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Abstract 

 
Input of excess nutrients into a water body can negatively impact ecological structure and 

function, as well as the economic vitality of surrounding communities, by contributing to 

eutrophication. For example, phosphorus (P) and sediment inputs from agricultural drainage 

have facilitated the development of hypereutrophic conditions in Lake Macatawa, a drowned 

river mouth lake located in Holland, Michigan. Two-stage ditches, an agricultural best 

management practice (BMP), are used in some areas of the Midwest to reduce N export 

downstream via denitrification. This BMP simulates a mini-floodplain by replacing a traditional, 

trapezoidal ditch with a channel that has excavated benches on each side to help capture nutrients 

and sediment when the ditches flood. However, less is known about the ability of two-stage 

reaches to reduce P export.  

This project assesses the effectiveness of two- stage ditches within the Macatawa 

watershed at retaining P. Both biotic and abiotic factors were analyzed as potential P sinks. 

Initial, baseline results showed that total P varied between 0.1 to 1 mg P/g dry sediment and 

tended to be higher in the upstream, traditional reach compared to the downstream, two-stage 

reach. Equilibrium P concentration values suggest retention of P within the two-stage. P was 

bound within stable fractions in both two-stage and traditional reaches. Sediment held over 96% 

of TP within each reach compared to < 4% in bench vegetation and algae combined. Turbidity 

but not P was reduced in one study ditch while P but not turbidity was reduced in the other study 

ditch. Ability to retain P appears to be impacted by physical as well as biogeochemical 

characteristics. Results will be used to inform management decisions within the watershed.  
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Chapter 1 

Introduction 
	

Phosphorus as a Pollutant – the Macatawa Watershed 

Excess nutrients accumulating in water bodies have been implicated as a trigger to 

harmful algal blooms and associated hypoxic conditions, negatively affecting the ecological 

health of those water bodies (Scavia et al. 2014) and the economic vitality of surrounding 

communities (Dodds et al. 2009). Cultural eutrophication, caused by human-related nutrient 

accumulation, is a problem throughout the United States, but has received considerable media 

attention recently in the Michigan/Great Lakes area due to toxin-producing cyanobacteria 

blooms in the western basin of Lake Erie.  

The majority of nutrient input into large water bodies originates from non-point sources 

such as agricultural drainage (Maccoux et al. 2016). Production of row crops is strongly 

influenced by nutrient and water availability. Growth-limiting nutrients such as phosphorus (P) 

and nitrogen (N) are used in fertilizer to increase agricultural yields and are also found in high 

concentrations in livestock manure (Jarvie et al. 2015). Agricultural ditches and subsurface tile 

drains provide routes for excess water to drain from fields, which if not removed can result in 

anaerobic soil conditions and reduced crop yield. However, in moving water from fields, these 

agricultural ditches provide a route to transport excess nutrients and eroded soils downstream.  

In West Michigan, the Lake Macatawa watershed in Ottawa and Allegan Counties has a 

history of P loading that has resulted in eutrophication. The major land use in the watershed is 

row crop and livestock farming; agricultural runoff from these areas has been implicated as the 

major source of nutrient and sediment loading throughout the watershed (MACC 2012). The 

2016 mean total P (TP) concentration within Lake Macatawa was 92µg/L (Hassett et al. 2017); 
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the watershed is in need of extensive restoration and management to reduce this concentration to 

the U.S. EPA-approved total maximum daily load (TMDL) goal of 50 µg/L (MACC 2014).  

In an effort to reduce nutrient and soil export to Lake Macatawa and restore the 

watershed, a community-based, multidisciplinary restoration plan, Project Clarity, is helping to 

implement a series of best management practices (BMPs). Multiple projects, such as wetland 

restoration, two-stage ditches, and bank stabilization, have either been completed or are in 

planning stages since completion of the PC Comprehensive Restoration Plan in 2013 (Project 

Clarity, www.macatawaclarity.org). 

Two-stage Ditches 

The two-stage ditch is an agricultural BMP specifically designed to reduce P and 

sediment transport with minimal impact to crop yield (Fig 1.1). The two-stage form is excavated 

out of a traditional, steep-banked, trapezoidal ditch so that parallel benches run on both sides of 

the existing drainage channel. These mini-floodplains reduce flow velocity and allow for 

reduction in water P concentration due to P uptake by biota, particle settling, and soil/sediment 

adsorption during high flow conditions (Davis et al. 2015, Powell et al. 2007). 

 

Fig. 1.1 – Representation of a two-stage ditch system and the connection between field and ditch 

channel. Dark blue represents water at baseflow. Lighter blue addition shows the water level 

increase and flow over the benches that occur during high flow events. 



15 
	

 The floodplain benches also help decrease erosion into the channel during storm events, 

both reducing soil/sediment export and the need for maintenance. Two-stage ditches in the 

Midwest have been monitored over many years to determine the stability of the floodplain 

benches and potential erosion and deposition of sediments. Rates of geomorphic change of the 

two-stage ditches varied but all ditches were found to be stable relative to traditional, trapezoidal 

ditches and mimic natural fluvial changes (D’Ambrosio et al. 2015). Newly constructed two-

stage ditch benches may experience erosion during high flow events until seeded and colonizing 

plant communities have been established (personal observations). 

 The removal of N in two-stage ditches has been well studied and is related primarily to 

denitrification in anaerobic zones that form on the benches (Davis et al. 2015, Mahl et al. 2015, 

Roley et al. 2012). Retention of P within two-stage ditches has received less attention. P can be 

exported through agricultural drainage in two different forms: aqueous dissolved P in the water 

and P that is bound to transported sediments (particulate P). While the intention of the two-stage 

ditches in the Macatawa watershed is to decrease the export of P and sediment, the mechanisms 

by which P is retained in agricultural ditch systems are largely unknown.  

 Very limited information is available on how and where P is bound in the soils and 

sediment of these agricultural drainage systems (Kallio et al. 2010).  Reduction of P has been 

measured for two-stage systems but results are widely variable. Mahl et al. (2015) found that 

soluble reactive P (SRP- the more bioavaliable form of P in the water) was reduced anywhere 

between 3 and 53% compared to traditional ditches but they did not report results for total P 

(TP). Davis et al. (2015) found that SRP and TP were reduced only in two-stage systems with 

long water retention time. Watershed scale modeling to estimate possible P retention found two-

stage systems could significantly reduce P export (Christopher et al. 2017). However, in some 



16 
	

cases, reduction in TP was estimated with reductions in drainage turbidity instead of actual water 

total phosphorus concentrations.	

Phosphorus Retention 

 Phosphorus can be retained within ecological systems chemically, physically, and 

biologically. P can be chemically sorbed to soil and sediment particles (Reddy et al. 1999). If the 

flow moving through the ditch is slow enough, suspended sediment can physically settle on the 

benches or bottom of the channel. P is also stored within pore water, the water between sediment 

grains. Vegetation and algae take up P from the soil and water for use in photosynthesis and 

tissue synthesis. The diagram Fig. 1.1 shows the abiotic (sediment and water flow) and biotic 

(crops, vegetation, and algae) factors in a two-stage system. 

 Inundation time (Sallade and Sims 1997, Steinman et al. 2014), degree of P saturation 

(Nair et al. 2015), and to what sediment fraction the P is bound (Dieter et al. 2015) all can 

influence retention in soils and sediment. P can bind to aluminum, calcium, iron, and other minor 

elements depending on mineral composition and redox conditions. If soil/sediment P is in mobile 

or loosely adsorbed forms, it may be quickly resuspended or re-released into the water column 

following high flow events.  

 The portion of P bound to oxidized iron (Fe3+) forms iron oxyhydroxides (Dieter et al. 

2015). Under prolonged inundation, anoxic conditions can result in Fe(III) reduction to Fe(II), 

thereby reducing the sorption potential of soil/sediments (Baldwin and Mitchell 2000) and 

allowing P to move back into the porewater and eventually into the water column. P bound to Al 

and Ca is more stable than P bound to Fe. Ca-P minerals are sensitive to low pH (Dieter et al. 

2015, Reddy et al. 2000). As water levels decline during periods of summer baseflow, sediments 

can become exposed to the atmosphere. This oxidation process can decrease P sorption affinity 
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and capacity of the sediment, and lead to increases in the labile and reductant-soluble forms of 

bound P (Dieter et al. 2015). Re-inundation of benches after the first stormflow, following 

prolonged desiccation, could result in release of mobile soil P to the water column.  

 In addition to abiotic uptake of P in soil/sediments, biotic uptake is also an important 

factor. Although likely only seasonally important sinks of P, variations in plant biomass or major 

plant types and their interactions with soil P could be an important factor of retention to consider. 

With increasing nutrient availability, plant biomass has been shown to increase in wetland 

buffers (Silvan et al. 2004). Root structure within plants can be a large portion of both biomass 

and P content within a plant (Moore and Kroger 2011; Teng et al. 2013).  However, the stability 

of bench and bank soil was important for the continuation of the project and therefore roots could 

not be sampled. 

 Along with riparian plants, periphyton could be another possibly influential sink for P 

within two-stage ditches (Reddy et al. 2000). Periphyton is a compilation of benthic algae, 

bacteria, and other fungi, protozoan, and viruses (Larned 2010) and can impact movement of P 

between sediments and the water column by forming a boundary layer (Brennan et al. 2017, 

Drake et al. 2012). Despite the presence of periphyton communities in agricultural waterways 

(Brennan et al. 2017), their ecological roles are poorly understood in the context of agricultural 

two-stage drainage systems. 

 Factors such as flow, desiccation, light, and nutrient type and concentration can affect 

various algal factors such as abundance and growth form (Lange et al. 2015). These factors may 

differ between two-stage reaches and traditional trapezoidal shaped reaches. One of the ways 

two-stage ditches are intended to decrease erosion is through the reduction in shear stress 

(Powell et al. 2007). This reduction in flow during storm events could have an impact on the 
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growth form of algae. For example, loosely attached and motile algae might be washed down 

stream during high strength high flow events. The reduction of particulate associated turbidity 

(Mahl et al. 2015) will increase light penetration in two-stage ditches compared to traditional 

ditches, thereby allowing for increased periphyton growth. Increases in deposited particulate 

matter may increase the relative abundance of motile taxa of algae (Wagenhoff et al. 2013). 

Filamentous algae such as Cladophora or Oedogonium composed the major portion of the 

periphyton community in high intensity agricultural streams in response to high concentrations 

of nutrients (Lange et al. 2015, Stevenson et al. 2012). The intended reduction in nutrients due to 

the two-stage form also could impact community structure by decreasing the abundance of high 

nutrient tolerant taxa. 

Purpose 

The purpose of this study is to understand the retention of P within the two-stage ditches 

of the Macatawa Watershed. By understanding how phosphorus is bound, where it is stored, and 

the likelihood of phosphorus release in these ditches, we can better understand the use of two-

stage ditches as a best management practice and their ability to contribute to the restoration of 

the Macatawa Watershed. 

Scope 

This thesis focuses on the abiotic and biotic factors that influence phosphorus cycling 

within two separate two-stage ditches in the Macatawa watershed, specifically ditches 

constructed in the southern portion of the watershed through Project Clarity. The objectives of 

my thesis were to examine the retention of P in two-stage ditches compared to their 

corresponding upstream reference reaches that remained in the traditional trapezoidal form for 

reference purposes. Specifically, I examined the differences in: 1) water quality; 2) soil/sediment 
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P content, P fractionation, and the likelihood of its release back into the water column; 3) biotic 

P standing stock within channel periphyton and bench vegetation; and 4) the general impact of 

the two-stage construction on vegetation cover and periphyton community structure. Because 

only two systems were studied, the results discussed in this thesis should be considered 

preliminary in nature. The conclusions can be used to further research in other watersheds but 

should not be considered directly applicable to or representative of all two-stage systems. 

Research Questions and Hypotheses 

 I anticipated that the effectiveness of the two-stage form at retaining P within 

soil/sediments compared to the traditional form would vary due to significant changes in P input, 

high flow events, desiccation, and plant growth. More specific questions and hypotheses are 

outlined below: 

 1) How does the two-stage ditch system affect the retention of P within agricultural 

drainage systems?  

 Hypothesis H1: The two-stage reach will retain more P in surface soil and sediments 

than the reference reach over the sampling year. 

 Rationale H1:  The benches and associated vegetation will lead to decreased erosion, 

increased surface area for soil P sorption, and longer hydraulic residence times, thereby 

increasing sediment-bound P deposition within the two-stage reaches during stormflow 

(D’Ambrosio et al. 2015). 

 2) Are the P fractions different between the two-stage and reference reaches?  

 Hypothesis H2: There will be a larger labile P fraction within the two-stage reach. The 

reductant soluble P will be similar between two-stage and reference reaches. The P in the Al-

bound fraction will also be higher in the two-stage. 
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 Rationale H2: Due to increased plant biomass because of the larger bench surface area, 

mineralization of organic material will result in a larger labile P fraction within the two-stage 

reach and more organic P. Both reaches will remain oxic for the whole year and therefore 

reductant soluble P will remain similar (Dieter et al. 2015). Al-bound and organic P will be 

higher in the two-stage due to presence of more clay particles and higher organic P. 

 3) How will the equilibrium P concentration (EPC) differ between two-stage and 

reference reaches? 

 Hypothesis 3: The EPC values will be lower for the two-stage reach than the reference 

reach.  

 Rationale 3: Due to the increased vegetation growth and reduced height of the benches 

within the two-stage reach, less soil drying will occur during summer months compared to the 

reference reach. Dessication has been shown to significantly reduce sorption potential and 

thereby increase the EPC measured for sediments (Dieter et al. 2015).  

 4) How will the two-stage form affect periphyton ash-free dry mass and P content? 

 Hypothesis 4: The two-stage reach will have lower algal periphyton growth but higher 

AFDM per area compared to the reference reach.  

 Rationale 4: The two-stage reach will have lower turbidity compared to the reference 

(Mahl et al. 2015) and as the sediments deposit out of the water column and settle on the bottom, 

there will be a reduction in algal periphyton as cells will get shaded or smothered (Wang, 1974). 

Even at average small stream flows, deposited particles account for at least 50% of the dry mass 

of periphyton samples (Graham 1990). As the flow is slowed through the two-stage reach, even 

more suspended sediment will be able to settle out onto periphytic surfaces, potentially 
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smothering the algae growing there and increasing the inorganic fraction of the total periphyton 

sample mass.  
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Chapter 2 

 Phosphorus Retention within the Soil and Sediment of West Michigan Two-stage 

Agricultural Ditches 

	

Abstract 

Excess nutrients can contribute to eutrophication of surface waters, negatively impacting 

ecosystems and the economy of surrounding communities. Phosphorus (P) and eroded soil inputs 

from agricultural drainage have facilitated the development of hypereutrophic conditions in Lake 

Macatawa in western Michigan. Two-stage ditches, an agricultural best management practice, 

were installed in the watershed in an attempt to trap nutrients and sediment before they enter 

downstream water bodies. Two-stage ditches can effectively remove nitrogen through 

denitrification but less is known about their ability to retain P. This project assessed the 

effectiveness of soil and sediment at retaining P by comparing soil total P (TP), P fractionation 

of soil/sediment, and the equilibrium phosphorus concentration (EPC) of two separate two-stage 

reaches and corresponding upstream, traditional reaches within this watershed. Among the 

various P stocks measured for these systems (soil/sediment, periphyton, and vascular vegetation), 

soil/sediment made up over 96% of the P present. Mean soil TP was significantly higher in the 

traditional reaches compared to the two-stage reaches. The most abundant P fractions within the 

soil and sediment were stable Al- and Ca-bound fractions. Equilibrium P concentration values 

suggest the soil and sediment was more likely to retain P within the two-stage than the traditional 

reaches. The two-stage systems within the Macatawa Watershed can retain P within the soil and 

sediment. 

 
Keywords: Two-stage, Nutrients, Phosphorus, Best management practices, Agriculture, 
Nonpoint source impacts 
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Introduction 
 

Balancing water quality with crop yield is a major natural resource management 

challenge in agricultural watersheds (Jarvie et al. 2015). Availability of nutrients such as P and 

nitrogen (N) is necessary for the growth and development of autotrophic organisms (e.g., 

vegetation and algae); hence, P and N are often applied in fertilizer to increase agricultural 

yields. Agricultural ditches and subsurface tile drains (collectively, agricultural drainage systems 

or ADS) provide routes for excess water to drain from fields, which if not removed can result in 

anaerobic soil conditions and reduced crop yield. However, in draining water from fields, ADS 

provide an expedited route for excess nutrients and eroded soils to move downstream from 

agricultural lands to receiving water bodies (Blann et al. 2009). Nutrients and soil in field runoff 

and drainage ultimately accumulate in downstream water bodies, where they can facilitate 

significant algal blooms and associated hypoxic conditions, affecting the ecological health of 

those water bodies (Scavia et al. 2014) and the economic vitality of the surrounding community 

(Dodds et al. 2009).  

Nonpoint source pollution (e.g., agricultural drainage) is a problem throughout the United 

States, but has received considerable attention recently in the Great Lakes region due to toxin 

producing cyanobacterial blooms in the western basin of Lake Erie. In West Michigan, the Lake 

Macatawa watershed (Ottawa and Allegan counties) has a history of P loading that has resulted 

in hypereutrophic lake conditions and associated algal blooms. In particular, agricultural runoff 

has been implicated as the major source of nutrient and sediment loading throughout the 450 km2 

watershed (MACC 2012). The 2016 mean surface total P (TP) concentration within Lake 

Macatawa was 92 µg/L (Hassett et al. 2017). The watershed is in need of extensive restoration 

and management to reduce this concentration to the U.S. EPA-approved total maximum daily 
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load (TMDL) goal of 50 µg/L (MACC 2014). A community-based Comprehensive Restoration 

Plan aimed at reducing this P and sediment input was completed in 2013 

(http://www.macatawaclarity.org/). This restoration initiative, called Project Clarity, has 

facilitated the implementation of best management practices (BMPs) such as buffer strips, bank 

stabilization, and two-stage ditches, as well as wetland restoration projects throughout the greater 

Macatawa watershed. My project focuses on two of the two-stage ditches constructed through 

Project Clarity. 

Two-stage ditches are designed to reduce nutrient and sediment transport with minimal 

impact to crop yield. Parallel floodplain benches are excavated on each side of the channel of an 

existing traditional, steep-banked, trapezoidal ditch (Fig. 2.1). The small-scale floodplains 

increase stability, thereby decreasing channel erosion during storm events, reducing sediment 

export and the need for maintenance (D’Ambrosio et al. 2015, Powell et al. 2007). The benches 

become inundated during high flow events such as storms or spring snowmelt (Powell et al. 

2007), allowing for reduction in water nutrient concentrations due to P and N uptake by biota, 

particle settling, and sediment P sorption (Davis et al. 2015, McDowell et al. 2017).  

 P can be exported through ADS in two different forms: aqueous dissolved P and P that is 

bound to transported sediments or in organisms. Water inundation time (Sallade and Sims 1997; 

Steinman et al. 2014), degree of P saturation (Nair et al. 2015), and to what sediment fraction the 

P is bound (Dieter et al. 2015) all can influence retention. P can bind to aluminum, iron, calcium, 

manganese, and other minor elements within the sediment. As water levels decline during 

periods of summer baseflow, sediments become exposed to the atmosphere. This exposure 

results in sediment oxidation, which can decrease sediment P sorption affinity and capacity, and 

lead to increases in the labile and reductant-soluble forms of bound P (Dieter et al. 2015). Re-
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inundation of benches during the first stormflow following prolonged desiccation could result in 

release of that loosely-bound sediment P to the water column. Also, under prolonged stagnant 

inundation, anoxic conditions can result in the reduction of Fe(III) to Fe(II), thereby reducing the 

P sorption potential of sediments (Baldwin and Mitchell 2000).  

 To determine what compounds P is bound to within a system, a series of chemical 

analyses can separate one P fraction at a time for measurement. P fractionation can be conducted 

with different numbers of chemical extractions depending on the detail desired (Wang et al. 

2013). P will only stay bound within a system under certain conditions and as long as the 

concentration within the sediment is below the equilibrium P concentration (EPC) (Hongthanat 

et al. 2016, Pant and Reddy 2001). In order to calculate the EPC for a certain soil or system, an 

isotherm analysis testing the P retention at differing aqueous dissolved P concentrations is 

conducted within a laboratory. 

 In addition to abiotic retention of P in sediments, biotic uptake also may be important. 

The more bioavailable form of P, soluble reactive P (SRP), is readily available for uptake by 

vegetation and algae. Two-stage benches are typically seeded after excavation and/or naturally 

colonized by vegetation. With increasing nutrient availability, plant biomass has been shown to 

increase in wetland buffers (Silvan et al. 2004) and vegetation has been shown to be correlated to 

major P fractions and P concentrations found in the soil (Wang et al. 2012). Large variations in 

plant biomass or major plant types between two-stage and reference reaches within each ditch 

system need to be taken into account when comparing P in sediments.  

 The retention and removal of one common fertilizer nutrient, N, in two-stage ditches has 

been well studied and is related primarily to denitrification in anaerobic zones that form on 

benches (Roley et al. 2012a; Roley et al. 2012b; Mahl et al. 2015). The ability of two-stage 
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ditches to retain P has received less attention. While the intention of the two-stage ditches in the 

Macatawa watershed is to decrease export of P and sediment, the exact mechanisms by which P 

is retained in these types of systems are largely unknown (Kallio et al. 2010). If two-stage 

ditches are to serve as an agricultural BMP for P retention, it is critical to know how they work 

so their design can be optimized and replicated in other systems.   

In this study, my goal was to assess P retention in the Macatawa watershed. I compared P 

retention in two-stage ditches (two-stage, 2-S) versus upstream reaches (reference, Ref) that 

remain in the traditional ditch form within the Macatawa watershed. My objectives were to 

determine potential differences in: 1) water quality, EPC, and major P fractions; 2) vegetation 

cover, biomass, and vegetation TP between two-stage and reference reaches; 3) periphyton TP 

between two-stage and reference reaches as well as compare relative standing stocks (sediment, 

vegetation, and periphyton) of TP in each reach; and 4) sediment P across seasons. I 

hypothesized that the two-stage reach would have improved water quality, higher sediment P 

retention, and increased vegetation cover.  I also anticipated that the sediment P retention would 

increase over season due to the growth of vegetation. 

Methods 

Study Sites 
 We examined two two-stage ditches and their corresponding upstream reference reaches 

that remained in the traditional, trapezoidal shape.  These ditches are within the Allegan County 

portion of the Macatawa watershed in West Michigan (Fig. 2.2). These ditches are referred to as 

the “Z” and the “T” ditch systems to retain farmer anonymity. The Z two-stage reach was 

constructed in February 2015 and the T two-stage reach was constructed in November 2015 

(Table 2.1).  

 



30 
	

Water Quality 
 Surface water was sampled at the downstream end of both treatment and reference sections 

in both ditches (cf. Fig. 2.3) monthly from March to December 2016. Water samples were stored 

on ice during transportation back to the laboratory. Samples for TP were stored at 4 °C and 

samples for SRP were filtered through 0.45 µm filters and then stored at 4°C until analysis with a 

SEAL Autoanalyzer (SEAL Analytical, Mequon, Wisconsin). Temperature (°C), dissolved 

oxygen (mg/L), and pH were measured using a YSI 6600 at time of surface water sampling. 

Turbidity sensors (Cyclops-7F Turner Designs) were installed at the downstream end of each 

reach and collected continuous (every 10 minutes) in-stream measurements from late April to 

December 2016. Sensors were checked and cleaned every two weeks and calibrated once per 

month.  

Sediment and Soil 

All sediment and soil samples described below were collected in April and October of 

2016. Cores (top 3 cm) were collected for analysis using a modified clear PVC system. The clear 

PVC tube was pounded into the sediment, capped with a threaded cap for suction, and then 

removed. The sediment was extruded from the corer and the top 3 cm of sediment was cut and 

stored in a zip-seal bag and then stored on ice or at 4 °C until analysis. All samples were 

analyzed for ash-free dry mass (AFDM, 550 °C, 1 hour, Steinman and Ogdahl 2016) and TP 

(persulfate digestion, USEPA 1983). All P analyses were conducted on a SEAL autoanalyzer at 

AWRI (SEAL Analytical, Mequon, Wisconsin).  

Both the two-stage and reference reaches were separated into five sections of equal 

length for the P survey, hereafter called “intervals” and numbered 1-5 (cf. Fig. 2.3). To 
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determine the variability of soil TP throughout the two-stage and reference reaches, soil cores 

were collected within each of the five two-stage and five reference intervals (Fig. 2.3).  

A separate set of sediment and soil cores (top 3 cm) was collected at the downstream end 

of each reach for fractionation and isotherm analyses in spring and fall as follows. Two-stage: 

one core in the channel and one core in the middle of each bench; Reference: one core in the 

channel and one core 1 m above the water level in the channel on each ditch bank. Samples were 

analyzed within one week of collection. Sediment and soil samples (~2 g) were sequentially 

fractionated at room temperature using modified methods from Hupfer et al. (2009). 25 mL of 

the following extractions were used: 1M NH4Cl shaken for 30 minutes extracting loosely-bound 

and pore water P; 0.11 M NaHCO3 Na2S2O4  (buffered dithionite, BD) shaken for one hour 

extracting Fe- bound and redox sensitive P; 1M NaOH shaken for 16 hours extracting Al-bound 

P and organics; and 0.5 M HCl shaken for 16 hours extracting Ca-bound P. A separate pore 

water extraction was not possible due to limited water content and samples were subjected to 

only one cycle of reagent and shaking per step. Isotherms were used to calculate the EPC0, which 

is the concentration at which there is no net exchange of P between the sediment/soil and the 

water column. Isotherm procedures were modified from Steinman and Ogdahl (2013) and used 

eight different P concentrations: 0, 0.01, 0.1, 1, 10, 50, 100, 500 mg P/L made from KH2PO4 in 

0.01M KCl. Testing was conducted in triplicate: two “live” samples and one “dead” sample with 

three drops of chloroform added to halt microbial respiration. Total sample number equaled 296 

including eight blanks. After addition of 20 mL P solution to 3g sediment or soil, samples were 

shaken for 24 hours and then centrifuged. The supernatant was removed, filtered (0.45 µm GF), 

and then analyzed for SRP. The P concentrations were graphed against the starting concentration 

of solution added. The slope of the exchange and the y-intercept was used to calculate EPC0 
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(EPC0 = -1* y intercept *slope-1). The EPC0 values are compared with the SRP values from 

surface water sampled in the ditch at the time of coring to determine if the sediments/soils are 

retaining P (SRP>EPC0), releasing P (SRP< EPC0) or if the system is at equilibrium 

(SRP≈EPC0).  

Particle- size analysis was conducted using standard methods (ASTM 2007) on sediment 

and soil sampled from sites for isotherm and fractionation analysis for the following fractions: >2 

mm = gravel/cobble, 1-2 mm = very coarse sand, 0.5-1 mm = coarse sand, 250-500 µm = 

medium sand, 125-250 µm = fine sand, 63-125 µm = very fine sand, <63 µm = silt/clay. 

Vegetation 

 Using the same reach intervals that were applied for soil TP analysis, vegetation cover was 

visually estimated on a 0-5 Braun-Blanquet scale in both ditches and reaches.  Aboveground 

biomass samples were collected only in the Z ditch due to low cover T ditch and limits on 

sample. Aboveground biomass was sampled within a PVC square of fixed area (0.25 m2) at 

intervals 1, 3, and 5 in the two-stage and reference reaches of the Z ditch. For the benches and 

banks, the PVC square was lightly tossed perpendicular to the ditch channel at the distance mark 

to identify the first 0.25 m2 sampling area. After the vegetation was cleared and stored in a large 

plastic bag, the square was flipped adjacent to the first sampling area, and another 0.25 m2 

aboveground vegetation was sampled for a total area of 0.5 m2 at each interval, keeping left and 

right bench/bank separate. For the single channel site at each interval (1, 3, 5), 0.25 m2 area of 

aboveground vegetation on each side of the channel (for a total of 0.5 m2) was cut and stored in a 

large plastic bag. All samples were dried in the laboratory at ~60 °C until constant weight. 

Samples were then ground on a Wiley Mill and re-combined per site. Samples were re-dried and 

ashed in triplicate for analysis of TP (Berthold et al. 2015).  
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Periphyton 

Periphyton was grown on eight 2.54 cm2 pre-ashed, unglazed ceramic tiles adhered to a 

brick that was buried flush with the channel bottom at the downstream end of each reach. The 

tiles were collected monthly; at each collection, every other tile was removed from the brick for 

filtering and TP analysis. The brick was discarded and replaced with a new brick in the same 

position within the ditch with uncolonized tiles after each sampling monthly from April to 

December.  

Periphyton was removed from the tiles by careful scraping. Samples were prepared for 

ash-free dry mass (AFDM) and P content analyses by filtering onto pre-combusted and weighed 

GF/F filters (Steinman et al. 2006). For AFDM (µg/cm2), filtered samples were placed in pre-

combusted and weighed aluminum weigh boats then dried at 70 °C until constant weight, then 

oxidized at 550 °C for 1 hour. After oxidation, the samples were digested with persulfate and 

then analyzed for TP (see Sediment above).  

Phosphorus Stock 

 Mean P concentrations from each stock (combined sediment and soil, vegetation, and 

periphyton) for each reach was compared visually in mg P per gram of dry material and as a 

relative percent of the total area found within a reach. Area was calculated based on length of 

reach and mean width data for benches and channel. 

Data Analysis 

Z and T ditches were not compared statistically with each other as they are separate 

systems and represent different ages since construction of the two-stage reach. However, 

reference vs. two-stage reaches were compared within each separate system using paired samples 

t-tests (or Wilcoxon tests, depending on data normality). Water TP and SRP, as well as soil TP, 
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general vegetation cover, and periphyton TP were compared with paired samples t-tests or 

Wilcoxon tests. In-stream turbidity readings at 10-minute intervals were averaged per hour and 

then compared with paired samples t-tests. For fractionation data, benches (or banks) and 

channel sites were compiled per site in order to compare differences in each fraction between 

two-stage and reference with ANOVA. Sediment and soil measurements were combined in order 

to focus the comparison on the potential differences between two-stage and reference. Due to 

small sample sizes, inferential analyses of isotherm and fractionation measurements among 

specific positions (left, channel, right) within each ditch were not possible; graphical 

representation allowed for comparisons described in the results below. In order to compare 

potential fraction changes between season, two-stage and reference data were combined but 

paired to retain treatment differences. T-test or Wilcoxon tests were used to compare spring and 

fall for each fraction for each ditch. All analyses were conducted in R (v99.447) and significance 

was set at p < 0.05. 

Results 

Water Quality 

West Michigan experienced higher than average precipitation and temperatures in 2016. 

Mean annual precipitation for 2016 was 104 cm compared to the 1895-2015 average of 88 cm 

and mean annual temperature for 2016 was 10.4 °C compared to the 1895-2015 average of 8.7 

°C (NOAA, www.ncdc.noaa.gov/sotc/national/201613).  One snowmelt event and three storm 

events were sampled for a total of four stormflow samplings per ditch during 2016. Baseflow and 

stormflow TP and SRP in the Z ditch were not significantly different between two-stage and 

reference reaches (all p > 0.05, Table 2.2), although stormflow P concentrations were more than 

double those of baseflow (Table 2.2) in both reach types. Baseflow TP and SRP in the T ditch 
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were significantly lower in the two-stage than in the reference reach (TP: p = 0.009; SRP: p = 

0.011, Table 2.2). Stormflow TP and SRP in the T ditch were not significantly different (both p > 

0.05, Table 2.2). In T, the increase in P concentration after storm events was even greater than in 

Z, increasing by more than an order of magnitude from baseflow in both reach types (Table 2.2).   

Turbidity measurements from installed sensors were averaged across the entire year and 

include baseflow and stormflow values. Turbidity was correlated with rainfall for all sites (p < 

0.0001). Z ditch turbidity was significantly lower in the two-stage compared to the reference (p < 

0.0001, Table 2.2). Due to several issues with equipment, approximately half of the turbidity 

data for T two-stage were not usable.  To compare paired data between T ditch two-stage and 

reference, the corresponding data from the reference also was not used, although there were still 

more than 6200 observations.  T ditch turbidity was significantly higher in the two-stage 

compared to the reference (p < 0.0001, Table 2.2).  

DO, pH, and temperature were not significantly different between two-stage and 

reference for baseflow or stormflow in the Z ditch (all p > 0.1, Table 2.2). In the T ditch, DO was 

not significantly different between two-stage and reference for baseflow or stormflow (p = 0.443, 

p = 0.598, Table 2.2). T ditch pH and temperature were significantly higher in the two-stage 

compared to the reference for baseflow (p=0.016, p=0.011 respectively) but not for stormflow (p 

= 0.120, p = 0.561 respectively, Table 2.2). 

Sediment and Soil 

Mean combined sediment and soil %OM was not significantly different between two-

stage and reference for both Z and T (Table 1). TP concentrations in the bench and bank soil 

varied between 99 and 1000 mg/kg (dry weight) for both Z and T ditch systems. Mean combined 
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sediment and soil TP was significantly lower in the two-stage compared to the reference in both 

Z and T ditch systems (Table 2.1, Fig. 2.4, Fig. 2.5).  

In both the Z and T ditches, particle size distributions revealed that the major size class 

by weight was sand both on the benches and in the channel for both two-stage and reference 

(Fig. 2.6). Major P fractions during both spring and fall were Al-bound and organic P in Z and 

both Ca-bound and Al-bound and organic P in T (Figs. 2.7 and 2.8). Tests for significance 

between ditch reaches for each fraction in each season with left, channel, and right positions 

combined (i.e. spring Z 2-S NH4Cl-P compared to spring Z Ref NH4Cl –P) did not reveal any 

significant differences (p > 0.05). Single position fraction comparisons between reaches (i.e. 

spring Z 2-S channel NH4Cl -P compared to spring Z Ref channel NH4Cl -P) were not possible 

due to small sample size. Tests for significance between spring and fall for each fraction for both 

Z and T did not reveal any differences (p >0.05). 

In the Z ditch at the time of spring sampling, SRP concentrations in the water column 

were greater than the EPC0 values, suggesting that P was retained at all sites and that the 

sediment was serving as a sink (Fig. 2.9). At the time of fall sampling, EPC0 values suggest 

again that P was retained in the sediment at all sites with the exception of both the left and right 

banks within the reference reach (Fig. 2.9). EPC0 results were different in the T ditch; at the time 

of spring sampling, results suggest that P was retained at only the two-stage left bank and the 

reference channel (Fig. 2.10). In the fall, results indicate that left and right banks in the reference 

reach remained potential sources of P to the water column, as was seen in the spring, but the 

channel and right bank locations in the two-stage ditch had switched from potential P sources in 

the spring to P sinks in the fall (Fig. 2.10).  
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Vegetation 

Mean vegetative P concentration was slightly lower, but not significantly so, in the two-

stage compared to the reference reach of Z (Table 2.3). Again, P tissue content was not measured 

in T. In the Z ditch, mean vegetation cover was not significantly different between the two-stage 

and reference reaches (p = 0.550, Table 2.3). In the T ditch, the two-stage reach had lower mean 

total vegetation cover than the reference reach (p = 0.003, Table 2.3), which was due to 

differences in mean bench cover (p < 0.0001). The majority of the vegetation consisted of 

grasses as well as some minor clover, goldenrod, and willow plants in both the two-stage and 

reference in both Z and T ditches.  

Periphyton 

 Seven sets of periphyton samples were sampled and analyzed for the Z ditch. Average 

periphyton P concentration was 7.0 ± 10.0 µg P/ cm2 in the two-stage reach and 11.0 ± 6.0 µg P/ 

cm2 in the reference reach (Table 2.3). The reference periphyton P was barely significantly 

greater than the two-stage P (p=0.049). Only six complete sets of periphyton samples were 

sampled and analyzed for the T ditch due to loss of artificial substrates in the reference during a 

storm in September. Two-stage average P was 16.0 ± 7.0 µg P/ cm2 and mean P in the reference 

reach was 23.0 ± 8.0 µg P/ cm2 (Table 2.3). There was no difference between the reference and 

two-stage µg P/ cm2 (p=0.273). 

Phosphorus Stock 

 The relative importance of each phosphorus stock was similar for two-stage and reference 

for both ditches.  In the Z ditch, vegetation held the most P per gram of dry material, followed by 

periphyton and then combined sediment and soil (Fig. 2.11). For the T ditch, the vegetative 

normalized P was almost three times the amount from periphyton and combined sediment and 

soil (Fig. 2.11). When P was extrapolated to the entire reach, including either the area (for 
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combined sediment and soil) or total biomass (for vegetation and for periphyton), the importance 

of each P stock changed (Fig. 2.12).  For both Z and T and both two-stage and reference, the 

sediment held ≥ 96% of the total P for the reach.  The periphyton holding was <1% and the 

vegetation holding made up the other ~3%.  

Discussion 
 

The web of P interactions between terrestrial and aquatic systems and between organic 

and inorganic forms makes it difficult to track P movement through ecological systems. N can be 

tracked via stable isotope analyses and has been monitored in two-stage agricultural systems 

around the Midwest. However, there is no stable isotope analog for P, so relatively little is 

known about P movement and standing stocks of P within two-stage systems (Kallio et al. 2010). 

Christopher et al. (2017) applied what is known about P movement in two-stage systems to a 

model to estimate the potential retention power of the two-stage within a watershed; if 25% of all 

agricultural ditches in the River Raisin watershed of Michigan were converted to two-stage, the 

model estimated a 12% increase in P retention. However, there is some uncertainty in this 

estimate, given that most of P was not measured directly, but derived from turbidity-TP 

relationships and then applied to a watershed currently without two-stage ditches. By increasing 

the information known about how two-stage systems function and how P is stored, both 

modeling and management can be improved. 

Water TP and SRP concentrations were not significantly different between the two-stage 

and reference reaches in Z. This finding is consistent with other studies (Davis et al. 2015, Mahl 

et al. 2015), where a reduction in P via two-stage ditches was observed in only a small fraction of 

streams. This lack of change could be due to the limited length of the two-stage reach. In a recent 

study, Collins et al. (2016) found that ADS in general have the potential to retain P but generally 
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lack sufficient hydrologic residence time for P retention processes to occur. While determining 

residence time was not within the scope of my thesis, it is possible that these two-stage reaches 

are not long enough to sufficiently increase the residence time for optimal P retention.  

Another limitation was the presence of tile drains and very shallow runoff tributaries that 

flowed off the field into the middle of the ditch reaches. The drainage entering these ways would 

not experience the same flow or interactions with soil, sediment, and vegetation as water moving 

through the reference into the two-stage reach. In the Z ditch, a buried tile drain in the middle of 

the two-stage and an off-field tributary at the downstream end of the two-stage were the only 

inputs identified during storm sampling. In the T ditch, two large off-field tributaries that could 

not be successfully hardened would have had an impact on the two-stage. Any potential inputs 

that existed in the reference were not large enough to be identified. Due to limits on time and 

funding for sample analyses, the P load from these ephemeral but potentially important inputs 

(e.g., Clement and Steinman 2017) could not be measured.  

Water TP and SRP concentrations were lower in the T ditch two-stage reach compared to 

the reference at baseflow. The difference in P concentrations between the reference and two-

stage reaches could be due to the more recent excavation of the benches in the 2-stage reach. The 

T two-stage was constructed in November 2015 and little to no vegetation had grown on the 

benches before winter snowmelt and spring rainfall caused significant erosion. This erosion also 

changed bench structure and location (Fig. 2.13). At the end of the 2016, with higher than 

average rainfall, approximately 60% of the channel ran through what was originally constructed 

as the right bench. Some water did flow and was stored within the historic channel. Due to these 

morphological changes, baseflow in certain portions of the reach could have been more similar 
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to sheetflow, thereby increasing the water to soil contact surface area and allowing for more 

retention of P within the two-stage reach.  

Most of the eroded sediment and soil moving through the two-stage reach occurred 

during high flow events and any impact to TP measurements would have been masked by high 

TP throughout the ditch system. This erosion did increase the turbidity in the two-stage and 

resulted in a significantly higher full-year mean turbidity compared to the reference. The more 

stable and slightly older Z ditch two-stage system did not experience significant erosion and had 

significantly lower turbidity compared to the reference as expected. Both TP and turbidity were 

linked with rainfall and were orders of magnitude higher during stormflow compared to 

baseflow. 

Along with significant differences in TP and SRP concentrations between two-stage and 

reference within the T ditch, pH and temperature were significantly lower in the reference 

compared to the two-stage. While these water quality parameters were statistically different, the 

relatively small differences may not be seen in older, highly vegetated two-stage systems. The T 

ditch two-stage was more open and had less vegetation due to the timing of construction and 

erosion of the benches. Therefore, the two-stage had less shading from banks or vegetation, 

which would have allowed more solar warming. Large mats of unidentified filamentous algae 

were present in the shallow bench-turned-channel flow for most of the growing season also due 

to the lack of shading compared to the reference (personal observation). This would have 

increased oxygen production from photosynthesis in the water column but the warmer 

temperatures likely offset the water’s ability to hold more DO. Also, the increased 

photosynthesis could account for the higher pH values in the 2-stage reach (Welch and Jacoby 

2004).   
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Soil TP was significantly lower in the two-stage compared to the reference in both Z and 

T ditches. This is likely due to construction and age of the two-stage reach. When the two-stage 

benches are excavated, the soil that had been exposed to runoff, drainage flow, and associated 

vegetation growth is removed. This leaves behind soil that is typically lower in P (Steinman and 

Ogdahl 2016). Other studies have seen varying TP trends with increasing depth (Wang et al. 

2011, Wang and Liang 2015) but only tested the soil up to 35 cm deep. When bench construction 

occurred at both sites in my study, at least 0.5 m of soil was excavated. As P adsorption, 

sediment deposition, and vegetation growth and decay occur over time, P concentrations in the 

two-stage soil are likely to increase. Future work should test changes in total suspended solids 

and measure sediment deposition within two-stage ditches so that P transported in suspended 

sediment particles can be measured. Knowing the major form of transported P in these ditch 

systems would increase the efficacy of any future management decisions.  

The major P fraction at all sites in the Z two-stage and reference sediment and soil was 

the Al- and organics fraction. The P bound in this fraction is not as readily available to be 

released and taken up by biota compared to the loosely bound and redox sensitive fractions. The 

major P fractions at sites within the T two-stage and reference sediment and soil were the Al- 

and organics fraction or the Ca- fraction; each site had the same major fraction in both spring and 

fall. Both of these fractions are relatively stable and less likely to be bioavailable compared to 

the other fractions. This suggests P spends very little time within the loosely bound fraction in 

the soil of these systems in the spring and fall.  The source of the Al binding the P is found 

within clays and the Ca is more commonly found within gravel and sand (Reddy et al. 2000). 

However, the particle size distribution showed a larger amount of sand present compared to clay 

by weight. Since less P is absorbed by sandy soils, the relative amount of P held within the ditch 
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could still be within the Al- and organics fraction. In the T ditch, again the major soil/sediment 

particle type was sand. The relative amounts of sand to clay does match the trend between the 

major fractions Al- and Ca-bound P.  

The loosely bound and pore water fraction was consistently the smallest fraction found in 

our study followed by redox sensitive Fe-bound P. Little loosely bound P could suggest low 

cyclic exchange of the more bio-available sediment/soil P between the water and periphyton 

interface and sediments (Samanta et al. 2015) or that P spends very little time within the loosely 

bound fraction. Drying and rewetting of soils (e.g. two-stage benches between stormflow events) 

has been shown to increase the movement of loosely bound and pore water P compared to other 

fractions including redox sensitive P (Kinsman-Costello et al. 2016). This suggests that drying 

cycles of the two-stage benches throughout the summer might not significantly increase the 

release of P during stormflow inundation.  

The calculated EPC0 values in this study are similar to EPC0 values from soil sampled in 

other agricultural areas (EPC0: 0.022 to 0.284 mg/L, McDowell et al. 2017; EPC0: 0.02 to 0.12 

mg/L, Hongthanat et al. 2016). The Z ditch reference EPC0 bank values increased from spring to 

fall and suggested that the banks were a possible source of P later in the year, possibly due to 

mineralization of vegetation. The Z two-stage EPC0 values suggested combined sediment and 

soil served as a P sink in the two-stage throughout both seasons despite an increase in EPC0 in 

the left bench. T ditch reference EPC0 values increased from spring to fall suggesting a slight 

decrease in P retention in the fall. While the two-stage left bench EPC0 value increased slightly, 

the channel and right bench EPC0 values decreased, suggesting an increase in P retention. My 

initial thought was that this decrease in EPC values in the two-stage was due to the reduction in 

loosely bound P. However, there were no significant changes in the loosely bound fractions 
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between spring and fall that would support this. It is possible that more mobile smaller particles 

were lost from the two-stage exposing more clay and increasing retention (Smith et al. 2005) but 

particle size distribution data was not collected for both spring and fall. These EPC0 values were 

compared with the SRP present in the water column at the time of sampling. During floodplain 

and bank inundation, water column SRP was often an order of magnitude higher. Hence, some of 

these sites still have the potential to release P under high flow conditions. 

 In this study, only above ground vegetation biomass was sampled to avoid disrupting the 

existing soil integrity within the ditches. Root structure can be a significant portion of plant 

biomass and some studies suggest a major portion of the P is held within the root structure of 

plants (Moore and Kroger 2011; Teng et al. 2013).  Hence our analysis of P content in vegetation 

is an underestimate and therefore conservative. There was significantly less vegetation cover on 

the two-stage benches of T and therefore this sparse vegetation would not likely have been a 

significant factor in the reduction of water column TP and SRP in the T ditch two-stage reach.  

 The slight significant difference in normalized periphyton P in the Z ditch is likely due to 

the extreme shading from channel and bench vegetation that occurred directly over the artificial 

substrate in the two-stage for most of the late summer months (personal observations). It is 

unclear if this reduction comes from a reduction in the cellular TP or if it is a reduction in total 

biomass that reduces the area-specific TP overall. Mixed results from studies on the effects of 

light and nutrients on periphyton growth and nutrient content have shown other unknown 

important factors impact algal nutrient uptake and retention. Hill et al. (2009) found that as light 

availability increase, the biomass-specific concentration of P in algae does not decrease but the 

biovolume of algal cells tends to increase while Fanta et al. (2010) found that algal P content 

decreased with increasing light. Drake et al. (2012) found that light availability and carbon to P 
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ratios within cells were inversely related to each other with regards to how they impacted algal 

growth.  

 The vegetation and periphyton within these ditches have more P per dry mass compared 

to the combined sediment and soil, so it is possible that riparian plants and periphyton are 

seasonally important sinks of P in two-stage ditches. This important function may by temporally 

variable because of the cycle of growth and decay throughout the year.  During the non-growing 

season when vegetation is not taking up as much water and nutrients, P loads entering these 

agricultural ditches through tile drains tend to be higher and can move more easily downstream 

(Clement and Steinman 2017). Bench vegetation can stabilize the soil, decrease erosion, and 

decrease storm transported nutrients during the growing season but the root system left behind 

can also stabilize the benches during the non-growing season. In-stream vegetation and 

periphyton can affect the pH of the surrounding water column when photosynthesizing (Welch 

and Jacoby 2004), thereby affecting the Al- and organics as well as the Ca-bound P fractions 

within the surface layer of sediment.  

 Combined sediment and soil held the most P of the measured stocks at the reach scale 

even though the vegetation and periphyton had the most P per dry mass. While examining the 

role of riparian plants in P retention and ditch stability should be considered for future study, the 

importance of this P sink is minimal compared to the sediment and soil. Any P held within the 

vegetation and periphyton will eventually be released through decomposition and mineralization 

of organic matter while nonreactive P and stably bound P such as Ca-P accumulated within the 

sediment is likely to stay bound across season and become legacy P. Attention should be paid to 

the interactions between sediment and the water column as P inputs into the drainage system are 

decreased through management as this may change the balance and release legacy P (Reddy et 
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al. 2011). It is important to include sediment and soil analyses, not just water analyses in 

management of agricultural ditch systems. Future management and research should focus on 

increasing the P adsorption capacity of the sediment and soil in order to increase the 

effectiveness of two-stage systems. 

  
Conclusions 

The two-stage ditches within the Macatawa watershed have the potential to retain P 

within their sediment and soil. The majority of the P stored within the sediment and soil is bound 

within the more stable Al- and Ca- bound fractions. There was less TP within the combined 

sediment and soil of the two-stage reaches compared to the reference reaches suggesting this 

ability to retain P will continue until equilibrium is reached between the sediment/soil P and 

water column P. While short reach length and erosion in recently constructed two-stage systems 

may impair the effectiveness of the two-stage, the reduced P release potential and the continued 

retention of P within sediment and soil of Macatawa two-stage ditches suggest that their 

effectiveness will increase as they age and stabilize. Further monitoring and research will be 

required to determine if reductions in water column P will increase over time.  
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Figure Captions 

Fig. 2.1 Comparison of traditional (A) and two-stage (B) cross-sectional shape. * denotes two-

stage floodplain benches post construction and growth of vegetation. 

Fig. 2.2 Location of ditches within Macatawa River watershed. Inset: location of watershed in 

lower peninsula of Michigan.  

Fig. 2.3 Sampling locations for surface water sampling, soil TP survey, sediment and soil 

sampling for isotherms and fractionation, and vegetation sampling for bank/bench and channel 

edge samples within sample ditch system. Each reach divided into 5 equal length intervals. For 

lengths of reference and two-stage reaches see Table 1. Diagram, intervals, and symbols not to 

scale. 

Fig. 2.4 Z Ditch variability of total phosphorus content in soil, April 2016 (p < 0.05). The dashed 

vertical line corresponds with connection between downstream end of the reference reach and 

the two-stage reach. Red lines correspond to mean TP in each reach. Two-stage TP was 

significantly lower than reference (t=2.40, p=0.029). Arrow indicates direction of drainage water 

flow. Soil cored to 8cm depth. 

Fig. 2.5 T Ditch variability total phosphorus content in soil, October 2016 (p<0.05). The dashed 

vertical line corresponds with connection between downstream end of the reference reach and 

the two-stage reach. Red lines correspond to mean TP in each reach. Two-stage TP was 

significantly lower than reference (t=4.24, p=0.001). Arrow indicates direction of drainage water 

flow. Soil cored to 3cm depth. 

Fig. 2.6 Particle size distributions for each site in % gravel (> 2 mm), % sand (2 mm- 63 µm), 

and % silt/clay (< 63 µm).  

Fig. 2.7 Z Ditch fractionation, April and October 2016. Bars organized in reference and two-

stage pairs based on position in ditch (left bank or bench, channel, and right bank or bench). 

Each layer in the bars corresponds with a respective fraction of P, from least stable to most 

stable. BD= buffered dithionite. 

Fig. 2.8 T Ditch fractionation, April and October 2016. Bars organized in reference and two-

stage pairs based on position in ditch (left bank or bench, channel, and right bank or bench). 
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Each layer in the bars corresponds with a respective fraction of P, from least stable to most 

stable. BD= buffered dithionite. 

Fig. 2.9 Z Ditch Equilibrium Phosphorus Concentrations (EPC0), April and October 2016. Red 

diamonds = soluble reactive phosphorus (SRP), Bars = EPC0. Bars organized in reference and 

two-stage pairs based on position in ditch (left bank or bench, channel, and right bank or bench). 

Fig. 2.10 T Ditch Equilibrium Phosphorus Concentrations (EPC0), April and October 2016. Red 

diamonds = soluble reactive phosphorus (SRP), Bars = EPC0. Bars organized in reference and 

two-stage pairs based on position in ditch (left bank or bench, channel, and right bank or bench). 

Fig. 2.11 Standing stock comparisons in mg P/ g dry material. 

Fig. 2.12 Standing stock comparisons in mg P/ m2 in relative percentages. Total reach 

calculations (kg P/ reach) are overestimations and assume sediment/soil at 3cm depth for whole 

reach area, vegetation consistent for the whole bench area, and periphyton consistent for the 

whole channel area. 

Fig. 2.13 Morphology of two-stage reaches right after construction (A, C) and after one year of 

weathering (B, D). T ditch (A, B, looking downstream) experienced erosion and channel 

changes; after one year 60% of the effective channel was running through the right bench area. Z 

ditch (C, D, looking upstream) is very stable and experienced very little erosion or morphologic 

changes. 
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Tables 

Table 2.1 Ditch and soil characteristics and general agricultural practices in adjacent fields 

(mean ± one standard deviation): “2-S”= Two-stage reach, “Ref”= Reference reach, “TP”= total 

phosphorus (mg/kg dry soil), “%OM”= % organic matter. TP and OM values were tested for 

statistical differences between the 2-S and Ref reaches for each individual stream: Statistically 

significant difference (p <0.05) shown in bold, v from Web Soil Survey, USDA Natural 

Resources Conservation Service. 

Ditch and 
Treatment Z  2-S Z  Ref T  2-S T  Ref 

Reach Length (m) 373 207 357 254 

Soil Type v Capac loam Colwood silt loam and Capac loam 

Mean Soil TP  471.9 ± 223.3 676.2 ± 150.5 236.4 ± 79.1 495.4 ± 176.1 

Mean Soil %OM 2.3 ± 0.6 6.0 ± 1.3 1.8 ± 0.7 4.1 ± 1.7 

Adjacent Fields’ 
Main Crops 

Winter wheat, 
soybeans Corn Soybeans Corn 
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Table 2.2 Water Quality means ± one standard deviation: “2-S”= Two-stage reach, “Ref”= 

Reference reach, “SRP”= soluble reactive phosphorus (mg/L), “TP”= total phosphorus (mg/L), 

“In-stream Turb”= all turbidity values for 2016 sampling duration including baseflow and 

stormflow (NTU), “DO”= Dissolved Oxygen, “Temp”= Temperature, water quality variables 

were tested for statistical differences between the 2-S and Ref reaches for each individual stream: 

* statistically significant difference (p <0.05) shown in bold.  

Ditch and 
Treatment 

# 
observations Z  2-S Z  Ref T  2-S T  Ref 

Mean TP 
Baseflow 10 0.32 ± 0.2 0.35 ± 0.2 0.06 ± 0.1 0.09 ± 0.1 

Mean SRP 
Baseflow 10 0.24 ± 0.2 0.26 ± 0.2 0.02 ± 0.04 0.05 ± 0.05 

Mean TP 
Stormflow 4 1.21 ± 0.3 1.12 ± 0.4 0.89 ± 0.2 0.98 ± 0.4 

Mean SRP 
Stormflow 4 0.65 ± 0.2 0.67 ± 0.2 0.81 ± 0.4 0.62 ± 0.5 

Mean In-
stream Turb 

Z: 5407 
T: 3101 

55.8 ± 187.1 66.3 ± 186.3 67.9 ± 252.4 43.2 ± 136.4 

Mean DO mg/L 
Baseflow 9 12.0 ± 2.7 11.5 ± 3.6 13.3 ± 1.5 13.1 ± 3.4 

Mean DO mg/L 
Stormflow 4 9.3 ± 3.4 9.5 ± 2.9 10.1 ± 2.4 9.7 ± 2.8 

Mean pH 
Baseflow 7 7.9 ± 0.4 8.1 ± 0.3 8.5 ± 0.1 8.3 ± 0.2 

Mean pH 
Stormflow 4 7.6 ± 0.2 7.5 ± 0.2 7.8 ± 0.3 7.7 ± 0.2 

Mean Temp °C 
Baseflow 9 12.6 ± 6.1 13.0 ± 5.9 16.8 ± 8.2 15.4 ± 7.4 

Mean Temp °C 
Stormflow 4 11.8 ± 7.35 11.6 ± 7.4 8.8 ± 7.6 8.8 ± 7.5 
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Table 2.3 Vegetation and periphyton results ± one standard deviation: “2-S”= Two-stage reach, 

“Ref”= Reference reach, “Veg” = vegetation, all biomass values in kg dry wgt/m2, “P” = 

Phosphorus, values in g/m2 dry biomass. There are no biomass or vegetation P content values for 

the T ditch due to limits on sample analysis. Data were tested for statistical differences between 

the 2-S and Ref reaches for each individual stream. Statistically significant difference (p <0.05) 

shown in bold. 

Ditch and 
Treatment Z  2-S Z  Ref T  2-S T  Ref 

Major Veg- 
Bench Grasses, clover Grasses, 

goldenrod 
Miscellaneous, 

grasses Grasses, willow 

Major Veg- 
Channel Grasses, bulrush Grasses, willow Grasses Grasses, willow 

Mean Cover (0-5)  
Bench 4.1 4.6 1.4 5.0 

Mean Cover (0-5)  
Channel 3.8 3.4 4.0 3.0 

Mean biomass 
Bench 0.22 ± 0.10 0.27 ± 0.19 NA NA 

Mean biomass 
Channel 1.24 ± 0.15 0.43 ± 0.36 NA NA 

Mean Veg  
P content 1.57 ± 1.78 1.02 ± 0.88 NA NA 

Periphyton  
P content 0.07 ± 0.10 0.11 ± 0.06 0.16 ± 0.07 0.23 ± 0.08 
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Fig. 2.6   
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Fig. 2.8   
 
 
 

 
Fig. 2.9 
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Fig. 2.10 
 



63 
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Chapter 3 

Impacts of Two-stage Ditch Form on Periphyton Community Structure and Biovolume 
 

Introduction 

Agricultural drainage has been implicated as one of the causes of eutrophication in large 

water bodies throughout the world (Jarvie et al. 2015). Excess nutrients such as nitrogen (N) and 

phosphorus (P) that are not used by crops or stored in the field soil can make their way to 

drainage systems via tile drains and surface runoff, and then enter downstream waterbodies. 

These excess nutrients fuel algal blooms and can increase the potential for ecological 

impairments, such as beach closings, fish kills, and hypoxic water conditions. Agricultural 

systems also expedite the movement of fine soils and particulate matter eroded from fields and 

ditches, resulting in increased turbidity, and deposition of particulate matter that can shade and 

choke out benthic communities (Hill et al. 2009).  

In an effort to reduce excess nutrients and sediment making their way from agricultural 

lands downstream, farmers can implement prevention measures called best management 

practices. These best management practices can be operational, such as no-till and planting cover 

crops, or structural, such as buffer strips, water and sediment control basins, and drainage outlet 

control boxes. A best management practice new to western Michigan is the two-stage ditch. The 

two-stage refers to two parallel floodplain benches excavated out of the sides of an existing 

traditional, trapezoidal shaped drainage ditch. These benches increase area for drainage during 

high flow events thereby decreasing flow velocity and turbidity, and increasing denitrification 

(Mahl et al. 2015, Roley et al. 2012). Little is known about the ability of two-stage ditches to 

retain phosphorus (P) (Kallio et al. 2010) and even less is known about the interactions between 
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nutrient retention and communities of algae growing in the periphyton complex within 

agricultural waterways (Brennan et al. 2017).  

Periphyton is an aggregation of algae, fungi, and bacteria as well as settled particulate 

matter than accumulates on benthic surfaces in aquatic systems (Larned 2010). In this study, the 

use of “periphyton” refers explicitly to the algal component of the periphyton complex. Many 

studies have experimented with the interactions between periphyton, phosphorus concentrations, 

and light in stream systems due to algae’s need for P in photosynthesis and tissue growth (Drake 

et al. 2012, Fanta et al. 2010, Hill et al. 2009, Qin et al. 2007, Steinman and Duhamel 2017). 

Under high light and nutrient conditions, periphyton has been shown to be a P sink during the 

growing season (Drake et al. 2012). Periphyton can take up the more bioavailable form of P, 

soluble reactive P (SRP), from both the water column directly and after it is released from 

sediments (Brennan et al. 2017, Fanta et al. 2010). 

Brennan et al. (2017) and Drake et al. (2012) also observed potential impacts of 

sediment-attached periphyton (epipelon) on the movement of nutrients between the water 

column and the sediment. Due to flow dynamics, a thin layer of anoxic water can form right at 

the water-sediment boundary as oxygen is used up in microbial respiration (Palmer-Felgate et al. 

2010). If this anoxic layer forms, Fe3+ can be reduced to Fe2+ and release previously bound P 

back into the water column. Epipelic algal cells can prevent that thin layer of anoxic water from 

forming during the day by producing oxygen via photosynthesis, thereby reducing P release from 

sediments to the water column (Brennan et al. 2017). It is yet unclear if certain algal taxa are 

more effective than others at removing P in the water column and reducing P movement from the 

sediment to the water column by reducing the anoxic layer.  
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While particulate matter can transport bound nutrients to the benthos, particulate matter 

can also change periphyton biofilm structure and community (Lange et al. 2015). Graham (1990) 

found that particulate matter such as sediment can make up at least 50% of the dry mass of 

periphyton sampled in average small streams after the particles settled out of the water column or 

became trapped in algal mucilage. In high depositional areas, motile algae such as Surirella spp. 

make up a larger portion of the algal community as they can move out from under settled 

particulate matter (Hill et al. 2009, Wagenhoff et al. 2013). During storm events, the two-stage 

ditch can reduce current velocity, resulting in increased deposition of particulate matter (and 

thereby increasing motile taxa); these ditches also can reduce scouring power, thereby increasing 

relative biomass of filamentous taxa and retaining more algal cells in the ditches (Lamb and 

Lowe 1987, Powell et al. 2007).  

Periphyton has the potential to significantly impact both nutrient dynamics and trophic 

level interactions (Qin et al. 2007); therefore, differences in periphyton community structure and 

biomass growing in a two-stage ditch form vs. the traditional, trapezoidal shaped ditch should be 

investigated. My objective was to determine the impacts of the two-stage form on channel 

periphyton by comparing abundance and biovolume as well as community richness, diversity, 

and evenness between the two-stage and corresponding upstream reference reaches.  I expected 

algal biomass, abundance, and community richness to increase in the two-stage reaches 

compared to the reference due to reductions in current speed and an increase in settled particle 

matter. 
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Methods 

Study Sites 
 I examined two two-stage (2-S) ditches and their adjacent upstream reference (Ref) reaches 

that remained in the traditional trapezoidal shape.  Both ditches were within the southern portion 

of the Macatawa watershed in West Michigan (Fig. 3.1), although located in different subbasins. 

These ditches are referred to as the “Z” and the “T” ditch systems to retain farmer anonymity. 

The Z two-stage reach was constructed in February 2015 and the T two-stage reach was 

constructed in November 2015. Hence, the Z ditch was ~1 yr old and the T ditch was only 4 mo 

old when my sampling began.  Paired reaches were similar in length: Z 2-S 373m vs. T 2-S 357 

m; Z Ref 207 m vs. T Ref 254m.  

Water Quality 

 Surface water was sampled at the downstream end of both treatment and reference sections 

in both ditches (cf. Fig. 3.2) monthly from March to December 2016. Water samples were stored 

on ice during transportation back to the laboratory. Samples for total P (TP) were stored at 4 °C 

and samples for soluble reactive P (SRP) were filtered through 0.45 µm filters and then stored at 

4°C until analysis with a SEAL Autoanalyzer (SEAL Analytical, Mequon, Wisconsin, P 

detection limit = 0.005 mg/L). Temperature (°C), dissolved oxygen (DO, mg/L), and pH were 

measured using a YSI 6600 at the time of surface water sampling. Turbidity sensors (Cyclops-7F 

Turner Designs) were installed at the downstream end of each reach and recorded continuous 

(every 10 minutes) in-stream measurements from late April to December 2016. Sensors were 

checked and cleaned every two weeks and calibrated once per month. Stormflow current velocity 

was not measured due to safety concerns. Due to this and very low water depth and 

discontinuous flow along the reaches during most of the growing months, currently velocity was 
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not measured during baseflow either. General observations about flow, water depth, and tile 

exposure were recorded. 

Artificial Periphyton Substrate 

Unglazed ceramic tiles with a surface area of 2.54 cm2 were used as artificial substrate 

for periphyton growth. Prior to use, all tiles were soaked in DI water overnight, dried, and then 

ashed at 550 °C for one hour to clear them of dust and oils. After cooling, eight tiles were 

adhered with epoxy putty to a cement brick.  One brick and associated substrate tiles were buried 

flush with the channel bottom at the downstream end of each reach. The tiles were collected 

monthly; every other tile was removed from the brick and combined for filtering, ash-free dry 

mass (AFDM), and TP analysis (Fig. 3.3, A). The other four tiles were removed and combined 

for community structure and biovolume analysis (Fig. 3.3, B). The tiles were returned to the 

laboratory and the periphyton was removed with DI water and careful brushing. The brick was 

discarded and replaced with a new brick and tiles in the same position within the ditch after each 

monthly (approximate) sampling from May to December 2016. Twenty-seven samples in total 

were successfully collected from the ditches. August T reference was not analyzed due to loss of 

tiles during a storm. At the time of substrate installation, the depth of the water column above the 

tiles was recorded as well as general information on the shading from bench and channel edge 

vegetation. 

In- laboratory Periphyton Analysis 

Samples for AFDM (µg/cm2, Steinman and Ogdahl 2016) and P content analysis were 

prepared by filtering onto pre-combusted and weighed GF/F filters. Filtered samples were then 

placed in pre-combusted and weighed aluminum weigh boats and dried at 70 °C until constant 
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weight.  Samples were then oxidized at 550 °C for 1 hour. After oxidation for the determination 

of AFDM, the samples were digested with persulfate and then analyzed for TP (Qin et al. 2007, 

USEPA 1983). All P analyses were conducted on a SEAL autoanalyzer (SEAL Analytical, 

Mequon, Wisconsin). 

Samples for algal identification were preserved in 1% Lugols. At least 300 algal cells 

were identified to genus in a known volume for each sample. Diatoms were grouped into centric 

or pennate, and identified to genus whenever possible. If possible, at least 10 cells of each taxon 

were measured for biovolume using cell volume equations from Hillebrand et al. (1999) and Sun 

and Liu (2003). A portion of each sample was cleaned for identification of diatoms to genus at 

1000x magnification. First the sample was washed of Lugols and then digested for one hour in a 

1:1 solution of sample and 5.7% sodium hypochlorite (standard household bleach) to remove the 

organics (Carr 1986). After the digestion, three rinses of DI water were used to remove the 

sodium hypochlorite from the sample. Each sample was dried on a cover slip and then inverted 

onto thin layer of a karo syrup and DI water solution on a slide and set flat to dry. 

Riparian Vegetation 

 The two-stage and reference reaches for both Z and T were separated into five sections of 

equal length for the vegetation survey, hereafter called “intervals” (Fig. 3.2). Vegetation cover 

was visually estimated on a 0-5 Braun-Blanquet scale for both benches and both channel edges. 

The values for the bench were averaged and the values for the channel were averaged per reach. 

Observations on major vegetation types were recorded. 

Data Analysis 
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 Potential differences in water quality parameters, bench and channel edge vegetation 

cover, and periphyton phosphorus content between two-stage and reference were tested 

separately for each site (subbasin) using paired samples t-tests or Wilcoxon test depending on 

normality. When applicable, differences among months were tested for with Kruskal-Wallis 

tests. 

Cells/mm2 and total biovolume (µm3/mm2) were calculated from algal counts and volume 

measurements. To assess community structure, % diatom taxa of total (1), Shannon diversity 

index (2), and evenness (3) were calculated as follows. 

1) (# diatom taxa/ total # taxa) *100 

2) H’ = - Σ pi *ln pi 

3) Evenness = H’/ Hmax = H’/ lnS where S = total # of taxa  

Differences in cells/mm2, total biovolume, % diatom taxa, H’, and evenness between 

two-stage and reference at each site were tested with paired-samples t-test or Wilcoxon test 

depending on normality. The variables that were not significantly different were combined for 

each ditch (2-S and Ref together) and differences among months were tested with the Kruskal-

Wallis test. Canonical Correspondence Analysis (CCA) was used to determine correspondence 

between cells abundance and the following factors: treatment, shading, water level, periphyton P 

content, TP baseflow, SRP baseflow, turbidity, water temperature, and DO concentration. A 

scattermatrix was used to identify highly correlated environmental variables and variance 

inflation factor (VIF) values above 10 were removed. The final model included only treatment, 

turbidity, temperature, and DO. Partial CCA was used to determine significance for each factor 

in the model. All analyses were conducted in R (v99.447) and significance was set at p < 0.05. 
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Results 

Water Quality 

Overall, phosphorus concentrations were higher in the Z ditch than the T ditch (Table 

3.1).  Mean TP and SRP concentrations during baseflow in the Z two-stage ditch were not 

significantly different from those in the reference reach (Table 3.1). In contrast, mean TP and 

SRP concentrations during baseflow in the T two-stage ditch were significantly lower than those 

in the reference reach (TP: p = 0.009; SRP: p = 0.011, Table 3.1).  

Z ditch turbidity was significantly higher in the reference compared to the two-stage (p < 

0.0001, Table 3.1). Due to equipment malfunction, approximately half of the turbidity data for 

the two-stage in T were not usable.  To compare data between the T ditch two-stage and 

reference reaches, the corresponding data from the reference reach also was discarded; however, 

there were still more than 6200 turbidity observations for the comparison.  In contrast to Z ditch, 

T ditch turbidity was significantly lower in the reference compared to the two-stage (p < 0.0001, 

Table 3.1). The turbidity data encompass both baseflow and stormflow measurements for 2016 

and there was high variability. The turbidity ranged from approximately 0.05 to 3,000 NTU in 

the Z ditch and from approximately 0.30 to 3,200 NTU in the T ditch. However, the paired 

nature of the sampling and the sample size (Z: 5,407 and T: 3,101 for each reach) allowed for 

significant differences between reaches to be observed. 

Vegetation 

 Assessment of vegetation cover was divided into bench and channel edge regions.  Both 

mean bench and channel edge vegetation cover in the Z ditch were not significantly different 

between two-stage and reference reaches (Table 3.1). In contrast, mean bench vegetation cover 



74 
	

in the T ditch was significantly greater in the reference reach compared to the two-stage reach 

(p<0.0001, Table 3.1); however, T ditch mean channel edge vegetation cover between reaches 

was not significantly different.  

Major types of bench and channel edge vegetation at the periphyton sampling sites were 

grasses, goldenrod, willow and bulrush. As these plants grew tall, the channel edge cover values 

in the Z two-stage and reference reaches and T two-stage reach likely underrepresented the 

shading caused by the vegetation at those specific sites. Unfortunately, irradiance values were 

not measured so quantitative comparisons cannot be made.  

Periphyton 

Periphyton P content was not significantly different between the two-stage and reference 

reaches for either ditch (Table 3.1). Water levels receded during the summer months; as a 

consequence, the tiles were found above the water line during certain tile checks and sampling 

months. All tiles collected were sampled for periphyton analysis no matter the degree of 

desiccation at the time of collection (Table 3.2). Observations on tile water cover and dryness are 

as follows: Z ditch two-stage and reference tiles were damp but out of the water in July and 

completely dry in August at the time of sampling. T ditch two-stage and reference tiles were 

barely under the surface of the water in July and dry in August at the time of sampling. At the 

time of sampling during the other months the water surface was at least 3 cm above the tiles.  

Overhanging vegetation also created variation in environmental conditions throughout the period 

of sampling. Z ditch two-stage tiles were partially covered with overhanging vegetation starting 

in June and completely covered from July to November. Z ditch reference tiles were partially 

shaded September through October. T ditch two-stage tiles were partially shaded from 
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September through October and shaded by floating filamentous algal mats in November. T ditch 

reference tiles were not shaded by bench or channel edge vegetation but were shaded by floating 

filamentous algal mats in November. Despite desiccation and/or shading in certain months, there 

were no significant differences in periphyton P content among months in all reaches (Z: χ2 = 8.6, 

df = 6, p = 0.2; T: χ2 = 1.2, df = 5, p = 0.9).  

Z ditch mean algal density in the reference reach was considerably greater than in the 

two-stage reach (1,016 vs 170 cells/mm2) but this was driven largely by one month (May), so the 

difference was only marginally significant (p=0.07, Table 3.2). Similar to Z, T ditch mean algal 

density was significantly greater in the reference reach than in the two-stage reach (p= 0.004, 

Table 3.2). Total biovolume (µm3/mm2) was not significantly different between two-stage and 

reference for either Z or T ditch; however, the Z ditch two-stage biovolume tended to be lower 

than the reference (Z: p= 0.06, Fig. 3.4 and T: p= 1, Fig. 3.5). Number of taxa, diatom % of taxa, 

H’, and evenness were all not significantly different between two-stage and reference for either 

the Z or T ditches (Table 3.2). There was no significant difference in biovolume of motile taxa 

between the two-stage and the reference (Z: p= 0.40, T: p > 0.99, Table 3.3). Time had no 

significant effect (all p>0.1) on combined two-stage and reference values for total biovolume, 

#taxa, diatom % of taxa, H’, and evenness.  

The periphyton community structure was very similar between two-stage and reference 

for both Z and T ditches. Genera that were present in at least four out of the seven sampling 

months made up a large portion of the biovolume on average: Z 2-S 80.6%, Z Ref 75.5%, T 2-S 

74.5%, T Ref 98.2% (Table 3.3). The only Chlorophyta taxa present in 4 out of 7 months were 

the Stigeoclonium and Oedogonium. Stigeoclonium was present in the Z reference reach and the 

T two-stage reach while Oedogonium was present in both the T two-stage and reference reaches. 
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The remaining dominant taxa were all diatoms. The three major genera by biovolume in the Z 

two-stage were Rhoicosphenia, Gomphonema, and Navicula. The three major taxa by biovolume 

in the Z reference were Gomphonema, Cocconeis, and Navicula.  The four major taxa by 

biovolume in the T two-stage were Navicula, Synedra, Gomphonema, and Gyrosigma. The four 

major taxa by biovolume in the T reference were Cocconeis, Synedra, Surirella, and Navicula. 

The initial CCA model, which included the highly correlated variables, explained 

approximately 76% of the variability in abundance data. After the highly correlated 

environmental variables were removed, the model included only treatment, turbidity, 

temperature, and DO. This model still explained 48.7% of the variability in the abundance data. 

The CCA plot revealed that the Z two-stage and reference reaches were more similar to each 

other than the T two-stage and reference reaches were to each other (Fig. 3.6). Algal community 

structure in the T two-stage reach was associated with temperature whereas in the T reference 

reach, community structure was influenced by DO concentration (Fig. 3.6). Earlier months of the 

sampling year (May, June, and July) were more scattered in the biplot than the later months, 

which tended to cluster closer together. All four factors were significant descriptors when tested 

with partial CCA, with DO being the most descriptive (14.6%, p= 0.004) followed by turbidity 

(11.3%, p=0.017); treatment and temperature described a similar percentage of the variability 

(Treatment 9.3%, p=0.023; Temperature 9.2%, p=0.027) (cf. Fig. 3.6).   

Discussion 

 Periphyton can be an important component of the autotrophic base in aquatic systems 

(Liess et al. 2012, Qin et al. 2007). Light availability, nutrient concentrations, turbidity, flood 

disturbance, and grazing have been shown to impact the growth of periphyton (Biggs et al. 1998, 
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Brennan et al. 2017, Hill and Knight 1988) as well as interactions between these factors (Lange 

et al. 2011).  Light and nutrient concentrations have the largest impact on the growth of algae in 

many freshwater streams (Fanta et al. 2010, Qin et al. 2007). Brennan et al. (2017) found that P 

transferred by eroded soils and then released into the water column can also have a significant 

impact on benthic algal growth.  

When algal growth negatively impacts the ecosystem services of a water body, it is 

termed nuisance algal growth. Nuisance algae are typically nutrient tolerant filamentous taxa 

such as Cladophora and Oedogonium, and can increase pH and diurnal DO fluctuations, as well 

as reduce algal community biodiversity (Stevenson et al. 2012, Dodds et al. 2002).  While 

agricultural drainage systems are not known for their biodiversity and human recreational use, it 

is still important to maintain a level of biodiversity that allows the system to function effectively. 

If nuisance algae significantly increase pH and/or reduce DO at night, it may impact the retention 

of P within the top layers of sediment. By increasing pH, the potential for release of Al-bound P 

increases. If DO concentrations decrease significantly at night, there is potential of 

hypoxic/anoxic conditions that may reduce Fe+3 and release P back into the water column. 

Measurements of the interactions between large nuisance algae growth, pH, DO, and P dynamics 

are still not fully understood (Stevenson et al. 2012) and should be empirically studied and 

modeled at the field level in future research. 

Temporary immobilization of P may be an important factor in the timing of P release 

from upstream ditches in agricultural watersheds; P taken up by algae and vegetation may be 

released during scouring and mineralization during the non-growing seasons. Drake et al. (2012) 

found that high light and high nutrient concentrations increased the P immobilization by 

periphyton and may also increase the length of time that that P stays immobilized in algae and 
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vegetation tissue. Vegetation growth on the benches and channel sides (and therefore shading) 

was limited during the spring, and this period of time corresponded with the period of the 

growing season with the largest biovolume and density of algal growth in the Z and T ditches. 

Therefore, late spring may be the optimal time for unshaded algal growth and immobilization of 

nutrients by algae until the end of the growing season when cell death and P mineralization 

increases. In the North-central region of the United States, typically late April-early May 

corresponds with the final snowmelt and the beginning of spring storms which moves a 

significant load of soil and nutrients (Clement and Steinman 2017). It is still unclear how 

significant the impact of this temporary P immobilization is compared to the high loads in the 

ditches and when the P would be released back into the water column. This release of P from 

periphyton or vegetation would likely occur in the late summer- fall, during low nutrient load 

times for the Macatawa watershed (Clement and Steinman 2017) and have a greater chance of 

being adsorbed to the sediment. However, in certain subbasins this release of P may also align 

with fertilizer application and fall storms and have an undetectable impact on the system. 

 Given the concerns over eutrophication, harmful algal blooms, and hypoxia, it is important 

that any best management practice applied to farming in the Midwest is effective at retaining 

nutrients and particulate matter. In order to optimize the ability of BMPs to process and retain 

nutrients, we have to understand the movement of nutrients within two-stage and traditional 

ditches. One function of an effective two-stage should provide a balance between reducing 

nuisance algae and increasing the temporary retention of nutrients through seasonal algal growth.  

 Cell density for each reach was quite low, especially for slower streams (Lamb and Lowe, 

1987). Cell densities (for all but the Z two-stage) during May were more similar to other studies. 

It is possible that on the artificial substrate used for this study and the deposition of particulate 
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matter slowed the colonization rate. Also, the lack of irradiance and desiccation of tiles during 

the summer months reduced the growth of algae on the tiles. However, the total biovolumes were 

within range for agricultural streams and artificial substrates (Hill and Knight, 1988). 

 The Z ditch had high mean TP and SRP concentrations compared to the T ditch. I expected 

this to be the opposite as the fields within the Z system had winter crops and were interseeded, 

whereas the T ditch was tilled and left unplanted during the non-growing season. The Z ditch 

may have higher mean TP and SRP concentrations because of inputs farther up in the watershed 

but the reason for the high TP and SRP concentrations in the Z ditch is unclear. The T ditch also 

had lower TP within the sediment of both the two-stage and reference (Ch. 2) suggesting the P 

load may have been lower in this series of drainage ditches for some time. 

The reduction in turbidity in the Z two-stage was not large enough to result in a 

significant reduction in TP and would have less direct impact on SRP concentrations within the 

two-stage reach. This reduction in turbidity at the downstream sampling site suggests that some 

of the particulate matter traveling out of the reference reach settled within the two-stage reach 

and less was present to settle out at the downstream algal sampling site. Increased deposition of 

particulate matter tends to increase motile algal taxa (Wagenhoff et al. 2013). None of the main 

taxa in Z two-stage or reference reaches was highly mobile taxa; all were attached or weakly 

motile taxa (Table 3.3). Even though the turbidity was higher within the reference reach, the only 

filamentous Chlorophyte present in four out of seven sampling months in Z (Stigeoclonium spp.) 

was found in the reference reach. Stigeoclonium is commonly found in nutrient rich, slow 

flowing waters growing on rocks (Bellinger and Sigee 2015). The substrate surrounding the brick 

and tile placement was primarily cobble and gravel in the reference while it was gravel and sand 
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in the two-stage. The Stigeoclonium found growing on the reference tiles most likely originated 

from these stones and colonized the new substrate. 

Decreased turbidity at the downstream end of the Z two-stage reach also could have 

increased irradiance to the benthic zone (Hill et al. 2009). However, shading by bench and 

channel vegetation most likely impacted the irradiance at the two-stage sampling site much more 

than changes in turbidity. It is unlikely that the reduction in turbidity would have an impact on 

the light and therefore growth of algae in the two-stage compared to the reference because there 

was no significant difference in the vegetation cover. With no significant differences in nutrients 

or light availability, it is not surprising that there were no significant differences between two-

stage and reference algal biovolume, cells/ mm2, or periphyton TP content. 

In the T ditch, turbidity was significantly higher in the two-stage reach while TP and SRP 

were significantly lower within the two-stage reach. This increase in turbidity was due to erosion 

during high flow events. As the surface area of the functional channel increased and moved onto 

the benches during 2016, uptake of P via algae and adsorption of P to sediment could have 

increased and significantly reduced P concentrations in the drainage water. If particulate bound P 

increased within the water column, bioavailable P would have had to decrease significantly for 

the TP to also decrease within the two-stage.  

The algae responsible for part of the reduction in P were most likely the mat algae found 

on the wet benches and in the channel since there was little difference in the algal biomass 

between the T ditch two-stage and reference reaches sampled on the artificial substrate. 

However, the widespread mat algae were not sampled or analyzed for this thesis. Increased 

turbidity as well as shading due to channel edge vegetation and the algal mats may have 
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significantly reduced the density of the algae on the tiles in the two-stage compared to the 

reference reach but not significantly impact either biovolume or overall community diversity. 

Both T two-stage and reference communities were a mixture of non-motile, nutrient tolerant taxa 

and very motile taxa found on fine substrates. Two additional genera (Gyrosigma and 

Stigeoclonium) were present in at least four out of the seven sampling months on the T two-stage 

tiles compared to the reference (11genera total vs. 9 genera total, respectively). Gyrosigma and 

Stigeoclonium are more common in slower moving aquatic environments and on rocky surfaces 

(Bellinger and Sigee 2015). As the two-stage channel substrate was comprised of sand and clay, 

the presence of these taxa, especially Stigeoclonium, may be due to the use of tile artificial 

substrate. The T reference had high variability in algal density and biovolume. This is mirrored 

by the variability of T reference sampling months along the DO axes in the CCA plot (Fig. 3.6).  

The lack of difference in periphyton TP content may reflect the large amounts of deposited 

particulate matter that could not be separated from the algae during filtering and associated TP 

analysis.  

There were no statistical differences in the environmental factors among months. 

However, there are trends that appear when all four reaches are combined. DO seems to explain 

a large portion of the algal variability, perhaps just by mirroring the growth and photosynthesis 

of the periphyton. Temperature was highly correlated with the shading factor that was removed. 

The T ditch experienced large changes in temperature due to less shading along the reach. The 

high multicollinearity of many factors could be because PAR (photosynthetically active 

radiation), water flow, and water depth were not measured quantitatively for this project. 

Turbidity data also were not available for the early months of algal sampling due to sensor 

malfunction.  
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 In this study, ceramic tiles were used as artificial substrate to collect algae. Communities 

from more mobile substrates, such as sand, may not be well represented in this study. There is 

variable benthic substrate throughout each reach, ranging from fine sandy clay to sand and gravel 

to small cobble. By using tiles, we were able to remove variation that would have been present 

had the samples been taken from rocks or sediment that was present in the ditch, and also 

allowed for equal timing for particle settling onto the tiles for each reach, as suspended solids 

were not directly measured for this research.  

There were significant growths of algae floating in the channel or in wet puddles on the 

benches. These algae, all characterized predominantly by filamentous taxa, formed large mats 

within both the two-stage and the reference of both ditches but appeared to be composed of 

different major taxa. They also played a part in shading the tiles during the fall. To understand 

the entire suite of algal communities within drainage ditches, future sampling should also include 

these algal mats.  

Conclusions 

 Despite trends that suggest algal density and biovolume were lower in the two-stage 

compared to the reference reaches of both Z and T, only T ditch algal density was significantly 

different between two-stage and reference reaches. There were no significant differences in 

number of taxa, % diatom taxa, or community diversity between two-stage and the reference or 

among months. It is possible that finer taxonomic resolution down to the species level may have 

resulted in significant differences but it is clear that these relatively new two-stage ditches are 

not currently having a distinct impact on periphyton community structure. As the ditches mature 

and more vegetation growth occurs, these systems will have reduced periphyton growth in the 

summer months due to shading.  
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While vegetation shading may keep water temperatures down, allowing for the growth of 

photosynthesizing algae may prevent standing water from becoming anoxic (thereby reducing 

Fe+3) and releasing P back into the water column during low baseflow conditions when the 

channel is disconnected and the water stagnant. In ditches with low water TP and SRP, the 

release of P from sediments during low flow conditions may significantly increase the P 

concentrations and potential for P export during the next high flow event. For shallow ditches 

like the Z and the T where late summer baseflow is low and there are few in-channel vegetation 

taxa (i.e., when algae are the main biotic sinks for P), keeping the vegetation growth trimmed on 

the benches to increase the irradiance into the channel allowing for increased algal 

photosynthesis may be a best management practice to retain P. Elevated periphyton growth in the 

spring when shading is low and nutrient load is high or in the summer with trimmed bench 

vegetation may reduce some P export during those months and immobilize it until potential 

mineralization later in the year. Then as water levels recede and P loads decline in late summer, 

and water in the channel becomes disconnected, the P released from mineralized periphyton will 

have a greater chance of being adsorbed to the sediments and not transported out of the reach.  A 

more thorough look at sediment P properties, algal P cycling, and water column P and quality 

parameters throughout the year is necessary in order to quantify the actual impacts of algal P 

immobilization, respiration, and photosynthesis in two-stage systems. 

 Typically, the influence of turbidity and nutrients on algal growth is the focus of 

periphyton research in agricultural streams. While nutrient concentrations likely had some 

influence on algal growth in these ditches, multicollinearity among TP, SRP, and other measured 

environmental factors prevented a clear estimation of nutrient significance. It is likely that the 

significant determining factor of temperature was an artifact from reduced shading of the channel 
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along the T two-stage reach and that differences in DO are likely a response to the growth of mat 

algae in the T two-stage reach. As the morphology of ditches becomes a larger focus of 

management, these less-studied factors such as temperature and DO production should be 

included in research to better understand algal growth and its impacts on nutrient cycling within 

agricultural drainage systems. 
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Figure Captions 

Figure 3.1 Location of the two study ditches (Z and T) within Macatawa River watershed. Inset: 

location of watershed in lower peninsula of Michigan. 

Figure 3.2 Sampling locations for surface water sampling and vegetation sampling for bank 

(reference)/bench (two-stage) and channel edge samples within sample ditch system. Periphyton 

tile placement was adjacent to the surface water sampling site. Each reach was divided into 5 

equal length intervals. Diagram, intervals, and symbols not to scale. 

Figure 3.3 Diagram of artificial substrate tiles adhered to brick. One brick was installed per 

downstream site and removed every month. A: Tiles for ash-free dry mass and total phosphorus 

analysis; B: Tiles for community structure and biovolume analysis. Circles represent rebar 

installed on downstream end and sides to prevent brick movement and consistent placement 

within stream. Arrow indicates direction of water flow. 

Figure 3.4 Z ditch total biovolume (µm3/mm2) of periphyton taxa over sampling months.  

Figure 3.5 T ditch total biovolume (µm3/mm2) of periphyton taxa over sampling months. August 

reference data are not available due to loss of tiles.  

Figure 3.6 CCA plot of algal abundance with the following environmental factors: Turbidity, 

dissolved oxygen concentration (DO.Conc), Temperature (Temp), Treatment (Treatment.D). M= 

May, J= June, Y= July, A= August, S= September, N= November, D= December; Red= Z two-

stage, Blue= Z reference, Black= T two-stage, Orange= T reference. May T 2-S is not 

represented due to missing turbidity data and August T Ref is not represented due to loss of tiles 

during a storm.
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Tables 

Table 3.1 Z and T ditch characteristics. Water quality parameters (± one standard deviation) 

were tested for statistical differences between the 2-S and Ref reaches for each site, statistically 

significant difference (p <0.05) shown in bold. “2-S”= two-stage reach, “Ref”= reference reach, 

“SRP”= soluble reactive phosphorus, “TP”= total phosphorus, “Veg.”= vegetation.  

Ditch and 
Treatment Z  2-S Z  Ref T  2-S T  Ref 

Mean TP (mg/L) 
Baseflow 0.32 ± 0.2 0.35 ± 0.2 0.06 ± 0.1  0.09 ± 0.1 

Mean SRP (mg/L) 
Baseflow 0.24 ± 0.2 0.26 ± 0.2 0.02 ± 0.04  0.05 ± 0.05 

Mean In-stream 
Turbidity (NTU) 55.8 ± 187.1  66.3 ± 186.3 67.9 ± 252.4  43.2 ± 136.4 

Mean Veg.  
Cover (0-5)  

Bench 
4.1 4.6 1.4    5.0 

Mean Veg.  
Cover (0-5)  

Channel 
3.8 3.4 4.0 3.0 

Periphyton  
P content (g/m2 dry) 0.07 ± 0.10 0.11 ± 0.06 0.16 ± 0.07 0.23 ± 0.08 
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Table 3.2 Z and T ditch periphyton parameters across sampling months. Submerged vs. Emerged 
condition refers to condition of substrate tiles at time of sampling. Total cells/mm2 include 
Bacillariophyta, Chlorophyta, and Cyanophyta. H’= Shannon- Weiner diversity index. August reference 
data are not available due to loss of tiles. Statistically significant differences between two-stage (2-S) and 
reference (REF) shown in bold. 

SITE MONTH 
Submerged 
vs. Emerged Cells/mm2 # taxa 

Diatom % of 
taxa H' Evenness 

 MAY Submerged 921.89 13 62 1.54 0.60 

Z 2-S 

JUNE Submerged 19.61 11 73 1.41 0.59 
JULY Emerged 27.05 7 100 1.44 0.74 
AUG Emerged 6.83 4 100 1.35 0.98 
SEPT Submerged 24.76 11 91 1.84 0.77 
NOV Submerged 120.04 9 89 1.51 0.69 
DEC Submerged 66.53 12 92 1.82 0.73 

Mean   169.53 10 87 1.54 0.73 

Z REF 

MAY Submerged 4725.86 11 73 1.38 0.58 
JUNE Submerged 68.99 11 91 1.64 0.68 
JULY Emerged 224.91 8 88 1.45 0.70 
AUG Emerged 1717.62 11 64 1.60 0.67 
SEPT Submerged 85.87 9 78 1.59 0.72 
NOV Submerged 265.11 11 73 1.56 0.65 
DEC Submerged 22.29 11 91 2.01 0.84 

Mean   1015.81 10 79 1.60 0.69 
 

SITE MONTH 
Submerged 
vs. Emerged Cells/mm2 # taxa 

Diatom % of 
taxa 

 
H' Evenness 

 MAY Submerged 1416.20 15 67 1.83 0.68 

T 2-S 

JUNE Submerged 359.00 11 64 1.01 0.42 
JULY Sub./ Emer. 615.93 10 100 1.54 0.67 
AUG Emerged 434.88 12 83 1.80 0.72 
SEPT Submerged 827.78 11 73 1.70 0.71 
NOV Submerged 370.29 12 75 1.84 0.74 
DEC Submerged 308.68 13 100 2.35 0.91 

Mean   618.97 12 80 1.72 0.69 

T REF 

MAY Submerged 3110.96 14 71 1.49 0.56 
JUNE Submerged 1434.20 17 65 2.05 0.72 
JULY Sub./ Emer. 385.87 9 100 1.73 0.79 
AUG Submerged NA NA NA NA NA 
SEPT Submerged 403.51 13 62 1.68 0.66 
NOV Submerged 392.73 13 85 2.07 0.81 
DEC Submerged 70.24 12 92 2.14 0.86 

Mean   966.25 13 79 1.86 0.73 
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Table 3.3 Percent of total biovolume on average for those taxa present in at least 4 out of 7 

months (Z) or 3 out 6 months (T). Δ marked genus are motile. 

Z 2-S Z REF 

Taxa 
% of Total 
Biovolume Taxa 

% of Total 
Biovolume 

Rhoicosphenia  31.1 Gomphonema 24.8 
Gomphonema 19.7 Cocconeis  15.9 

Navicula Δ 11.3 Navicula Δ 13.0 
Planothidium Δ 6.4 Planothidium Δ 6.8 

Nitzschia Δ 5.9 Rhoicosphenia  5.8 
Surirella Δ 3.5 Stigeoclonium 5.5 
Cocconeis  2.7 Nitzschia Δ 3.9 

T 2-S T REF 

Taxa 
% of Total 
Biovolume Taxa 

% of Total 
Biovolume 

Navicula Δ 16.2 Cocconeis  42.6 
Synedra 11.4 Synedra 18.0 

Gomphonema 10.6 Surirella Δ 15.1 
Gyrosigma 10.2 Navicula Δ 14.9 

Rhoicosphenia  5.9 Gomphonema 2.9 
Nitzschia Δ 5.2 Rhoicosphenia  2.4 
Surirella Δ 4.5 Oedogonium 1.3 

Oedogonium 3.5 Nitzschia Δ 0.7 
Cocconeis  2.7 Planothidium Δ 0.3 

Stigeoclonium 2.3 --  -- 
Planothidium Δ 2.0 -- -- 
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Figures 
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Figure 3.6 
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Chapter 4 

Synthesis and Conclusions 
	

	 Production of row crops for food and energy represents the major land use in many 

watersheds across the country. As of 2014, approximately 45% of the land in the United States 

was being used for agriculture, whether for row crops, livestock, or rangeland (The World Bank 

2017). Row crop agriculture typically applies nutrients through fertilizer for improved crop yield. 

Agriculture associated with livestock can impact the stability of vegetative communities and 

produces bioavailable nutrient-rich manure as a byproduct. The movement of nutrients through 

water, erosion, transport, and improper management can disrupt the balance within ecosystems. 

While most nitrogen (N) for fertilizer is industrially fixed from the atmosphere by the Haber-

Bosch process (Gruber and Galloway 2008), most phosphorus (P) used in fertilizer is mined 

from rock (Jarvie et al. 2015). As more N is fixed industrially and more P is mined, the amount 

of bioavailable nutrients moving through global cycles increases. These excess nutrients can 

have negative impacts on ecosystems by increasing eutrophication and the likelihood for harmful 

algal blooms. 

 Two-stage systems have been shown to significantly reduce N export through drainage 

ditches while having variable potential to retain P (Roley et al. 2012a; Roley et al. 2012b; Mahl 

et al. 2015). While the mechanism for N removal is well-studied, it is less clear how two-stage 

ditches influence P fate and transport (Kallio et al. 2010). The two two-stage ditches studied for 

this thesis represented two very different systems and two different surprising outcomes. While 

the Z two-stage reach functioned as a stable vegetated ditch and the morphology appeared to be 

“ideal” (Powell et al. 2007), it did not significantly reduce P export in drainage water. The T 

two-stage reach suffered from erosion, unstable banks, little vegetation growth on the benches, 



96 
	

and significant algal mat growth, but did significantly reduce the TP and SRP in baseflow 

drainage.  

Soils and Retention 

In the Z ditch, only turbidity and soil TP were significantly lower within the two-stage 

reach compared to the reference reach (Fig. 4.1). The main reduction in turbidity occurred at 

stormflow when water was actually flowing over the benches. During stormflow, TP 

concentrations were an order of magnitude higher than at baseflow. Only one snowmelt event 

and 3 storm events were sampled during 2016. Any potential reduction in TP due to settled 

particulate matter was either very small in comparison to the overall TP moving through the 

reach at high flow or this difference was not detectable with only a total of four high flow events.  

In the T ditch, water TP and SRP as well as soil TP were significantly lower within the 

two-stage reach compared to the reference reach; conversely, turbidity, pH, and temperature 

were significantly higher within the two-stage reach compared to the reference reach (Fig. 4.1). 

TP and SRP were reduced within the two-stage reach presumably due to increased mat algal 

growth and increased surface area contact between baseflow water and the soil. Turbidity 

increased in the two-stage reach likely due to erosion that occurred mostly during high flow 

events. The pH increase in the two-stage could be due to the increased photosynthesis by the 

filamentous mat algae (Welch and Jacoby 2004). The temperature of the water increased due to 

low vegetation cover and reduced shading as well as the very shallow depth at baseflow. 

Soil TP was significantly lower in both Z and T two-stage reaches compared to their 

corresponding reference reach (Fig. 4.1). In both reaches of Z, the majority of the P stored within 

the sediment and soil was bound within the more stable Al-bound fraction. In both reaches of T, 
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the majority of the P stored within the sediment and soil was within both the Al- and Ca- bound 

fractions. As Al- and Ca-bound P is more stable in sediment and soil than loosely-bound or Fe-

bound P, the majority of P retained within will be relatively stable in all reaches at both sites.  

 Z equilibrium P concentration (EPC) values suggested that P was more likely to stay 

bound within the two-stage compared to the reference. T EPC values suggested that there was 

release of P from the sediment and soil of both two-stage and reference in the spring and but only 

the reference soil in the fall. The sites within the reference that were more likely to release P 

were the banks. These banks may be more likely to dry out compared to the benches or are 

inundated less often and therefore have more mineralized or loosely-bound P to release upon the 

next storm event. %OM tended to be lower in the two-stage compared to the reference in both Z 

and T ditches but there was no significant difference. All %OM was low, approximately 4% in 

the Z ditch and approximately 3% in the T ditch.  

Vegetation and periphyton P accounted for less than 4% of the total P in each reach. In 

the Z ditch, vegetation cover, vegetation biomass, vegetation P content, and periphyton P content 

were not significantly different between two-stage and reference. In the T ditch, only bench 

vegetation cover was significantly lower in the two-stage compared to the reference. Due to the 

lack of vegetation on the two-stage, no vegetation biomass and vegetation P content analyses 

were conducted.  

Impacts on Periphyton 

In the Z ditch, algal density and biovolume tended to be lower in the two-stage compared 

to the reference reaches but were not significantly different. Also, there were no significant 

differences in number of taxa, % diatom taxa, or community diversity between two-stage and the 
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reference reaches or among months. The Z ditch reference reach periphyton was dominated by 

more motile diatom taxa compared to the two-stage periphyton, which was composed of attached 

and weakly-motile diatom taxa. The lack of differences in periphyton community and biomass is 

not surprising considering the environmental factors such as vegetation cover (a proxy for 

irradiance) of the reference and two-stage were very similar in 2016. Also, during construction of 

the two-stage ditch one and a half years prior to the start of this project, the original wetted 

channel was not dredged or changed in any way and so the foundation of the algal community 

before construction still existed at the beginning of this project. The two-stage reach was not 

long enough to prevent migration of some cells through baseflow and stormflow from the 

downstream end of the reference to the downstream end of the two-stage. However, as the two-

stage matures, the reach will most likely continue to reduce turbidity and collect more suspended 

sediments, thereby changing the available substrate and potentially increasing the relative 

number or biovolume of mobile taxa (Wagenhoff et al. 2013). 

In the T ditch, algal density was significantly lower in the two-stage reach compared to 

the reference reach but the total biovolume was not significantly different. This suggests that 

while the number of cells decreased in the two-stage, the size of the cells was larger. The T ditch 

reference and two-stage reaches were both dominated by motile algae. The open, unshaded two-

stage benches were consistently wet and facilitated the growth of large algal mats. While these 

large filamentous algal mats may have had a part in the reduction of TP and SRP within the two-

stage reach, the mats were not analyzed for this study. As the two-stage matures, the benches 

become more stable, and vegetation grows on the benches, the algal communities will probably 

become even more similar between two-stage and reference. 
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The variable P retention results do not mean that two-stage ditches cannot significantly 

reduce P in the Macatawa watershed; rather, there are many interactions between the driving 

factors of P retention and release. Figure 4.2 is a conceptual model of water movement, erosion, 

and P interactions with sediment/soil, vegetation, and periphyton. Both two-stage and reference 

reaches are shown at baseflow and stormflow conditions. The solid arrows represent the 

movement of water; the thick arrows represent the major water movement from land into the 

ditch for each scenario. The dashed lines represent the movement of sediment (and associated 

sediment bound P). The arrow circles represent the cycling of P through uptake into autotrophs 

and then release through cell death and decomposition. The brackets represent adsorption of P to 

sediment and soil and potential release back into the water column.  

During baseflow conditions, some tile drains will transport water from fields into the 

ditch. Tile drainage has been shown to account for around 50% of the annual P load in certain 

watersheds (King et al. 2015, Smith et al. 2015) and in the Macatawa, percent SRP from tile 

drains often exceeded 50% of the total P being exported (Clement and Steinman 2017). In the 

two-stage reach, that water is deposited onto the bench where adsorption and uptake by 

vegetation can occur. In the reference, the drainage water moves almost directly from the pipe to 

the wetted channel with very little interaction with the ditch banks. High drainage flow may 

cause erosion to occur on the bank sides, releasing soil and bound P into the channel. During 

stormflow, the tile drains (not shown in the diagram) may still move a large amount of water 

depending on the intensity and duration of the rain event, as well as soil conditions and tile drain 

construction; however, surface runoff from the field tends to be the main source of discharge 

during storms (King et al. 2015, Smith et al. 2015). The two-stage form slows water flowing 

through the ditch during high flow conditions, increasing the time for uptake by vegetation and 
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periphyton, adsorption to sediment/soil, and sediment particle deposition. Intense flows typical in 

flashy traditional ditches can scour vegetation, algae, and sediment/soil reducing both the 

stability of the ditch and the ability to retain P and sediment. 

The Z two-stage reach functioned much like this conceptual model. Sediment was 

deposited and reduced turbidity. The presence of algae and thick vegetation growth allowed for 

uptake of nutrients within the reach. However, these interactions were not enough to 

significantly reduce the TP or SRP moving through baseflow and stormflow water. Likely this is 

due to the reach length and the residence time within the reach. Collins et al. (2016) found that 

residence time had to exceed 96 hours (four days) in systems with sediment with low organic 

matter to result in net retention. Even extreme high flow events in the Z ditch would raise and 

lower below the benches within 24 hours of a storm event. 

The T two-stage functioned differently than the conceptual model. Throughout the spring 

and during any storm event, there was significant erosion and morphological change. This was 

due to a lack of vegetation on the benches and very sandy soil. The benches lowered and the 

active channel migrated to one or the other bench for the majority of the reach. Water was still 

stored within the original channel as well and this created wet conditions across much of the 

surface area of the ditch (except during late summer when water levels were significantly lower). 

The surface area of soil that water flowed over was much larger by the end of the sampling 

season. While some portions of the benches remained as benches, other portions experienced 

wide and shallow sheetflow even at baseflow conditions. Large mats of algae grew in the 

original channel and on the wetted channel taking up P along with the channel edge vegetation. 

While there was enough erosion to elevate the turbidity levels, I speculate that the temporary 

storage of P within algae as well as increased adsorption to the soil, due to larger surface area, 
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significantly reduced the TP and SRP in baseflow. While the residence time within the ditch may 

not have surpassed the 96-hour mark as described above (Collins et al. 2016), more of the flow 

in T had actual contact with the soil allowing for transfer of P compared to the Z ditch. 

 At the beginning of this project, it was determined that there were no open tile drains 

actively draining from the fields into either two-stage reach. After vegetation died back in 

November 2016, it became apparent that there was an old tile drain pipe that had become 

exposed in the Z two-stage. This old drain was running under the bench and into the channel. It 

was not possible to determine whether or not the pipe was actively flowing and draining water 

from the field.  This drain was not taken into consideration during construction because the 

producer was unaware of its presence. While exact acreage of tile drained land within the 

Macatawa watershed is unknown, Clement (2016) estimates approximately 25-35% of the fields 

are tiled drained whether the current producer is aware or not. Before construction of a two-stage 

system, it is important to understand what other management practices are in place in order to 

optimize the effectiveness of the management. 

Conclusions 

Overall, P can be retained in periphyton, vegetation, and soils, and two-stage ditches are 

capable of retaining P under certain conditions. P will be bound in vegetation and periphyton 

temporarily but can be released as organisms die seasonally and decompose. Plant matter and 

algal cells also can be scoured during intense flows and be transported downstream along with 

their organically bound nutrients. Unfortunately, factors potentially impacting the effectiveness 

of this temporary sink such as shading by channel vegetation and algal mats were not measured 

quantitatively for this project. While vegetation and periphyton may be able to utilize nutrients 
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during high load times during the growth season, future research should continue to focus on 

combined sediment and soil as the largest sink of P within these systems.  

Legacy P is P that is bound within ecological systems and is retained for longer periods 

of time compared to traditional cycling (Sharpley et al. 2014), such as with Ca-bound P within 

sediment and soil. Legacy P can make it difficult to assess the effectiveness of management 

practices (Marsden 1989). For example, P adsorbed to sediment and soil may stay bound at low 

EPCs. If water P concentrations are lowered past the EPC point through management and 

restoration, P can be released back into the water column. When monitoring management 

practices and remediation, it is important to understand that factors such as legacy P may 

decrease or postpone the visible effects of restoration at a large scale. In this project, the adjacent 

two-stage and reference reaches sampled at the downstream ends allowed for estimation of the 

two-stage impact only on a short time scale and a short distance scale. While the soil within the 

two-stage was more likely to retain P than the soil within the reference, this comparison was 

conducted at current SRP concentrations. Reduction in P export from fields could increase the 

release of legacy P held in the sediment and soil and postpone the appearance of positive 

remediation. 

Two-stage ditches should continue to be considered as a best management practice option 

within the Macatawa watershed. Lake Macatawa suffers from both P and sediment input from 

the watershed. Two-stage ditches, once stable with vegetation growing on the benches may be 

able to significantly reduce the turbidity in drainage water. These ditches can retain the P stored 

within their sediment and soil and also have the potential to reduce P export. Hence, we 

recommend longitudinal studies to assess the efficacy of these BMPs over time, as well as 
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include a more detailed look at how the traditional reaches are impacting TP, SRP, and turbidity 

in comparison. 

It is imperative that season, position and length of reach, cost, and stability of soil should 

all be considered before constructing a two-stage reach. The constructed two-stage should be 

stable enough to reduce the initial erosion from the system after construction. Allowing for 

vegetation growth time on the benches before seasonal rainfall or snowmelt can significantly 

impact the stability of the construction.  It is hypothesized that as two-stage reaches mature, the 

greater the impact of P retention the ditch will have. Managers should consider length and 

position of proposed systems compared to the cost of construction. Two-stage ditches cannot 

reduce the P export from the Macatawa watershed alone. Other operational and structural BMPs 

can complement two-stage ditches to reduce P export within the Macatawa watershed. 
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Figures 

Figure 4.1 A map of important results for the Z and T ditches with the point of view from 

reference to two-stage. Note that slope of lines is not to scale and do not signify increase or 

decrease. Decrease in algal biomass in Z not a trend but not quite significant (p= 0.06). “Veg.” = 

Vegetation, “Temp.” = Temperature. 

Figure 4.2 A conceptual model for movement of water, soil, sediment, and P within agricultural 

drainage ditches. Solid arrows = movement of water (thick arrows represent the major water 

movement from land into the ditch); Dashed arrows = movement of sediment and associated 

bound P; Arrow circles = cycling of P through uptake into autotrophs and then release through 

cell death and decomposition; Brackets = absorption of P to sediment and soil and potential 

release back into the water column. Stormflow conditions include any high flow event such as 

thunderstorms or snowmelt. 
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