does not 

always lead to a deletion of adjacent genomic DNA, yet 1.5 – 3.6% of excision events reported 

thus far have resulted in such an imprecise excision, leading to a deletion of a neighboring gene 

(Metaxkais et al., 2005). Based on these findings, it was estimated 90 – 100 mutant lines would 

need to be generated using transposon excision mutagenesis in order to identify a deletion within 

the Hdc gene.  
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Figure 1: Location of the Minos transposon within the 9.4 kilo base pair Hdc gene (lower 

image). Location of the GFP gene within the Minos element (middle image). Location of PCR 

primers used for detection of the 7.5kb Minos element (upper image). In the MinosMB07212 fly, the 

Minos element is 4 base pairs upstream from the second intron within Hdc. The expected PCR 

product size of the first primer pair (Left A1 and Right B1) with a precise Minos excision is 407 

bp (base pairs), and the expected PCR product size of the second primer pair (Left B1 and Right 

B1) without a Minos excision is 517bp. Image adapted from Flybase (dos Santos et al., 2015).   
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Chapter 3: Research Methods 

 

Inducing imprecise excision of the MinosMB07212 transposon.   

Because there is a 7.5 kilo-base pair Minos transposon (MB07212) in the middle of the 

Hdc gene (4 base pairs 5’ to the second intron, see also Fig. 2), it is possible to follow procedures 

previously described to induce an imprecise excision of the Minos transposon and thereby 

disrupt Hdc expression (Metaxkais et al., 2005).  The existence of a GFP gene under an eye-

expressing promoter within Minos (Horn et al., 2000), allows the loss of the transposon to be 

detected due to the change in GFP expression in the compound eye (see Fig. 4; images taken 

using an Amscope stereomicroscope and the Nightsea fluorescent attachment). To induce a 

Minos transposon excision event and isolate any resulting deletion from such an excision event, 

the breeding scheme outlined in Figure 3 was followed. While an excision of the Minos element 

may not always lead to a deletion of adjacent genomic DNA (see Figure 2, outcome 2), 1.5 – 

3.6% of cases reported thus far in similar experiments have resulted in such an imprecise 

excision (Metaxkais et al., 2005), even leading to a deletion of a neighboring gene. The details of 

this cross scheme (Figure 3) should result in a fly that has lost the GFP (green eyes) marker 

(detected by microscopic examination using a fluorescent excitation and detection system – 

Nightsea, Inc.), indicating that at least the portion of the Minos element containing GFP had been 

excised.   
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A 

 

Mi(ET1)HdcMB07212 

 

The Mi(ET1)HdcMB07212 transposon location in the Hdc gene.  Flies carrying this transposon 

exhibit green fluorescent eyes.  Excision of this transposon, using the Minos transposase, will 

result in progeny flies without green fluorescent eyes.  The excision of the Minos transposon 

Mi(ET1)HdcMB07212 can occur either precisely (B) or imprecisely (C). 

 B 

 
Result 1:  Precise excision: elimination of fluorescent green eye results, but with no deletion 

of the Hdc gene, fly gains Hdc function and contains histamine in the brain.  

 

Result 2:  Imprecise excision; deletion of the Hdc gene created (see gap,*), and fly loses 

Hdc function and, as a consequence, has no detectable histamine in the brain.   

C 

 

Figure 2: Transposon-mediated excision method used to generate a deletion in the Hdc gene. 

(A) Location of the Mi(ET1)HdcMB07212 transposon in the Hdc gene as reported in 

(Flybase).  Once initiated, transposon excision can either be (B) precise or (C) 

imprecise, which potentially causes a deletion mutation in the Hdc gene. (Figure 

adapted from Flybase; dos Santos et al., 2015) 

 

 

* 

OR 
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Cross 1: 
*Heat shock progeny 

daily to pupation at 37°C 

Cross 4: 

Cross 3: 

Cross 2: 

* 

Putative Hdc deletion 
mutant line to test: 

Δ Keep all flies that have 
lost GFP and are CyO 

 

Δ 

Figure 3: Mating scheme used to generate Hdc deletion mutants taking advantage of 

imprecise excision of a Minos element located in the Hdc gene.  Males used in 

cross 2 were single-pair mated to females to generate GFP- flies, representing 

excision of the Mi{ET1},GFP+  transposon.  Flies obtained for further study were 

progeny from Cross 4 that were derived into stably mating stocks. 
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Histamine Staining 

 Larval brains from mutant flies were subjected to histamine immunofluorescence 

staining analysis (see Appendix for procedure) once putative Hdc deletion alleles (HdcΔ) were 

identified and stable breeding stocks established by the selection of GFP- individuals (Fig. 3, 

Cross 3 and 4; see also Fig. 4). By failing to detect histamine in the nervous system, histamine 

immunofluorescence staining enabled identification of true breeding GFP- lines disrupted in Hdc 

function (Fig 5).  Wild-type (normal) flies were stained as a positive control during these 

experiments to ensure that any negative staining result could be interpreted properly (Fig. 5).  
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Analysis of the genomic region including the Mi(ET1)HdcMB07212 insertion in GFP- flies that 

are histamine deficient 

  Once a fly line had been established to have a GFP- and histamine deficient phenotype, 

5 – 10 flies from each line identified (Fig. 3) were collected and their genomic DNA isolated 

using standard preparation techniques (Qiagen, Inc; see Appendix for specific procedural 

details).  The Hdc gene region was amplified using Polymerase Chain Reaction (PCR) carried 

out via a standard reaction design for the FastStart High Fidelity Enzyme Blend (Roche, Inc.), 

adjusting the temperature of annealing depending on the primers used.  PCR generated DNA 

samples were prepared for electrophoretic analysis to determine if the expected fragment was 

detected.  The PCR enzyme used was able to amplify fragments up to 5000 base pairs, and the 

Minos transposon is 7819 bp long, so if the Minos element was present the expected result would 

be no amplicon present in the gel. As most of the excision events to be detected were likely to be 

precise, identification of failed PCR amplification reactions in the midst of successful ones 

enabled the identification of putative deletions (Vanrobays et al., 2010; Metaxkais et al., 2005). 

Amplification was repeated using the same DNA preparation on those lines that failed to produce 

an amplicon. 
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Complementation tests using HdcJK910 and known lethal deletions in the Hdc region 

 In addition to the 98 stable breeding GFP- lines that were generated in this experiment 

and were tested (See Fig. 3), 6 additional breeding lines remained heterozygous, suggesting the 

presence of a recessive lethal mutation being present as a result of the excision experiment. 

These 6 mutant lines were thought to harbor a lethal mutation on the second chromosome and, if 

mapped to the Hdc gene, could demonstrate that an Hdc deletion can be lethal. These fly strains 

which did possess a lethal mutation on Chromosome 2 were crossed to HdcJK910 flies as well as 

flies with known deletions uncovering the Hdc gene to determine whether the lethal mutation 

was affecting the Hdc gene and that it was in fact due to the absence of the Hdc gene.  
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Chapter 4: Results 

Establishment of putative Hdc deficiency strains 

 The goal of these experiments was to generate 100 mutant flies, identified by the loss of 

GFP expression in the eye. Once a GFP- fly was identified (Fig. 4), an additional cross was 

carried out to create a strain of flies in which homozygous deficiency-bearing flies could be 

identified at the larval stage as well as to preserve the potential HdcΔ allele (Fig. 3, Cross 4). Of 

the 33,800 flies screened, 119 GFP- flies (0.35%) were identified – and of the 169 Cross 2’s 

carried out (Fig. 3), 81 of them (47.9%) produced at least one GFP- fly.  

 

Figure 4: Illustration of the GFP+ (A) or GFP- (B) phenotypes used to identify putative 

Mi{ET1} excision events that could yield deletions of the Hdc gene.  Males from cross #2 (Fig. 

3) were examined for the presence (A) or the absence (B) of the GFP phenotype. (A) The GFP+ 

(or ‘green eye’) phenotype allows for easy selection of a fly with GFP using an Amscope 

stereomicroscope at 10x magnification and the Nightsea fluorescent attachment.  (B)  

Mi{ET1},GFP- fly indicating an excision had occurred, through the loss of GFP in the eye. In 

this project, approximately 33,800 flies were screened, yielding about 169 GFP- lines to study, of 

which 29 resulted in a complete disruption of Hdc. (photo courtesy of Aaron Ripley) 

A B 
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Histamine staining to identify disruptions of the Hdc gene 

In addition to the 29 lines that were GFP- and did not stain positive for histamine, 56 

GFP- fly lines did demonstrate strong histamine immunofluorescence detection. These lines 

likely represent precise excisions of the Minos element, eliminating the effect that the Minos 

element had on Hdc gene function. As the original Minos insert fly line is a hypo-morphic allele, 

a precise Minos excision returns the fly to a wild type phenotype. There were also 13 GFP- flies 

that stained weakly for histamine, likely resulting from an internal deletion of the Minos element, 

disrupting GFP expression. We conclude that putative small deletions from within the transposon 

showed no difference in histamine staining, as the Minos insert line itself also stained weakly for 

histamine. 

Some of the 29 strains that demonstrated no detectable histamine immunoreactivity were 

also crossed with the HdcJK910 mutant strain and their progeny examined for the presence of 

histamine to genetically confirm that a deletion of Hdc occurred in that fly line (Fig. 5F). This 

was done to ensure the HA- phenotype was actually caused by a disruption of the Hdc gene, 

presumably through transposon-mediated excision. 
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Figure 5: Histamine immuno-localization used to detect mutant flies with a potential deletion in 

the Hdc gene.  Histamine immuno-localization of GFP- flies demonstrate whether an excision of 

the Minos element had disrupted the Hdc gene in the GFP- flies obtained. When Hdc is not 

disrupted (A), histamine is detected using a histamine antibody (A, arrows).  Note that centrally 

located histaminergic neurons (arrows) are easily visible in the ventral nerve cord of larvae. A 

weak histamine signal (B, arrows) is observed in some flies that likely have a disrupted 

transposon remaining at the inserted site, similar to phenotype of the original Minos-bearing 

insertion used (E). In a third type of fly obtained, no histamine was detected, presumably due to a 

deletion of all or part of the Hdc gene (C). Histamine deficient mutant crossed to HdcJK910 (F), 

and adult dissection of lethal mutant crossed to HdcJK910 (D) – both crosses to test if the location 

of the disruption lies within the Hdc gene.  
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Polymerase Chain Reaction analysis of Hdc region 

When all 29 of the lines staining negative for histamine were analyzed using a PCR 

approach, 12 failed to produce an amplicon as expected – the remaining 17 did produce a PCR 

amplicon, perhaps alluding to deletions as small as 5 base pairs. Out of the 20 retained lines 

staining positive for histamine, 5 were selected for analysis and all 5 produced an amplicon of 

the expected size. The flies staining weakly for histamine were presumed to have a partial 

removal of the Minos transposon (GFP gene), and when an alternate a primer set was used on 2 

such mutants to determine if the 3’ end of Minos remained, amplicons of the expected size were 

observed. 

Mutant 
Stock# 

HA 
staining 

PCR 
Amplicon? 

  Mutant 
Stock# 

HA 
Staining 

PCR 
Amplicon? 

4 weak 𝑁𝑜   85 weak 𝑌𝑒𝑠 
4* 
 
69 

weak 
 
positive 

𝑌𝑒𝑠 
 

𝑌𝑒𝑠 

 
 

 85* 
 
87 

weak 
 
positive 

𝑌𝑒𝑠 
 

𝑌𝑒𝑠 

108 positive 𝑌𝑒𝑠   137 positive 𝑌𝑒𝑠 
147 positive 𝑌𝑒𝑠      
        
7 negative 𝑌𝑒𝑠   9 negative 𝑌𝑒𝑠 
13 negative 𝑌𝑒𝑠   18 negative 𝑌𝑒𝑠 
19 negative 𝑌𝑒𝑠   22 negative 𝑌𝑒𝑠 
26 negative 𝑌𝑒𝑠   31 negative 𝑌𝑒𝑠 
32 negative 𝑌𝑒𝑠   34 negative 𝑌𝑒𝑠 
35 negative 𝑌𝑒𝑠   43 negative 𝑌𝑒𝑠 
45 negative 𝑌𝑒𝑠   47 negative 𝑌𝑒𝑠 
48 negative 𝑌𝑒𝑠   49 negative 𝑌𝑒𝑠 
100 negative 𝑌𝑒𝑠      
        
51 negative 𝑁𝑜   101 negative 𝑁𝑜 
114 negative 𝑁𝑜   118 negative 𝑁𝑜 
119 negative 𝑁𝑜   120 negative 𝑁𝑜 
121 negative 𝑁𝑜   138 negative 𝑁𝑜 
140 negative 𝑁𝑜   141 negative 𝑁𝑜 
146 negative 𝑁𝑜   77 negative 𝑁𝑜 

Table 1: Summary table for HA staining and PCR results for the GFP- lines initially isolated. 

PCR primers used: Left A1 and Right B1 (See Appendix). (*) signifies the use of the primer Left 

B1 instead of Left A1. For complete histamine staining and PCR results of all lines examined, 

see Appendix.  
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Figure 6: Gel Electrophoresis representative results from each type of mutant found. The first 7 

lanes used the first primer set (Left A1 and Right B1), the final 4 lanes used the second primer 

set (Left B1 and Right B1; see Fig. 1 for primer locations). HdcΔ137 (lane 3) represents the 5 HA+ 

mutants tested (of 20 retained); all of the HA+ mutants produced the expected sized amplicon, 

indicating no significant disruption in the Hdc gene area tested. These, I postulate, are the flies 

that have reverted to a wild-type phenotype due to a precise excision of the Minos element. 

HdcΔ85 and HdcΔ4 (lanes 4 and 5, then 10 and 11) were the only 2 weak staining histamine 

mutants tested via PCR, and while they both produced the expected amplicon using the second 

primer set, HdcΔ85 also produced an amplicon with the first primer set. Finally HdcΔ146 and 

HdcΔ13 (lanes 6 and 7) represent the 29 HA- mutants.  
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Complementation tests using HdcJK910 and known lethal deletions in the Hdc region 

Each of the 6 mutant lines thought to harbor a lethal mutation on the second chromosome 

were crossed to both HdcJK910 and flies with known deletions uncovering the Hdc gene (Figure 

7). These crosses were performed to determine whether the lethal that had been isolated 

genetically actually mapped to the Hdc genomic region. The positive staining result of the 

mutants crossed to HdcJK910 (Fig. 5D) demonstrated that the lethal mutation did not disrupt Hdc 

and must therefore be outside the Hdc gene.  Chi Square test results of the crosses to flies with 

known deficiencies uncovering Hdc showed mutants HdcΔ88 and HdcΔ107 with a p-value < 0.05 

(See Appendix), suggesting that the deficiencies that uncover Hdc do not uncover these lethal 

mutations, therefore the lethal mutation is not within the Hdc gene. 
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Figure 7: HdcJK910 complementation crosses to lethal mutants (A), and mutant lethal crosses to 

flies with known deficiencies that have been previously shown to uncover the Hdc gene (B and 

C). The location of the known deficiencies relative to the Hdc gene are also included (lower 

image; adapted from Flybase).  

 

 

 

 

 

 

 

Hdc 

Deleted 
Segment 

𝐻𝑑𝑐[𝐽𝐾910]

𝐻𝑑𝑐[𝐽𝐾910]
  x 

𝑀𝑖(𝐸𝑇1),𝐺𝐹𝑃−

𝐶𝑦𝑜
 

 

𝐻𝑑𝑐[𝐽𝐾910]

𝑀𝑖(𝐸𝑇1), 𝐺𝐹𝑃 −
 

𝐷𝑓(2𝑅)𝐵𝑆𝐶350

𝐶𝑦𝑂
 x 
𝑀𝑖(𝐸𝑇1),𝐺𝐹𝑃−

𝐶𝑦𝑜
 

 

𝐷𝑓(2𝑅)𝐵𝑆𝐶350

𝑀𝑖(𝐸𝑇1), 𝐺𝐹𝑃 −
 

𝐷𝑓(2𝑅)𝐵𝑆𝐶281

𝐶𝑦𝑂
 x 
𝑀𝑖(𝐸𝑇1),𝐺𝐹𝑃−

𝐶𝑦𝑜
 

 

𝐷𝑓(2𝑅)𝐵𝑆𝐶281

𝑀𝑖(𝐸𝑇1), 𝐺𝐹𝑃 −
 A B C 
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Chapter 5: Discussion 

 

Previous reports indicate 1.5 – 3.6% of Minos excision events result in an imprecise 

excision that leads to a deletion of a neighboring gene (Metaxkais et al., 2005). The goal of this 

study was the identification of at least one mutant with a deletion in the Hdc gene. Through 

Minos transposon excision mutagenesis, 98 mutant lines were generated and identified by the 

loss of GFP expression, then examined via PCR and immunohistochemistry staining. Results 

obtained indicate that each of the 98 GFP- strains examined fell into one of the three expected 

categories (positive staining, weak staining, and no staining), with 29 of the strains 

demonstrating an elimination of histamine synthesis ability as a result of no histamine being 

detected in their larval brain structures. When these flies were analyzed using a PCR approach, 

only 12 of the 29 strains failed to produce an amplicon as expected, suggesting that these 12 lines 

do have a physical elimination of at least enough of the Hdc locus to eliminate gene expression. 

The remaining 17 strains that showed no histamine staining did produce an amplicon and 

therefore could represent small deletions as small as 5 base pairs. As Minos is 4 base pairs 5’ to 

the second intron in Hdc, a deletion that small and difficult to discern on a gel could be large 

enough to disrupt Hdc gene function. Future work will analyze the molecular nature of these 

lines to confirm the presence of the disruptions. Crosses will be conducted between these 

mutants and HdcJK910 to confirm the HA- phenotype is due to Hdc disruption, and genome 

sequencing will be performed to discern to precise extent of the putative deletion.    
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In addition to the identification of new Hdc mutations, 56 GFP- strains stained positive 

for histamine, suggesting that a precise excision of the Minos transposon caused this result. This 

is supported by the fact that each (5 of the 20 retained) of the positively staining mutants 

analyzed with PCR showed an amplicon, suggesting no presence of the Minos element. The PCR 

enzyme used amplifies fragments up to 5000 base pairs, and the Minos transposon is 7819 bp 

long. Therefore if the Minos element was present, the expected result would be no amplicon 

present in the gel. Sequence analysis of these amplicons can show whether this is the case, and 

will be done in the near future.  

A final group of expected histamine-staining categories are the 13 strains that weakly 

stained for histamine. It was presumed that flies staining weakly for histamine may represent a 

partial removal of the Minos transposon that disrupts the GFP gene within the Minos element 

(see Fig. 1), but retains some Minos element that still disrupts the Hdc gene. When a PCR 

analysis was performed on 2 of the weak staining flies using the alternate left primer (Left B1) 

inside the 3’ portion of the Minos transposon, an amplicon was shown in the gel. This indicates 

that the right-most portion of the Minos transposon failed to completely excise. Additionally, 

although both weak staining mutants showed a PCR amplicon using the alternate primer set on 

the 3’ end of the Minos transposon, they did not show the same result with the original primer set 

on either end of Minos. Future PCR work could include analyzing the 5’ end of the Minos 

transposon and repeating those tests on the remaining 11 weak HA staining strains. 
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The final group of generated variant flies are those that failed to produce a homozygous 

breeding stock, and are being kept as heterozygotes (the assumption being that they harbor a 

recessive lethal mutation on the second chromosome). These flies were first crossed to the 

HdcJK910 mutant to determine if a lethal deletion occurred within the Hdc gene. The positive 

histamine staining result (see Fig. 5D) demonstrated that the lethal mutation did not disrupt Hdc 

and must be outside the Hdc gene. The recessive lethal strains identified were next crossed to 

flies bearing deficiencies that included the region containing the Hdc gene, under the 

presumption that a lethal mutation could likely manifest in that region. The presence of straight-

winged progeny indicated that any lethal mutation would have to be elsewhere in the second 

chromosome but not in the Hdc region itself. Chi Square results (see Appendix) for mutants 

HdcΔ88 and HdcΔ107 actually showed a higher than expected number of straight-winged flies 

when crossed to known deficiencies, further demonstrating the lethal mutation is not within Hdc. 

Future work will cross these mutants with each other to determine if just one gene or multiple 

genes have been disrupted. 

The original experimental design for this project was to first conduct PCR on all new 

GFP- mutants and then perform histamine staining on only those strains that did not produce a 

PCR amplicon – the expectation being those strains would be deletions and therefore show a 

negative histamine staining result. When the time came, however, the PCR reaction was not 

working satisfactorily and did not show anything – and did not show any amplicons even for 

wild type flies until later when new enzyme and primers were obtained. Because of this difficulty 

in reliably performing PCR, the decision was made to instead perform histamine staining on all 

GFP- mutant strains and then analyze select mutants for PCR analysis later. Although this 
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method took more time, more information was gained through this sequence of analysis – such 

as the group of weak HA staining flies and the 17 HA- strains that did show a PCR amplicon. 

Overall, it is clear from the histamine staining and PCR results that new alleles of Hdc 

have been generated that are likely caused by deletions. The molecular extent of the 12 HA- 

strains that did not produce a PCR amplicon needs to be explored via PCR using oligonucleotide 

primers that are 500 bp either upstream or downstream of the original insert site. Once an 

amplicon is generated, DNA sequencing of the resulting fragment can be utilized to determine 

the precise extent of the deletions for these histamine deficient mutant flies. These new Hdc 

mutants generated could be useful in various behavioral studies as well as gene regulation studies 

of the Hdc promoter, assuming deletions are large enough to extend into the promoter region. 

While this research focused on the expression of histamine in the central brain of larvae, recent 

work in the lab has suggested the presence of histamine in the gut of Drosophila and other 

structures. Histamine in the gut as well as in mechanoreceptors could be examined in future 

studies using these Minos excision alleles of Hdc. It should lastly be noted that flies can acquire 

histamine from their food instead of producing it from histidine using the enzyme histidine 

decarboxylase (Melzig et al., 1996), so future tests focused on the photoreceptors and gut of the 

generated mutants should utilize food shown to be devoid of histamine.  
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Appendix 

 

Histamine Staining Protocol 

1. Dissect flies in 4% carbodiamide fixative at 4°C  

2. Incubate in the carbodiamide fixative at 4°C for 2.5-3 hours. 

3. Wash flies twice with Drosophila Ringer’s solution 

4. Incubate dissections in 5% normal goat serum (NGS) for 30 minutes at room temperature 

5. Remove excess serum and add primary rabbit histamine antibody (1:500 dilution) 

6. Incubate overnight at 4°C in a humid chamber 

7. Allow dissections to warm to room temperature for 30 minutes 

8. Wash twice for 20 minutes each in TBS + 1% NGS + 0.3% Triton X-100 

9. Incubate for 60 minutes in secondary IgG anti-rabbit antibody conjugated Alexa Fluor 555

 (1:1000 dilution) 

10. Wash once for 20 minutes in TBS + 1% NGS + 0.3% Triton X-100 

11. Wash for 20 minutes in PBS 

12. Plate and coverslip with support in PBS 
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DNA Isolation Protocol 

1. Turn on water bath, set to 65°C, grab ice. 

2. Dispense 300μL cell lysis solution into 1.5mL micro centrifuge tubes. Put on ice. 

3. Isolate 5-10 flies from each stock. 

4. Place flies directly into lysis solution. Keep on ice. Homogenize solution using pestle (keep 

pestle clean with 70% ethanol). 

5. Incubate in 65°C water for 10-15 minutes. Cool to room temperature by placing on ice. 

6. Add 100μL protein precipitation solution and vortex vigorously for 20 seconds at high speed. 

Keep sample on ice for 5 minutes. 

7. Centrifuge at 13,000-16,000x for 6 minutes. 

8. Pipette 300μL isopropyl alcohol into clean 1.5mL micro centrifuge tubes. Add the supernatant 

from previous step. 

9. Mix with 50 inversions. 

10. Centrifuge again for 1 minute at 13,000-16,000x. 

11. Discard the supernatant, leave the pellet undisturbed. 

12. Add 300μL of 70% ethanol to pellet and invert several times to wash. 

13. Centrifuge at 13,000-16,000x for 1 minute. 

14. Carefully discard the supernatant onto absorbent paper. 

15. Let air dry for 10-15 minutes to evaporate the ethanol. 

16. Add 50μL of DNA hydration solution. 

17. Incubate at 65°C for 1 hour. 

18. Incubate at room temperature overnight on a gentle shake plate. 

19. Centrifuge for 5 minutes at 13,000-16,000x and transfer to smaller storage tubes. 

20. Store samples at -20°C until PCR.      
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PCR Protocol 

1. For generation of the “Master Mix,” add the following for each sample you plan to run: 

 - 10.8μL of PCR H2O    (108μL if running 10 samples) 

 - 2.5μL of 10x Buffer    (25μL if running 10 samples) 

 - 0.5μL of dNTP Mix    (5μL if running 10 samples) 

 - 5μL of Primer “Left A1”   (50μL if running 10 samples) 

 - 5μL of Primer “Right B1”   (50μL if running 10 samples) 

 - 0.2μL of FastStart High Fidelity Enzyme (2μL if running 10 samples) 

2. Place 24μL of “Master Mix” and 1μL of isolated DNA into each PCR tube 

3. Place samples into the Thermocycler for 30 cycles of PCR  

 

Standard thermocycler settings as described in FastStart High Fidelity Enzyme Blend (Roche, 

Inc.) data sheet. Primers:  

(Left A1) 5’-CACACACGTGGTTAACATAATCTAC-3’,  

(Right B1) 5’-CGATTGCCAGTGGGTTATG-3’,  

(Left B1) 5’-GGATCTCATGCTGGAGTTCTTC-3’ 

95°C 

54.5°
C 

95°C 

72°C 72°C 

4°C 

4m 

30s 

30s 

hold 

40s 7m 
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Chi Square Test: Hdc mutants crossed to known lethal deletion strains (see Fig. 7 C and D) 

 

 

Lethal Mutant Stock # 

Wing 

Phenotype Observed Expected p-value Total 

HdcΔ88 straight 31 27.6 

 

83 

 

curly 52 55.3 

  

    

0.43766 

 
HdcΔ89 straight 21 24.6 

 

74 

 

curly 53 49.3 

  

    

0.36589 

 
HdcΔ90 straight 19 22.3 

 

67 

 

curly 48 44.6 

  

    

0.38766 

 
HdcΔ107 straight 28 31 

 

93 

 

curly 65 62 

  

    

0.50931 

 
HdcΔ110 straight 29 24 

 

72 

 

curly 43 48 

  

    

0.2113 

 
HdcΔ124 straight 25 24 

 

72 

 

curly 47 48 

  

    

0.80259 
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Chi Square Test: Putative Hdc lethal mutants crossed to HdcJK910 (See Fig 7A) 

 

 

     Lethal Mutant Stock #      Wing Phenotype Observed Expected p-value Total 

HdcΔ88 straight 34 22 

 

66 

 

curly 32 44 

  

    

0.001727951 

 
HdcΔ89 straight 35 27 

 

81 

 

curly 46 54 

  

    

0.059346439 

 
HdcΔ90 straight 33 25.3 

 

76 

 

curly 43 50.6 

  

    

0.062104863 

 
HdcΔ107 straight 40 30.6 

 

92 

 

curly 52 61.3 

  

    

0.038999953 

 
HdcΔ110 straight 23 21 

 

63 

 

curly 40 42 

  

    

0.592980098 

 
HdcΔ124 straight 36 30 

 

90 

 

curly 54 60 

  

    

0.179712495 
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List of GFP- Mutants 

 

Mutant     Histamine Staining            PCR Amplicon? 

HdcΔ69      Positive      Yes 

HdcΔ87      Positive      Yes 

HdcΔ108      Positive      Yes 

HdcΔ137      Positive      Yes 

HdcΔ147      Positive      Yes 

HdcΔ5       Positive 

HdcΔ24      Positive 

HdcΔ53      Positive 

HdcΔ83      Positive 

HdcΔ133      Positive 

HdcΔ50      Positive 

HdcΔ76      Positive 

HdcΔ86      Positive 

HdcΔ52      Positive 

HdcΔ145      Positive 

HdcΔ80      Positive 

HdcΔ97      Positive 

HdcΔ92      Positive 

HdcΔ117      Positive 

HdcΔ116      Positive 

HdcΔ7       Positive 

HdcΔ9       Positive 

HdcΔ19      Positive 

HdcΔ39      Positive 

HdcΔ40      Positive 

HdcΔ41      Positive 

HdcΔ44      Positive 

HdcΔ46     Positive 
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Mutant     Histamine Staining            PCR Amplicon? 

HdcΔ47      Positive 

HdcΔ48      Positive 

HdcΔ53      Positive 

HdcΔ56     Positive 

HdcΔ58      Positive 

HdcΔ59      Positive 

HdcΔ60      Positive 

HdcΔ61      Positive 

HdcΔ62      Positive 

HdcΔ64      Positive 

HdcΔ65      Positive 

HdcΔ73      Positive 

HdcΔ84      Positive 

HdcΔ94      Positive 

HdcΔ99     Positive 

HdcΔ102      Positive 

HdcΔ114      Positive 

HdcΔ115      Positive 

HdcΔ119      Positive 

HdcΔ122      Positive 

HdcΔ123      Positive 

HdcΔ126      Positive 

HdcΔ131      Positive 

HdcΔ135     Positive 

HdcΔ139      Positive 

HdcΔ142      Positive 

HdcΔ143      Positive 

HdcΔ144      Positive 
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Mutant     Histamine Staining            PCR Amplicon? 

HdcΔ7       Negative      Yes 

HdcΔ9       Negative      Yes 

HdcΔ13      Negative      Yes 

HdcΔ18      Negative      Yes 

HdcΔ19      Negative      Yes 

HdcΔ22      Negative      Yes 

HdcΔ26      Negative      Yes 

HdcΔ31      Negative      Yes 

HdcΔ32      Negative      Yes 

HdcΔ34      Negative      Yes 

HdcΔ35      Negative      Yes 

HdcΔ43      Negative      Yes 

HdcΔ45      Negative      Yes 

HdcΔ47      Negative      Yes 

HdcΔ48      Negative      Yes 

HdcΔ49      Negative      Yes 

HdcΔ100      Negative      Yes 

HdcΔ51      Negative      No 

HdcΔ77      Negative      No 

HdcΔ101      Negative      No 

HdcΔ114      Negative      No 

HdcΔ118      Negative      No 

HdcΔ119      Negative      No 

HdcΔ120      Negative      No 

HdcΔ121      Negative      No 

HdcΔ138      Negative      No 

HdcΔ140      Negative      No 

HdcΔ141      Negative      No 

HdcΔ146      Negative      No 
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Mutant     Histamine Staining            PCR Amplicon? 

HdcΔ4       Weak       No 

         (Yes with alternate primers) 

HdcΔ85      Weak       Yes 

         (Yes with alternate primers) 

HdcΔ6       Weak 

HdcΔ16      Weak 

HdcΔ66      Weak 

HdcΔ67      Weak 

HdcΔ113      Weak 

HdcΔ125      Weak 

HdcΔ127      Weak 

HdcΔ129      Weak 

HdcΔ132      Weak 

HdcΔ134      Weak 

HdcΔ136      Weak 

HdcΔ88      N/A (kept as heterozygotes) 

HdcΔ89      N/A (kept as heterozygotes) 

HdcΔ90             N/A (kept as heterozygotes) 

HdcΔ107      N/A (kept as heterozygotes) 

HdcΔ110      N/A (kept as heterozygotes) 

HdcΔ124      N/A (kept as heterozygotes) 
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