
Grand Valley State University Grand Valley State University 

ScholarWorks@GVSU ScholarWorks@GVSU 

Masters Theses Graduate Research and Creative Practice 

12-2017 

Query Expansion Techniques for Enterprise Search Query Expansion Techniques for Enterprise Search 

Eric M. Domke 
Grand Valley State University 

Follow this and additional works at: https://scholarworks.gvsu.edu/theses 

 Part of the Computer Engineering Commons 

ScholarWorks Citation ScholarWorks Citation 
Domke, Eric M., "Query Expansion Techniques for Enterprise Search" (2017). Masters Theses. 873. 
https://scholarworks.gvsu.edu/theses/873 

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at 
ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of 
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu. 

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/theses
https://scholarworks.gvsu.edu/grcp
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.gvsu.edu%2Ftheses%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/873?utm_source=scholarworks.gvsu.edu%2Ftheses%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu


Query Expansion Techniques for Enterprise Search 

 

Eric M. Domke 

 

 

 

 

 

 

 

 

A Thesis Submitted to the Graduate Faculty of 

 

GRAND VALLEY STATE UNIVERSITY 

 

In 

 

Partial Fulfillment of the Requirements 

 

For the Degree of 

 

Master of Science in Computer Information Systems 

 

 

 

 

Padnos College of Engineering and Computing 

 

 

 

 

 

 

 

 

December 2017 



Abstract

Although web search remains an active research area, interest in enterprise search has waned.

This is despite the fact that the market for enterprise search applications is expected to triple

within the next six years, and that knowledge workers spend an average of 1.6 to 2.5 hours each

day searching for information. To improve search relevancy, and hence reduce this time, an enterprise-

focused application must be able to handle the unique queries and constraints of the enterprise

environment. The goal of this thesis research was to develop, implement, and study query expan-

sion techniques that are most effective at improving relevancy in enterprise search.

The case-study instrument used in this investigation was a custom Apache Solr-based search

application deployed at a local medium-sized manufacturing company. It was hypothesized that

techniques specifically tailored to the enterprise search environment would prove most effective.

Query expansion techniques leveraging entity recognition, alphanumeric term identification, in-

tent classification, collection enrichment, and word vectors were implemented and studied us-

ing real enterprise data. They were evaluated against a test set of queries developed using rele-

vance survey results from multiple users, using standard relevancy metrics such as normalized

discounted cumulative gain (nDCG). Comprehensive analysis revealed that the current imple-

mentation of the collection enrichment and word vector query expansion modules did not demon-

strate meaningful improvements over the baseline methods. However, the entity recognition, al-

phanumeric term identification, and query intent classification modules produced meaningful and

statistically significant improvements in relevancy, allowing us to accept the hypothesis.

3



Contents

Thesis Approval Form 2

Contents 4

List of Tables 6

List of Figures 7

1 Introduction 8
1.1 Challenges in Enterprise Search . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Characterizing Enterprise Search . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 14
2.1 Ranking Algorithms: tf-idf and BM25 . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Naïve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Query Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Thesauri, Ontologies, and Word Vectors . . . . . . . . . . . . . . . . . . . . 18
2.5 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Entity Recognition in Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Query Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Collection Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Methodology 24
3.1 Problem Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Alphanumeric Searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Intent Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Collection Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Word Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Architecture and Experimental Design . . . . . . . . . . . . . . . . . . . . . 28

4 Implementation 31
4.1 Solr Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Federated Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Spelling and Thesaurus Module . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Alphanumeric Identification Module . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Intent Classification Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Collection Enrichment Module . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8 Word Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4



5 Results 40
5.1 Relevancy Metric Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Alphanumeric Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Intent Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Collection Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Word Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7 Overall Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusion 50

References 51

ScholarWorks Submission Agreement 56

5



List of Tables
1 Query log statistics for various search engines. Percentages represent esti-

mates of distinct queries belonging to that category. . . . . . . . . . . . . . . 11
2 Sample alphanumeric codes and their variants. . . . . . . . . . . . . . . . . . 25
3 Microsoft concept graph labels for “transfer”. . . . . . . . . . . . . . . . . . . 44
4 Word vector expansion suggestions for “tuition” and “mike”. Last names

have been omitted for privacy. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6



List of Figures
1 Categorization of 340,000 total enterprise searches for “Internal L” between

May and October 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Categorization of 61,881 distinct enterprise searches for “Internal L” be-

tween May and October 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Architectural diagram of the query expansion pipeline. . . . . . . . . . . . . 30
4 Screenshot of relevance survey . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Average nDCG10 difference between using the alphanumeric identification

module and only using spell checking for different search categories. All non-
alphanumeric searches are categorized as “alphabetic”. . . . . . . . . . . . . . 43

6 Traces of nDCG10 scores for each alphanumeric query after the addition of
each query expansion module. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Average nDCG10 difference between using the entity recognition module and
only using spell checking for different search categories. . . . . . . . . . . . . 45

8 Traces of nDCG10 scores for query impacted by the intent classification
module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 Average nDCG10 difference between using the word vector module and only
using spell checking for different search categories. . . . . . . . . . . . . . . . 48

10 nDCG10 histogram showing nDCG10 relevancy distribution for only the
spelling module (left) vs. all expansion modules (right) . . . . . . . . . . . . 48

11 Cumulative nDCG10 impact of various query expansion modules . . . . . . . 49

7



1 Introduction

Companies generate and maintain copious amounts of digital data. This data takes a mul-

titude of forms including personnel records, purchase orders, design documentation, sales

reports, marketing materials, employee handbooks, and so much more. Some of this data

is structured and housed in one or more databases, while even more data is kept in un-

structured files such as Word, Excel, and PowerPoint documents. With each passing year,

it gets easier and cheaper to generate even more data. This makes it more difficult for

the average employee to find the information he/she needs to perform his/her job. Over

the years, it has been estimated that the average worker spends 1.6 to 2.5 hours each day

searching for the information they need [20]. Companies that make the right information

readily available can react to business opportunities, on-board staff, and acquire other

companies more quickly than their competitors.

When companies need to aggregate and interpret numeric data, they reach for analyt-

ics and business intelligence platforms that warehouse structured data in a format that

facilitates ad-hoc analysis. However, employees often need to browse through textual in-

formation, find a specific document, or get an answer to a specific question. To solve these

problems, enterprise search applications are required. While individual business systems of-

ten contain search components for finding information within that system, this thesis will

focus on enterprise search applications that help employees find information stored in any

of the multiple databases and document repositories found throughout an enterprise.

1.1 Challenges in Enterprise Search

Currently, interest in the field of enterprise search is waning. One of the primary informa-

tion retrieval conferences, the Text REtrieval Conference (TREC), has not hosted a track

devoted to enterprise search since 2008 [15]. Google is sunsetting support for its Google

Search Appliance, an enterprise search offering meant to be installed on-premise [13]. In

8



addition, long-time enterprise search blogger Stephen Arnold is planning to wind down his

coverage of the industry in light of perceived stagnation in the field [2]. The lack of inter-

est in enterprise search despite continuing research in the web search domain could be due

to persistent challenges in enterprise search including:

• Permissions: While web search engines (such as Google and Bing) index publicly-

accessible information, many critical enterprise documents are only accessible to a

subset of employees. In fact, every document found in an enterprise has access con-

trols which define who can view the document. This means that enterprise search

applications must restrict results based on what a given user has access to view. Ide-

ally, a search application must also restrict information returned as categories, result

counts, or other metrics, so the user cannot infer information about results he/she

cannot access.

• Poor data quality: Due to the economic incentives of getting your web site to the top

of Google’s search results, an entire industry has developed around generating high-

quality, easy-to-index content on the public web. However, those same incentives

rarely exist in the enterprise. Users tend to focus on performing their jobs today

without much concern regarding how other employees will be able to find and con-

sume their documents tomorrow. Even when users strive to generate quality content,

there is often a lack of training, standards, and policies put in place by leadership to

drive consistency.

• Documents are not linked: Much of Google’s famous PageRank algorithm is driven

by analyzing the number and quality of links between documents. However, links

rarely exist in enterprise documents, and the quality of a particular document is

much harder to assess.

Despite waning interest, the market for enterprise search applications is growing. In

2012, the market was valued at $1.5 billion dollars while Frost & Sullivan project that it

9



will be worth $4.7 billion dollars by 2019 [10]. Research in the field is still needed and rele-

vant to support this growing demand.

1.2 Characterizing Enterprise Search

In order to better characterize the enterprise search problem, query logs were obtained for

two existing enterprise search applications at a local medium-sized manufacturing com-

pany. One set of data came from a content management system, while the other came

from a custom enterprise search solution. This data was compared against query logs from

publicly-accessible web search engines and domain-specific databases. The results of the

analysis are presented in Table 1. The data shows that different types of queries are more

prominent in some search engines than others. For example, URL searches1 are more com-

mon on publicly-facing search applications than those inside the enterprise. The medi-

cal search engine PubMed had a higher percentage of advanced searches2. Alphanumeric

searches3 (e.g. for part numbers, employee IDs, telephone numbers, etc.) were seen more

frequently in enterprise search logs than the logs of other search engines.

A deeper analysis of the query logs for the “Internal L” search engine is shown in Fig-

ures 1 and 2. These figures indicate that nearly 90% of the total searches (covering 73%

of the distinct searches) for this custom enterprise search application were for some form

of person data. Of these person searches measured by volume, most consisted of a full

name or last name. However, the distinct search data showed a large percentage of person

searches which were either ambiguous or otherwise uncategorized. Alphanumeric searches

also played a large role constituting 26% of the distinct searches and 13% of the total

search volume. Many of these alphanumeric searches were looking up an employee by ID
1URL searches were identified in the query logs by looking for queries that started with “www” or

ended with a common URL suffix (e.g. “com”, “net”, “edu”, etc.). As with the other methods of query
type identification, it is very possible that this simplistic approach labeled some queries as being URL
queries which weren’t and vice versa.

2Advanced queries are those which contain field constraints – e.g. that the title should contain “pre-
hospital” while the publication date must be between 2005/09/07 and 2005/10/05

3In this analysis, any query where 15% or more of the characters were digits was labeled as alphanu-
meric

10



Table 1: Query log statistics for various search engines. Percentages represent estimates
of distinct queries belonging to that category.

Data Set Year Distinct
Queries

Avg. Word
Count

Alphanu-
meric URL Advanced

Internal La 2017 61,882 1.5 26% 0% 0%
Internal Ta 2016 1,117 1.8 31% 0% 0%
AOLb 2006 373,903 2.9 17%
PubMedc 2005 724,578 3.5 17% 0.03% 11%

a Proprietary data sets from the manufacturer
b Obtained from http://octopus.inf.utfsm.cl/~juan/datasets/
c Obtained from ftp://ftp.ncbi.nlm.nih.gov/pub/wilbur/DAYSLOG as documented by
Mosa and Yoo, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552776/

or trying to find a part number.

What is common between all search engines is that the searches performed are consis-

tently quite short. Across the different search engines, a given query only contained 2 to

3 words on average with the two enterprise search applications showing the lowest average

word counts. This data is consistent with analyses performed on other search applications.

Wang and Wang noted that in June of 2016, 1 and 2 word queries accounted for 63% of

the search traffic on Bing and 35% of the distinct searches [46]. With so few words, search

engines often struggle identifying and correctly ranking relevant documents. As a result,

many search engines will enrich queries with additional words, constraints, and boosts in

order to improve relevancy in a process known as query expansion.

1.3 Research Question

In the face of poor data quality, unlinked documents, and high user expectations, improv-

ing the performance of enterprise search applications is crucial to their success. Since query

expansion is a fundamental technique for improving the performance of search engines, the

goal of this thesis is to develop, implement, and study query expansion methods, determin-

ing which are most effective at improving relevancy in enterprise search. For the purposes

of this thesis, query expansion will be interpreted broadly to include the addition of any

11

http://octopus.inf.utfsm.cl/~juan/datasets/
ftp://ftp.ncbi.nlm.nih.gov/pub/wilbur/DAYSLOG
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552776/


0.0%

100.0%

100.0%

Last Name, 24.1%

A
ll

 
S

e
a

rc
h

e
s

P
e

rs
o

n
 

S
e

a
rc

h
e

s

Other, 14.0%

First Name, 8.4%

Employee ID, 7.0%

Person, 89.6%

Part, 4.9%

Other, 2.6%

Corporate, 1.0%

Full Name, 44.2%

Figure 1: Categorization of 340,000 total enterprise searches for “Internal L” between
May and October 2017

0.0% 100.0%

Person, 72.6%

Other, 39.2%
Full Name, 30.5%
Employee ID, 10.1%

Last Name, 9.3%
First Name, 3.9%

First, Partial Last, 3.0%
Phone Number, 1.6%

Part, 11.8%

Other, 9.4%

Corporate, 2.1%

Entity, 1.9%

Location, 1.2%

D
is

ti
n

ct
S

e
a

rc
h

e
s

D
is

ti
n

ct
P

e
rs

o
n

S
e

a
rc

h
e

s

100.0%

Figure 2: Categorization of 61,881 distinct enterprise searches for “Internal L” between
May and October 2017

12



word(s), conditions, or operators to the user’s query with the goal of improving relevancy.

These additions might expand, restrict, or merely reorder the result set. It is hypothesized

that because enterprise search queries are fundamentally different than the queries sub-

mitted to other search applications, query expansion techniques tailored for the enterprise

are most effective at improving relevancy over baseline methods. In order to study this

hypothesis, a custom enterprise search application deployed at a medium-sized manufactur-

ing company will be studied. This application was built using Apache Solr4 version 6.5.0.

4http://lucene.apache.org/solr/

13

http://lucene.apache.org/solr/


2 Background

To understand the problem of query expansion, it is important to understand how search

engines fundamentally operate. At the core of each enterprise search application is a NoSQL

database. This database contains collections of largely de-normalized documents, each con-

taining multiple fields. Due to the size and nature of these databases, documents within

a collection cannot be queried by any arbitrary field. Rather, documents can only be re-

trieved using pre-built indices. These “inverted” indices each contain a dictionary of terms

with each term pointing to a list of documents containing that term in a particular field.

With some metadata fields, the terms in the index represent the entire contents of that

field after only minimal processing (e.g. converting the value to lower case). For full-text

fields, the terms in the index are individual words contained within the field. These “words”

are often stemmed before indexing so that similar word forms (e.g. quick and quickly) are

stored as a single term within the index. To satisfy a user’s query, the search application

first uses the indices to identify the documents which satisfy the Boolean constraints of

the query (e.g. field1 should contain x AND field2 must not contain y). However, once

identified, the applicable documents must be ranked so that the user is presented with the

most relevant documents first.

2.1 Ranking Algorithms: tf-idf and BM25

One way to approach the ranking problem is to model documents and queries as vectors.

Such vector space models utilize V -dimensional vectors where V is the number of words in

the vocabulary of the document collection. At each position within the vector, a weight

is assigned indicating how much the document or query has to do with that particular

word. In the simplest model, term frequencies (tf ) are used. However, this overly-simple

model assumes that all words are equally important when describing a particular docu-

ment or query. In reality, common words (e.g. why) which occur in many documents are

14



much less important than topical words (e.g. engineering) which only occur in a handful

of documents. As a result, the term frequency values are often scaled by inverse document

frequency (idf ) values for each word. Once the vectors are constructed, the similarity be-

tween two documents or between a document and a query can be computed by calculating

the dot product between the vectors. Since computing an exact dot product can be compu-

tationally expensive, a practical formula employed by Apache Lucene (the database at the

core of Apache Solr) can be approximated as follows

score(q, d) ∝
∑
t∈q

(tf(t, d) · idf(t) · lengthNorm(t, d)) (1)

which gives the score of document d relative to a query q consisting of terms t [43]. It is

observed that a document with twice the number of occurrences of a given word is gener-

ally not twice as relevant, so Lucene computes the tf score as

tf(t, d) =
√

frequency (2)

Similarly, inverse document scores do not scale linearly, and one must account for the case

where a term does not occur in any documents. Therefore, the idf score becomes

idf(t, d) = 1 + log
(
docCount + 1
docFreq + 1

)
(3)

Finally, the lengthNorm is used so that short documents have scores comparable to long

documents.

In addition to using vector models, researchers have also used probability theory to de-

velop ranking algorithms. That is, they have worked to develop formulas which calculate

the probability that a particular document is relevant for a given query. One of the most

successful such formulas to-date (as documented in experiments by Spärck Jones et al. [41]

and others) is the BM25 formula introduced by Robertson, et al. [35]. It derives from the

15



td-idf formula according to the scheme

score(q, d) =
∑
t∈q

©«idf(t) tf(t, d)(k + 1)
tf(t, d) + k

(
1 − b + b |d |

avgdl

) ª®®¬ (4)

where idf is the inverse document frequency of the query term, tf is the frequency of the

term within a given document, |d | is the length of the document, avgdl is the average doc-

ument length within the collection, and k and b are constants generally set to 1.2 and 0.75

respectively. Because of its success, BM25 has become the default ranking formula used by

Apache Lucene. Its full implementation is described by Pérez-Iglesias [32].

2.2 Naïve Bayes

The document ranking task shares similarities with the document classification task which

aims to identify the most likely classification for a given document. The most common

machine learning technique used for classification is Naïve Bayes. Naïve Bayes classifiers

are built using a probability axiom of the same name which states that the probability of a

class, c, given evidence (such as a document or query), d, is given by

p(c |d) = p(d |c)p(c)
p(d) (5)

Assuming a simple “bag of words” model where documents consist of words with indepen-

dent probabilities, this equation becomes

p(c |d) = dc

docCount

∏
t∈d

tf(t, c)
Vc

(6)

where dc is the number of documents in class c, docCount is the total number of docu-

ments, tf(t, c) is the number of times term t occurs in class c, and Vc is the total number

of terms in class c. This formulation shares the notion of term frequency with the BM25

ranking algorithm in Equation 4. Such similarities are not coincidental as Manning notes

16



that the binary independence model (a predecessor to BM25) is equivalent to a multivari-

ate Bernoulli Naïve Bayes model [28]. In addition, while the traditional formulation of

Naïve Bayes does not consider factors such as document length normalization or inverse

document frequency, which are included in BM25, Rennie et al. has found that including

these factors into the Naïve Bayes model does improve its performance [34]. Therefore,

there is reason to believe that Naïve Bayes and BM25 models can be used interchangeably

in certain circumstances.

2.3 Query Expansion

Query expansion is an old research topic with the earliest papers dating as far back as

the 1960s. The primary goal of query expansion is to increase the percentage of relevant

documents which are returned by the query (i.e. increase recall). Due to its long history,

query expansion has been discussed in depth by many authors including Manning et al.

[28], Soni and Singh [40], and Ooi et al. [29]. While many variations exist, most query ex-

pansion techniques follow one of two approaches – relevance feedback and knowledge struc-

tures (thesauri and ontologies).

The relevance feedback technique was first popularized by Rocchi in 1971 [36]. It in-

volves using information about known relevant documents to adjust the query vector so

that it is more similar to the vectors of known relevant documents than those of known

non-relevant documents. (Alternatively, Manning notes that a probabilistic formulation

using Naïve Bayes could also be used [28].) This approach assumes that the relevant doc-

uments tightly cluster around a single topic which is distinct from the non-relevant docu-

ments. To identify the relevant documents, either the user is prompted to give relevancy

judgments interactively (explicit feedback), documents frequently selected in the search re-

sults are assumed to be relevant (implicit feedback), or the top-k results are assumed to be

relevant (pseudo feedback). Because users rarely want to be burdened with providing ad-

ditional information, one of the latter two approaches is normally used. Much research has

17



taken place regarding how to improve these techniques. Hahm has explored using implicit

feedback to develop an ontology-based user profile for aiding query expansion and docu-

ment retrieval [18]. With regards to pseudo relevance feedback, Singh has investigated us-

ing a support vector machine (SVM) classifier to improve the top-k results [38], Song has

examined the usage of key phrases as opposed to isolated terms [39], and Ye investigated

new quality-level metrics for identifying the most useful documents [49].

2.4 Thesauri, Ontologies, and Word Vectors

While relevance feedback identifies related terms after the query has been executed, knowl-

edge structures allow expansion before query execution. Thesauri are knowledge struc-

tures which encode flat word association rules (e.g. TV is a replacement for television

or boss is synonymous with supervisor). These structures can either be built manually

through research into a particular domain, obtained from an external source, or generated

through automated techniques where they are learned from a corpus or search logs. One

approach to automatic thesaurus generation described by Manning et al. involves using a

term-document matrix to determine the similarity score between two terms [28]. The di-

mensionality of this matrix can be reduced via latent semantic analysis techniques. This

approach is used by Stanford’s GloVe framework5. Another approach involves learning a

vector representation for words in a corpus using a neural network trained on the words

found within k words of the target word. This approach is used in several programs such

as Google’s word2vec6 and Facebook’s fastText7. Regardless of the approach, Manning et

al. found that automatically-generated thesauri tend to have issues with the quality of as-

sociations leading to high false positive and false negative associations. Just the same, Cui

et al. found success identifying synonyms using term co-occurrence in query logs for gen-

eral web searches [12]. On the narrower domain of U.S. patent searches, Tannenbaum and

5https://nlp.stanford.edu/projects/glove/
6https://code.google.com/archive/p/word2vec/
7https://github.com/facebookresearch/fastText

18

https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://github.com/facebookresearch/fastText


Rauber also achieved success mining term associations from query logs [42].

Relative to thesauri, ontologies describe richer, graphical structures which relate broader

terms with narrower ones. Just like thesauri, ontologies can be built manually by domain

experts, extracted from query logs, or obtained from an external source, such as WordNet8.

Because WordNet is a freely available general ontology of the English language, it is of-

ten studied by researches. Both Gong et al. [16] and Audeh [3] have been able to use it

successfully in their query expansion research. However, because WordNet often contains

multiple (sometimes contradictory) senses of the same word, using it indiscriminately can

hurt performance as Gong noted. Ontologies can be used for more than just suggesting

additional query terms. In particular, Andreou used the disambiguation capabilities of an

ontology to re-rank expansion terms instead of suggesting new terms [1].

2.5 Neural Networks

Artificial neural networks (like the ones used to learn word vectors) form a class of ma-

chine learning algorithms based on a simplified model of the human nervous system. In

particular, a network is designed consisting of multiple layers of “neurons” with at least

one input layer, a hidden layer, and an output layer. Each neuron attempts to learn the

parameters of an activation function for determining whether to “trigger” connected neu-

rons. Prior to training, each neuron is initialized with a random weight for its activation

function. During training, a numeric vector representing the features of each training ex-

ample is presented to the input layer, and the outputs are computed based on application

of the activation functions. The output vector generally represents the predicted classifi-

cation of the input with a single neuron responsible for reporting the likelihood of each

class. The difference between the predicted and actual output vectors is then back propa-

gated through the network to adjust the weights in favor of producing the correct output.

This process is repeated iteratively so long as the error in the network (the overall differ-

8https://wordnet.princeton.edu/

19

https://wordnet.princeton.edu/


ence between predicted and actual outputs) is above a defined threshold and continues to

decrease. At some point (e.g. based on the reported error or the performance of the net-

work on held out validation data), training is stopped and the overall performance of the

network is evaluated.

2.6 Entity Recognition in Queries

The traditional query expansion techniques outlined in Section 2.3 aim to identify related

terms without requiring an understanding of what the terms represent. Many queries con-

tain terms which represent entities. For example, harry potter in the query harry potter

walkthrough represents a “game” while mountain view in hotel in mountain view with pool

represents a “location”. Correctly identifying these entities provides additional avenues for

query expansion. In the enterprise search domain, Liu et al. researched using conditional

random fields (CRF) to extract entities from unstructured data, combining evidence from

structured and un-structured sources to build a graph model of entities and their relation-

ships. From this model, a ranked list of entities related to those identified in the query

were suggested as expansion terms [27]. In the web search domain, Brandão achieved suc-

cess retrieving Wikipedia articles for entities found within a query and using terms from

the info boxes as query expansion terms [6].

To exploit these expansion techniques, one must first identify the entities present in the

query. This problem can be approached in a couple of different ways. If the “entities” are

actually field values from the relevant documents, then the problem can be considered one

of mapping values to the correct fields. For this problem, Kim et al. used a Naïve Bayes

classifier (discussed in Section 2.2) to identify the most likely fields for movie searches

across an XML version of the IMDB database [22]. One could also see this as a problem

of trying to recognize named entities (i.e. people, locations, organizations, etc.) within the

query. In this task, search indices using document ranking algorithms (shown to be similar

to Naïve Bayes in Section 2.2) have proven useful. In a later study, Kim and Croft pro-

20



posed a probabilistic model for identifying relevant fields by first identifying the k most

relevant documents using standard search relevancy models and then identifying the fields

within those documents which contained specific search terms [21]. Similarly, both La-

clavík et al. [24] and Cornolti et al. [9] leveraged search indexes in the named-entity rec-

ognizers they submitted for the 2014 ERD challenge. Rüd et al. took a slightly different

approach, more analogous to pseudo-relevance feedback. In particular, they fed the snip-

pets returned with the query results into a traditional named-entity recognizer in order to

properly identify entities within a query [33].

While simple techniques such as Naïve Bayes and BM25 have proven successful, more

complex machine-learning techniques have also been used to tackle this problem. Guo et

al. used a weakly supervised Latent Dirichlet Allocation (LDA) method to mine entities

and their associated classes from query log data [17]. At Expedia, Cowan et al. used a con-

ditional random field sequence model to identify locations, names, and amenities in queries

for the travel domain [11].

Each of the previous entity recognition techniques rely on the relatively limited vocabu-

lary size for languages such as English. For alphanumeric searches (e.g. for part numbers,

employee IDs, telephone numbers, dates, etc.), probabilistic models are less effective as the

larger number of possible tokens makes it more likely that the search term has not been

seen before. For this situation, some form of pattern matching is often used. Expedia uses

regular expressions and heuristic rules for identifying dates, times, and other classes of

travel-related concepts [11]. Additionally, both Chang and Manning [7] and Li et al. [26]

have reported success using regular expression in the information extraction task. Regular

expressions (in addition to simple trigger words) are also used to trigger instant answers in

the Duck Duck Go search engine [44].

21



2.7 Query Classification

In addition to assigning meaning to query segments, it can also be useful to assign mean-

ing to a query as a whole. This process is known as query classification and generally in-

volves assigning a query to one of a finite number of classifications representing the topic

or intent of the query. For example, Wan at Target noticed that queries such as 7 ring

check binder were returning pieces of jewelry instead of just office supplies [45]. Target

addressed this problem by training a Naïve Bayes classifier (such as the one described in

Section 2.2) using manually labeled queries from the query log in order to map queries to

Target’s two-level product classification scheme. Similarly, Wayfair also improved search

relevancy using a Naïve Bayes classifier [8]. As always, other approaches have been consid-

ered. Le and Bernardi achieved success training a SVM classifier using clickstream data

[25]. Kouylekov et al. leveraged vector space ranking models (similar to those discussed in

Section 2.1) to compare the documents returned by a query to a canonical category doc-

ument derived from Wikipedia data [23]. Finally, Beitzel et al. explored using neural net-

works and selection preference strength algorithms for classification [4].

2.8 Collection Enrichment

With each of these query expansion techniques, there is a risk that the vocabulary used

in the collection does not match that of the individual searching for information. As a

result, query expansion techniques (especially ones like pseudo relevance feedback dis-

cussed in Section 2.3) might produce the wrong expansion terms and hurt performance. In

these situations, it can be useful to leverage external data sources to generate the language

model for query expansion. However, as was noted earlier with WordNet, external content

sources can also hurt performance when they use a word in a different context or with a

different meaning than is used within the document collection. Peng et al. researched this

problem in two different papers and concluded that collection enrichment can be successful

22



in the enterprise domain when targeted at specific queries that would most benefit from it

[30, 31]. In particular, they only used external collections (such as Wikipedia) when stan-

dard query performance predictors indicated that these collections would improve perfor-

mance. Similarly, He and Ounis explored selectively switching between local and external

query expansion [19]. There an Average Inverse Collection Term Frequency metric was

used to determine which collection was more useful for expansion or whether expansion

would improve performance at all.

23



3 Methodology

3.1 Problem Queries

To focus query expansion efforts, the existing query logs at the manufacturing company

were mined to identify classes of queries that should have higher relevancy to improve user

satisfaction. Several such classes were identified. They are represented by the following

queries:

• 151-99 should be recognized as a part number and alternative forms should be in-

cluded in the suggestions. (Discussed in Section 3.2)

• mike james street should be parsed as first_name = mike and location = james street.

(Discussed in Section 3.3)

• vacation request should be interpreted as a query for documents from the Human

Resources department. (Discussed in Section 3.4)

• transfer is a vague query. It likely represents a shortened form of the query transfer

request which should also target documents from the Human Resources department.

(Discussed in Section 3.5)

• summer picnic should match documents about the company picnic (Discussed in

Section 3.6)

It is worth considering each of these query forms in more depth.

3.2 Alphanumeric Searches

As noted in Section 2.6, regular expressions are commonly used in information retrieval,

particularly for identifying entities with a limited set of known patterns (e.g. dates and

24



times). At the manufacturing company being studied, there are over 60 different alphanu-

meric codes present in the various databases. A subset of these are shown in Table 2.

Uniquely identifying each code type would likely improve the relevancy of search results.

While Expedia previously maintained heuristic rules including regular expressions for 14

travel-related concepts [11], maintaining such rules for well over 60 concepts would be

cost-prohibitive for a small team at the manufacturing company. In addition, some of the

patterns are ambiguous. For example, the pattern of 000-0000 (three digits followed by a

dash and four more digits) is common to both part numbers and phone numbers. However,

some of the ambiguities can be resolved by knowing probable values for the various seg-

ments. For example, the number 999-1234 is likely to be a part number, while the number

555-1234 is likely to be a phone number.

Table 2: Sample alphanumeric codes and their variants.
Code Type Example Variants
Part Number: Company 1 999-0123-000, 999-0123, 999-123
Part Number: Company 2 99990 - 01234-0, 99990-01234-0, 99990012340
Phone Number +16105551234, (610) 555-1234, 610-555-1234, 555-1234
ECO Number E0001234, E*1234
Manufacturing Line FA001
VIN 1C3CCBCG0CN999999

Neural networks present another approach that has shown success in pattern recognition

tasks. Deep neural networks have gained significant traction in the information retrieval

field where they have been leveraged for complex analysis of linguistics and categorization

of images segments. Yin et al. even used neural networks to derive SQL queries from nat-

ural language queries [50]. Neural networks have also been used in query classification [4].

Based on the success of neural networks within related fields, a neural network was con-

structed for classifying the various alphanumeric codes present at the manufacturing com-

pany. Once a given term was correctly classified, different heuristics were used to expand

the alphanumeric code to different forms and/or to boost results of a particular type.

25



3.3 Entity Recognition

The Naïve Bayes classifier proposed by Kim et al. [22] provides an attractive approach for

identifying the probable fields searches present in each query. However, deploying it would

require developing a mechanism for storing the learned model in memory and/or on disk.

Apache Solr and Lucene already provide a fast and scalable search index which features

in-memory caching and disk storage structures. They also implement the BM25 ranking

algorithm which has been successful in the related named entity recognition task and has

been shown to be very similar to Naïve Bayes as discussed in Section 2.2. Therefore, a sec-

ondary inverted index was developed which indexes each field-value pair from the primary

index along with the frequency of that pairing. After applying a boost on the frequency

field while searching, the final ranking algorithm becomes

score(q, d) ≈ log10(freq(d)) +
∑
t∈q

idf(t, d) (7)

(Note that the length normalization and term frequency terms of the BM25 algorithm

are omitted for simplicity as the field values average only a couple of words long.) Using

Apache Solr also offered additional benefits. The built-in analysis tool chains made it easy

to implement Porter stemming, stop-word filtering, and more. In addition, the highlighting

module helped when matching results with the terms in the original query.

3.4 Intent Classification

While expanding queries using identified entities and alphanumeric code types improved

the performance of some queries, it also harmed the performance of other queries. For

the vacation request query, the entity recognition expansion module included misleading

matches, such as for the document type Supplier Request. Since query classification has

26



been successful in boosting search results that match the class of the query (as noted in

Section 2.7), the same technique can be used to boost query expansion suggestions that

match the class of the query. Therefore, a module was added to the pipeline that com-

pares the distribution of classes for the query as a whole to the distribution of classes for

each considered metadata expansion. If the distributions of the expansion and the query

as a whole were significantly different, the suggestion was discounted to keep it from harm-

ing the performance of the query.

3.5 Collection Enrichment

Ambiguous queries pose another problem for query expansion (and relevancy in general).

As was noted in Section 2.8, using external document collections as a source of query ex-

pansion terms can be useful in these scenarios. However, this approach must be used with

care as there is a significant probability that differences in the language models between

the primary collection and the external collection will result in decreased performance for

some queries. Therefore, initial research into leveraging collection enrichment focused on

how it can help with modifying expansion suggestions produced by other modules instead

of with generating suggestions. In particular, if the query classification module could not

confidently predict the classification of the query, collection enrichment was used to pro-

vide additional terms to help with the classification process. While research (such as that

performed by Peng et al. [30]) has shown that Wikipedia can be a useful external collec-

tion for enterprise search applications, the data available as part of Microsoft’s Concept

Graph9 provided a compelling option as much of the work in processing the raw data and

identifying topics had already been performed [47, 48]. Therefore, this data set was used

in the initial research.

9https://concept.research.microsoft.com

27

https://concept.research.microsoft.com


3.6 Word Vectors

While a manual thesaurus does help with some query expansion, it does not cover all possi-

ble mismatches between the vocabulary used by searchers and document authors. As a re-

sult, techniques for automatically identifying similar words to those in the query were also

considered. Shalaby et. al. [37] and Diaz et al. [14] each were able to improve relevancy

using search systems which leveraged Google’s word2vec. This library aims to learn a vec-

tor representation for each word in the corpus such that words used in similar contexts

(and presumably with similar meanings) have parallel vectors with a cosine similarity near

to one. For this investigation, the fastText library from Facebook was used to generate

word vectors. While similar to word2vec, this library differentiates itself by acting on word

substrings instead of entire words. It was chosen due to its performance (as measured by

Bojanowski et al. [5]) as well as the availability of Windows builds for the library. With

some small tweaks, these Windows builds could be modified for easy interoperability with

C# code10. Targeted collection enrichment was also considered to improve the quality of

the learned word associations.

3.7 Architecture and Experimental Design

As was mentioned in Section 1.3, the focus of the study is a custom Apache Solr-based

enterprise search application deployed at a local medium-sized manufacturing company.

This application indexes over a dozen databases and document repositories at the com-

pany. It features a custom user interface written in C# that interacts with Solr using the

REST API. The C# interface is responsible for parsing the query (supporting a subset

of Lucene’s query syntax11), checking spelling using a custom spell-checking module, and

suggesting synonyms from a manually-constructed thesaurus. After performing these func-

10https://github.com/erdomke/fastText
11https://lucene.apache.org/core/6_5_0/queryparser/org/apache/lucene/queryparser/

classic/package-summary.html#package.description

28

https://github.com/erdomke/fastText
https://lucene.apache.org/core/6_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package.description
https://lucene.apache.org/core/6_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package.description


tions, the interface attempts to expand the query further by passing the query through the

five additional expansion modules proposed in the previous sections. This architecture is

shown in Figure 3. Afterwards, the resulting query is submitted to the Solr REST API.

The results are then formatted and presented to the user.

To assess the impact of these modules on search relevancy, a set of labeled queries was

needed. In particular, a list of relevant documents had to be identified for each of the se-

lected queries. While a small test set was developed manually, additional help was needed.

Therefore, search users were enlisted to manually label relevant results for a random subset

of their searches. An example of such a survey is shown in Figure 4. This survey was pre-

sented randomly on approximately 1 out of every 15 searches. It asked the user to indicate

for each of the top 5 ranking documents if the document was useful to the user’s search

need. This data was added to the list of manually selected and labeled search queries for

use with the search engine analysis.

29



B
A

S
E
L
IN

E

S
p

e
ll

-C
h

e
ck

in
g

 
&

 T
h

e
sa

u
ru

s

A
lp

h
a

n
u

m
e

ri
c

Id
e

n
ca

o
n

E
n

ty
 

R
e

co
g

n
i

o
n

In
te

n
t

C
la

ss
i

ca
-

o
n

C
o

ll
e

c
o

n
E

n
ri

ch
-

m
e

n
t

W
o

rd
V

e
ct

o
rs

Query

Figure 3: Architectural diagram of the query expansion pipeline.

Figure 4: Screenshot of relevance survey

30



4 Implementation

4.1 Solr Configuration

The Solr index was configured with two primary full-text fields representing the title and

body (i.e. description) of each document/record. When a document was added to the Solr

index, the contents of these two fields were processed such that

• Accented characters were replaced with their root Latin characters.

• Tokens were identified by splitting the text on white space, case changes, and transi-

tions between letters and digits.

• English stop words were removed.

• Tokens were stemmed using the Porter stemmer.

A third ‘exact match’ field was used to store terms and/or codes that uniquely and pre-

cisely describe the document. Searches against the Solr index were parsed using the

edismax parser and were sent to these three fields–title, description, and exact_match.

4.2 Federated Search

To handle permissions appropriately, the search solution also federated searches to other

services. In particular, each search was sent to two different SharePoint installations in

addition to the Solr index. The advantage to this was that all the content of each Share-

Point installation did not need to be indexed regularly. In addition, the SharePoint search

already honored permissions, so permissions didn’t have to be indexed and calculated sep-

arately. The disadvantage is that it became more difficult to determine how to interleave

the results returned by the SharePoint servers with each other and the main index, es-

pecially if these search engines were poorly tuned. To help fix this, a publicly-accessible

31



subset of the data available in each SharePoint installation was indexed in the Solr index.

This way, the relevancy scores for SharePoint documents returned by the Solr index could

be compared to the scores assigned to those same documents by SharePoint, so that the

final rank of the SharePoint documents could be determined.

4.3 Spelling and Thesaurus Module

To provide spelling suggestions, a custom spell-checking module was developed leveraging

code provided by Faroo12. This module identified all the suggestions within an edit dis-

tance of two and ranked them using a probability model. This ranking model included

• the minimum probability of each edit required to transform the typed word into the

candidate correction (e.g. the probability of substituting an e for an i).

• the probability that the correct word would have a Damerau-Levenshtein edit dis-

tance of d from the typed word.

• the probability that the correct word would have a double metaphone phonetic key

of Kc given the phonetic key of the typed word Kt . In particular, if the phonetic keys

were identical, return that probability. If the phonetic keys were different, return the

probability that the correct word would have a key starting with the letter Lc given

that the typed word’s phonetic key started with the letter Lt .

The word with the highest probability was ranked first in the list of spelling sugges-

tions. The various probabilities were computed using the misspelling data compiled by

Peter Norvig13. Word splits and combinations were also considered when attempting to

identify the correct words. Beyond spelling, the module also used a manually constructed

thesaurus to add synonym suggestions. This was compiled from multiple sources including

12https://github.com/wolfgarbe/symspell
13http://norvig.com/ngrams/spell-errors.txt

32

https://github.com/wolfgarbe/symspell
http://norvig.com/ngrams/spell-errors.txt


internal acronym lists, the Defense Technical Information Center Thesaurus14, the Trans-

portation Research Thesaurus15, and more.

4.4 Alphanumeric Identification Module

To identify alphanumeric codes, a neural network was constructed. The best success was

observed using a shallow neural network with 116 input neurons, 61 hidden neurons and 61

output neurons. The first 57 input neurons represented the first 19 characters of the input.

Each character used three neurons. The first contained a value scaled between either -1.0

and -0.2 or 0.2 and 1.0 if the character was a letter or 0 otherwise. The second contained

a similarly scaled value if the character was a digit. The third contained a similarly scaled

value if the character was one of 32 common ASCII symbols. The next 57 input neurons

represented the last 19 characters of the input, again using three neurons per character.

Having each number represented both left-aligned and right-aligned was useful because

some alphanumeric codes are truncated by dropping characters at the end (e.g. part num-

bers) while other are truncated by dropping characters at the beginning (e.g. area codes

for phone numbers). Finally, the last two neurons represented the total length of the string

and the number of alphanumeric characters in the string respectively. The output neurons

were set such that the neuron representing the category of the input had a value of 1.0

while all other neurons had a value of -1.0.

Training proceeded using 19,654 training examples. After every 50 epochs of training,

the accuracy was measured on a validation set of 17,356 examples, and the state of the

neural network was saved. The saved network that had the highest accuracy on the vali-

dation set was preserved for further use. The most accurate network to-date exhibited an

accuracy of just over 85% on the validation set.

The classification of the alphanumeric codes was not used directly to expand the queries.

Rather, hard-coded rules dictated how the classification was used. Some rules were used
14http://www.dtic.mil/dtic/services/dtic_thesaurus/download.html
15http://trt.trb.org/trt_download.asp

33

http://www.dtic.mil/dtic/services/dtic_thesaurus/download.html
http://trt.trb.org/trt_download.asp


to boost documents of a given type. For example, if the code was identified as a part num-

ber, documents of type Part were given a boost. Other rules normalized the format of a

particular code before suggesting a particular field/value search. For example, a search for

+16105551234 identified as a phone number was converted to a search for

cell:610-555-1234.

4.5 Entity Recognition

Each search was sent to a separate Apache Solr index where each ‘document’ in the index

consisted of a field name, value, frequency, and cluster distribution (see Section 4.6). Solr

highlighting was used to help align the returned documents with the query. This match-

ing process started with the phrases consisting of the most words and progressing from

there. In the process, multi-word tokens were merged into phrase searches where appro-

priate. Suggestions were ranked based on their BM25 relevancy scores and the number of

documents having the particular field value.

In addition to merely suggesting metadata expansions for the query, the following spe-

cific rules were included:

• If a one or two letter term followed a word identified as a first_name, a prefix search

on the last_name field was added as a suggestion for the one/two letter term.

• The scores of secondary matches {m2 . . .mn} for a given field were suppressed to

promote diversity of suggestions instead of having multiple suggestions from the

same field. Consider the mike james street query. James street has high rele-

vancy matches for location:james street and department:james st along with

lower relevancy matches for location:main street and location:washington

street. In order to suppress the lower relevancy matches, the scores of these sec-

ondary matches are suppressed.

• Consider the following JSON documents in the index:

34



{ t i t l e : " Mike Smith " ,

type : " Person " ,

f i rst_name : " Mike " ,

l o c a t i o n : " James S t r e e t " }

{ t i t l e : " James S t r e e t " ,

type : " Bui ld ing " }

The query mike james street should produce a high score for the first document.

When it is parsed to first_name:Mike and location:James Street (as described

earlier), the relevancy is improved. However, the query james street should pro-

duce a high score for the second document. If it used the same parsing rules, it would

be parsed to location:James Street, which would also favor the first document,

thereby decreasing the relevancy of the results. To counteract this, a rule was put

in place such that when a parsed query yielded a single phrase (james street),

the field matches (location) were not used directly. Rather, the fields which were

matched (e.g. location) were used as to identify which types of documents to boost

(e.g. type:Building).

4.6 Intent Classification Module

To suppress unrelated field-mapping suggestions, a module was built that aimed to clas-

sify queries into one of several clusters. To do this, each document was assigned a cluster

when it was indexed. For documents created from database records, the cluster determi-

nation was largely based on the type of the record. For documents created from unstruc-

tured data stored in web pages and MS Office documents, the cluster determination was

based on the department which generated the data (inferred by the location where the

data was stored and other means). In addition, fields were added to the primary index for

storing word count statistics for each document. Finally, a cluster field was added to the

35



secondary field-mapping index described in Section 4.5. This field contained a delimited

list of how many documents in each cluster had the particular field value.

When executing a query, term frequency statistics were computed for each query term

relative to each cluster within the primary index. Using this data (along with the word

count data), an approximate BM25 score (from Equation 4) was computed for each clus-

ter. These scores were then normalized by computing the ratio of each score to the total

score of all clusters. By performing this query directly against the primary index, data

from the most recently indexed documents was used and another index did not need to be

built. However, having another index of meta-documents (where each document consisted

of the concatenation of all the documents in each cluster) would potentially make the com-

putation more accurate as it would allow for the use of Solr phrase boosts to help with

compound words in the query.

To determine the similarity (or distance) between a query term and a field-mapping sug-

gestion, the cluster distributions of the two were compared. Consider C to be set of clus-

ters to which query term q may belong ordered by BM25 score in descending order. As a

result, the distance between a given suggestion s and this cluster set C is given by

dist(C,s) =
5∑

i=1

BM25(ci)∑
c∈C BM25(c) −

docCount(ci, s)
docCount(s) (8)

where BM25(ci)∑
c∈C BM25(c) is the normalized BM25 score of cluster ci discussed earlier,

docCount(ci, s) is the number of documents in cluster ci containing suggestion s and

docCount(s) is the total number of documents containing suggestion s. If this distance

was greater than an empirically defined threshold, the probability of the suggestion was

significantly discounted, effectively removing the suggestion from the list.

36



4.7 Collection Enrichment Module

In some situations, the cluster assignments for a query were not obvious due to the am-

biguous nature of the query. In particular, the highest-ranking cluster might have a nor-

malized BM25 score less than 0.1. To deal with queries without an obvious cluster, the

query was expanded using concept labels derived from the Microsoft Concept Graph. An-

other Solr index was built where each document included a word or phrase, its concept la-

bel, the frequency of the word/phrase (valueFreq), the frequency of the label (labelFreq),

the frequency of the value with that label ( f req), and a score. The score was computed

using a formula similar to the Rep(e, c) Basic-level Conceptualization score introduced by

Wang et. al [47]. The score is given by

score = 2 · ln f req − ln labelFreq − ln valueFreq (9)

With this setup, the index could be queried for different values using the score field as

a boost to the traditional BM25 scoring. The different concept labels returned were then

used to expand the original cluster query in an attempt to get a more accurate cluster

representation. This new cluster representation was then used by the intent classification

module to determine which suggestions to demote.

4.8 Word Vectors

To compute the word vectors, all the indexed documents were concatenated into a single

document on disk. This document was then used to train a fastText model of the vocab-

ulary. Due to issues with special characters, many non-ASCII characters were converted

into comparable ASCII characters and many punctuation characters were replaced with

spaces. In addition, all the text was converted to lower case. Initially, this model did not

return related words that seemed sufficiently useful for some of the test queries in domains

37



such as Human Resources, Travel, and Information Technology. As a result, collection en-

richment was considered. Over various iterations, additional content was added from

• corporate policies from other institutions. These policies were obtained by searching

Google for documents using queries such as employee handbook, travel policy, transfer

request, reasonable suspicion policy, and acceptable use policy

• the Super User site16 on Stack Exchange

• select Wikipedia articles (e.g. on 401(k), stock options, etc.)

• internal query logs

In addition, it was observed that vectors should be learned for compound words as well.

For example, the concept human resources should have a very different vector represen-

tation relative to the vectors of the constituent words, human and resources. To identify

the compound words within the corpus, a list of compound words was derived from the

manual thesaurus, the labels from Microsoft’s Concept Graph, and the terms in WordNet.

The final document used for learning the fastText model included two copies of the en-

riched corpus – one where the spaces between compound words were replaced with under-

scores (e.g. human resources → human_resources) and one where compound words were

not modified. Training with this document continued for 8 epochs using substrings rang-

ing from 3 to 8 characters and a dictionary size of 35,000 buckets. Limiting the number of

buckets helped to cap the size of the model when stored on disk and in memory.

When executing a query, the fastText model was loaded into memory and queried for

the words nearest to each query word (cosine similarity nearest to 1). To account for con-

text, similar two word phrases (bigrams) were also considered. As an example, consider a

search for corporate phone directory. To find the words similar to phone, the model was

queried for all the words similar to phone, all the bigrams similar to corporate_phone and

16https://superuser.com/

38

https://superuser.com/


starting with corporate_ and all the bigrams similar to phone_directory and ending with

_directory. For each of the resulting words or phrases W, a cosine distance was computed

between the pairs (W, phone), (corporate_W, corporate_phone), and (W_directory,

phone_directory). The resulting words were then ordered by ascending variance. That is,

given query Q consisting of {q1, ..., qm} and the word expansions Ei consisting of {ei,1, ..., ei,n}

for the word qi, the variance would be given by

var(ei, j,Q) = (1 − cosineDist(−−−−−→qi−1, qi,
−−−−−−→qi−1, ei, j))2

+ (1 − cosineDist(−→qi,
−→ei, j))2

+ (1 − cosineDist(−−−−−→qi, qi+1,
−−−−−−→ei, j, qi+1))2

(10)

39



5 Results

5.1 Relevancy Metric Selection

Several metrics are available to compare the effectiveness of the different query expansion

approaches. Since an ideal search engine has both high precision (a high percentage of the

returned results are relevant) and high recall (a high percentage of the relevant results are

returned), an F score is a commonly used metric. The F score balances precision, P, and

recall, R, according to the formula

Fβ =
(1 + β2)PR
β2P + R

(11)

where β indicates the balance between precision and recall. For this analysis, an F2 score

(where β = 2) might be appropriate as it places more weight on recall over precision. How-

ever, the score treats the results as an unordered set and does not indicate if the relevant

documents are at the top of the results or the bottom. An alternative metric is the nor-

malized discounted cumulative gain, nDCG. This metric starts with the actual discounted

cumulative gain at position p computed using the formula

DCGp =

p∑
i=1

2reli − 1
log2(i + 1) (12)

where reli is the relevancy score for the result at position i. The metric then compares this

value to the ideal discounted cumulative gain which is computed using the same formula

but assuming an ideal result set consisting only of relevant results ordered descending by

relevancy. Therefore, the normalized discounted cumulative gain is given by the formula

40



nDCGp =
DCGp

IDCGp
(13)

For this investigation, the nDCG10 score was used to assess the quality of the top 10 docu-

ments returned by the search engine.

5.2 Alphanumeric Identification

To assess the impact of each module on relevance, different configurations of the search

application were tested. For each module, a test was performed where only that module

and its dependent modules (including the spell-checking and thesaurus module) were en-

abled. The resulting relevance scores across the 182 test queries (derived from manual

labeling and the explicit relevance feedback, see Section 3.7) were then compared to the

scores obtained when only the dependent modules were enabled. The first module to be

tested in this manner was the alphanumeric identification module. This module showed

an improvement in its nDCG10 relevance over the spell-checking baseline of 0.046, which

is statistically significant with over 95% confidence. A breakdown of the module’s perfor-

mance is given in Figure 5. This graph shows a box plot of the nDCG10 scores relative to

the spelling module for each query category. From this, it can be seen that the alphanu-

meric identification module helped with both person searches and part number searches,

but the module hurt relevancy for many entity searches. This effect can be seen in more

detail by examining Figure 6. This graph traces the cumulative impact of each successive

query expansion module on the nDCG10 scores for each alphanumeric query in the test set.

The blue person lines labeled ‘A’ in Figure 6 demonstrate the beneficial impact this mod-

ule had on person searches, particularly on searches for people by employee ID. The nega-

tive impact on entity searches can be seen in the green lines labeled ‘B’ in this same figure.

An example of such a search is issue 12345 where issue refers to the database record

41



of a quality issue. In most cases, the neural network correctly identified the code I:12345

as pertaining to a quality issue. However, without the prefix, the network assumed that

the number 12345 in isolation referred to an employee by ID. Therefore, the module er-

roneously boosted results for people in general and the result for employee 12345 more

specifically, thereby hurting relevance. As the graph shows, the entity recognition module

helped to compensate for this error by identifying the word issue as a type of document.

5.3 Entity Recognition

The entity recognition module improved the nDCG10 relevance scores over the spell-checking

baseline by 0.051, which is also statistically significant at 95% confidence. Box plots of the

module’s performance for each query category relative to the spell-checking module base-

line are given in Figure 7. These plots show that the module performed well with both

person and entity searches. In particular, it could correctly identify first names and last

names in person queries as well as document type names in entity queries. As a result,

relevant documents were boosted with the query expansion. However, many corporate

searches performed worse when this module was used. An example of this is the query

vacation request. In this situation, the module inappropriately identified type:"Supplier

Request" as a valid expansion candidate for the word request. Since these types of re-

quests are very different, irrelevant results were boosted in the result set.

5.4 Intent Classification

The impact of the intent classification module was measured relative to the entity recog-

nition module since it only modified the output of this module. From this, it can be seen

that the intent classification module improved search relevancy with a 0.020 increase in

the average nDCG10 score relative to the entity recognition baseline. While this is a notice-

able improvement, the module only had an impact on 5 queries. As a result, it is difficult

to assess the significance of this change. A paired t-test indicates the result was significant

42



Alp
ha
be

c
En

ty
Pa
rt

Pe
rso

n

B
e

�

e
r

R
e
le
v
a
n
ce

W
o
rs
e

R
e
le
v
a
n
ce

Spelling

Figure 5: Average nDCG10 difference between using the alphanumeric identification
module and only using spell checking for different search categories. All

non-alphanumeric searches are categorized as “alphabetic”.

Person Part Entity

Spelling Entity
Recognition

Alphanumeric

Identification

B
e

G

0

1

Addition of Expansion Modules

Figure 6: Traces of nDCG10 scores for each alphanumeric query after the addition of
each query expansion module.

43



at 90% confidence, but not at 95% confidence. Traces of the nDCG10 scores for the queries

impacted by this module are shown in Figure 8. These traces show that the module only

improved the relevancy of queries and that most of these improved queries were corporate

queries, such as the vacation request query mentioned earlier. For this query, the mod-

ule could correctly identify that the type:"Supplier Request" candidate expansion was

sufficiently different from the intent of the query and hence suppressed it.

5.5 Collection Enrichment

Qualitatively, Microsoft’s concept graph appeared useful at identifying suggestions for am-

biguous queries. This can be seen with the suggested concept labels for the query transfer

shown in Table 3. These labels appear to correctly identify the query as being related to

Human Resources. However, relevancy measurements for the collection enrichment mod-

ule (which further modified the intent classification module) showed that the module only

impacted one query in the test set, and generally had no discernible impact on relevancy

relative to the intent classification module.

Table 3: Microsoft concept graph labels for “transfer”.
Concept Label Score
personnel action 0.444
routine personnel action 0.080
record employee information 0.076
call handling button 0.075
selection decision 0.060
non sale conveyance 0.058

5.6 Word Vectors

Before testing relevancy of the word vector module, several different models were devel-

oped and tested against different search terms to determine the model with the best quali-

tative performance. The models were trained using only data from Wikipedia17, only data
17https://fasttext.cc/docs/en/pretrained-vectors.html

44

https://fasttext.cc/docs/en/pretrained-vectors.html


En
ty

Pe
rso

n
Pa
rt

De
pa
rtm

en
t

Co
rp
or
ate

B
e

�

e
r

R
e
le
v
a
n
ce

W
o
rs
e

R
e
le
v
a
n
ce

Spelling

Figure 7: Average nDCG10 difference between using the entity recognition module and
only using spell checking for different search categories.

Person Corporate

Spelling Entity
Recognition

Intent
Classification

Collection
Enrichment

Alphanumeric

Identification

Word

Vector

0

1

Addition of Expansion Modules

Figure 8: Traces of nDCG10 scores for query impacted by the intent classification
module.

45



from the document collection, data from the document collection with selective external

enrichment (e.g. select Wikipedia articles, employee handbooks from other companies,

etc.), and the enriched document collection with compound words combined into a single

token. Examples of a nearest neighbor search using these models is shown in Table 4. As

can be seen by the nearest neighbors to mike, the Wikipedia model produced words which

are not closely related (like doug) as well as words with superfluous characters. A more

useful suggestion would be the name “michael” for which “mike” is a common nickname.

This suggestion showed the closest affinity for the search word in the final model (which

utilized collection enrichment and compound word identification). While this final model

appears useful, relevancy testing showed that even with this model, the word vector mod-

ule caused the average nDCG10 relevancy to decline by 0.019 relative to the spell-checking

baseline. This decrease in relevancy occurred across all categories of searches as the box

plots in Figure 9 demonstrate. This was likely because while the word vector module did

indeed suggest related words, these words were not present in the relevant documents. For

example, given a search for john smith, the word vector module might suggest jane doe.

While Jane does indeed work with John, the employee record for “John Smith” (which is

the most relevant document) contains no mention of “Jane Doe”.

Table 4: Word vector expansion suggestions for “tuition” and “mike”. Last names have
been omitted for privacy.

Wikipedia Collection Collection+ Collection+ Compound
tuition
tuitions payment reimbursement tuition_reimbursement
tuitioned reimbursement reimbursements reimbursement
tuiti reimbursements payment reimbursements
tuition/fees payments reimburses payments
scholarships adoption enroll medical_reimbursement
mike
doug {last name} {last name} mike_{last name}
Çámike {last name} {last name} mike_{last name}
dave {last name} {last name} michael
pete {last name} michael {last name}
brando/mike {last name} {last name} michael_{last name}

46



5.7 Overall Assessment

As shown in Figure 10, the overall impact of all five modules was positive with the aver-

age nDCG10 score increasing from 0.65 to 0.77. A two-tailed paired t-test indicates that

this difference was statistically significant with at least 95% confidence given the p value of

0.000002. Overall, the query modules both increased the number of queries with perfect

relevance and decreased the number of queries which did not return any relevant docu-

ments within the first 10 results. Projecting these changes onto the distribution of query

types currently seen by the search engine (as discussed in Section 1.2) indicates a pre-

dicted change in the nDCG10 scores as seen by the user from 0.83 to 0.89.

A breakdown of these results by module is shown in Figure 11. This graph shows the

cumulative impact of enabling each of the query expansion modules successively. From

the graph, one can see that the alphanumeric identification, entity recognition, and intent

classification modules all had a measurable positive impact on relevance. However, the col-

lection enrichment module did not impact the results at all, and the word vector module

hurt relevancy.

47



En
ty

Pe
rso

n
Pa
rt

De
pa
rtm

en
t

Co
rp
or
ate

B
e

�

e
r

R
e
le
v
a
n
ce

W
o
rs
e

R
e
le
v
a
n
ce

Spelling

Figure 9: Average nDCG10 difference between using the word vector module and only
using spell checking for different search categories.

Spelling Only All Expansion Modules

nDCG@10

Average = 0.65

Average = 0.77

P
e

rf
e

ct
 R

e
le

v
a

n
ce

N
o

 r
e

le
v
a

n
t 

d
o

cu
m

e
n

ts
in

 t
o

p
 1

0
 r

e
su

lt
s

Figure 10: nDCG10 histogram showing nDCG10 relevancy distribution for only the
spelling module (left) vs. all expansion modules (right)

48



Spelling

In
te
n
t

C
la
s
s
if
ic
a
ti
o
n

C
o
ll
e
c
ti
o
n

E
n
ri
c
h
m
e
n
t

A
lp
h
a
n
u
m
e
ri
c

Id
e
n
ti
fi
c
a
ti
o
n

E
n
ti
ty

R
e
c
o
g
n
it
io
n

W
o
rd

V
e
c
to
rs

nDCG@10=0.65

Cumulative

Impact

nDCG@10=0.79

Figure 11: Cumulative nDCG10 impact of various query expansion modules

49



6 Conclusion

From the results, it can be seen that specialized query expansion modules do indeed im-

prove relevancy in enterprise search. In particular, the alphanumeric identification, en-

tity recognition, and intent classification modules all resulted in significant improvements

across the test set of queries. These modules are projected to make modest improvements

in the relevancy experienced by actual users. These improvements will prove useful as the

enterprise search engine being studied currently responds to over 2500 queries from over

120 users every day. These successes allow us to accept the hypothesis that query expan-

sion techniques targeted at enterprise queries are effective in improving relevancy.

Relevancy improvements could not be realized with the collection enrichment and word

vector modules. These modules suffered from too narrow of a focus and noise in the ex-

pansion suggestions which ended up hurting relevancy more than helping it. Despite these

failures, the models did show some initial promise and are worth further investigation. In

particular, additional research could help identify techniques for targeting these modules

and approaches toward just the queries that would benefit from them. Once properly tar-

geted, these modules could help improve overall relevancy.

By focusing this study on a particular enterprise search application, it was possible to

gain deep insights into how the search application was used and what approaches would

be most effective at improving relevancy for these uses. In addition, the useful query ex-

pansion modules have been deployed for production use, allowing users to benefit from

the study. The downside of this focus is that it is uncertain how well the techniques out-

lined here will generalize to other organizations. An important next step would be to ap-

ply these approaches in other enterprise search applications and study their impact on rele-

vancy.

50



References
[1] Agissilaos Andreou. “Ontologies and Query expansion”. PhD thesis. Univ. of Edin-

burgh, 2005. url: https://www.icsa.inf.ed.ac.uk/publications/thesis/
online/IM050335.pdf (visited on 02/22/2017).

[2] Stephen E Arnold. Beyond Search Evolution Underway. Beyond Search. Mar. 1, 2017.
url: http://arnoldit.com/wordpress/2017/03/01/beyond-search-evolution-
underway/ (visited on 03/26/2017).

[3] Bissan Audeh. “Experiments on two Query Expansion Approaches for a Proximity-
based Information Retrieval Model.” In: CORIA. 2012, pp. 407–412. url: https://
pdfs.semanticscholar.org/c2fd/b9f5eb7f730137e505de9af7e0aff122e037.pdf
(visited on 01/24/2017).

[4] Steven M. Beitzel et al. “Automatic web query classification using labeled and un-
labeled training data”. In: Proceedings of the 28th annual international ACM SI-
GIR conference on Research and development in information retrieval. ACM, 2005,
pp. 581–582. url: http://dl.acm.org/citation.cfm?id=1076138 (visited on
02/25/2017).

[5] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Information”. In:
arXiv:1607.04606 [cs] (July 15, 2016). arXiv: 1607.04606. url: http://arxiv.org/
abs/1607.04606 (visited on 08/30/2017).

[6] Wladmir Cardoso Brando. “Exploiting Entities for Query Expansion”. PhD thesis.
Belo Horizonte, Brazil: Universidade Federal de Minas Gerai, Oct. 2013. 93 pp. url:
http://www.bibliotecadigital.ufmg.br/dspace/bitstream/handle/1843/ESBF-
9GMJW2/wladmircardosobrandao.pdf?sequence=1 (visited on 01/17/2017).

[7] Angel X. Chang and Christopher D. Manning. “SUTime: A library for recognizing
and normalizing time expressions.” In: LREC. 2012, pp. 3735–3740. url: http://
www-nlp.stanford.edu/pubs/lrec2012-sutime.pdf (visited on 11/20/2016).

[8] Ben Clark. Better Lucene/Solr searches with a boost from an external naive Bayes
classifier | Wayfair Engineering. Wayfair Engineering. Oct. 23, 2012. url: http://
engineering.wayfair.com/2012/10/better-lucenesolr-searches-with-a-
boost-from-an-external-naive-bayes-classifier/ (visited on 11/16/2016).

[9] Marco Cornolti et al. “The SMAPH system for query entity recognition and disam-
biguation”. In: ERD ’14: Proceedings of the first international workshop on Entity
recognition & disambiguation. ACM Press, 2014, pp. 25–30. isbn: 978-1-4503-3023-7.
doi: 10.1145/2633211.2634348. url: http://dl.acm.org/citation.cfm?doid=
2633211.2634348 (visited on 11/08/2016).

[10] Tina Costanza. Global enterprise search market to reach US$4.68bn by 2019 - Frost
& Sullivan. Silicon Republic. Jan. 25, 2013. url: https://www.siliconrepublic.
com/enterprise/global-enterprise-search-market-to-reach-us4-68bn-by-
2019-frost-sullivan (visited on 03/26/2017).

51

https://www.icsa.inf.ed.ac.uk/publications/thesis/online/IM050335.pdf
https://www.icsa.inf.ed.ac.uk/publications/thesis/online/IM050335.pdf
http://arnoldit.com/wordpress/2017/03/01/beyond-search-evolution-underway/
http://arnoldit.com/wordpress/2017/03/01/beyond-search-evolution-underway/
https://pdfs.semanticscholar.org/c2fd/b9f5eb7f730137e505de9af7e0aff122e037.pdf
https://pdfs.semanticscholar.org/c2fd/b9f5eb7f730137e505de9af7e0aff122e037.pdf
http://dl.acm.org/citation.cfm?id=1076138
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://www.bibliotecadigital.ufmg.br/dspace/bitstream/handle/1843/ESBF-9GMJW2/wladmircardosobrandao.pdf?sequence=1
http://www.bibliotecadigital.ufmg.br/dspace/bitstream/handle/1843/ESBF-9GMJW2/wladmircardosobrandao.pdf?sequence=1
http://www-nlp.stanford.edu/pubs/lrec2012-sutime.pdf
http://www-nlp.stanford.edu/pubs/lrec2012-sutime.pdf
http://engineering.wayfair.com/2012/10/better-lucenesolr-searches-with-a-boost-from-an-external-naive-bayes-classifier/
http://engineering.wayfair.com/2012/10/better-lucenesolr-searches-with-a-boost-from-an-external-naive-bayes-classifier/
http://engineering.wayfair.com/2012/10/better-lucenesolr-searches-with-a-boost-from-an-external-naive-bayes-classifier/
https://doi.org/10.1145/2633211.2634348
http://dl.acm.org/citation.cfm?doid=2633211.2634348
http://dl.acm.org/citation.cfm?doid=2633211.2634348
https://www.siliconrepublic.com/enterprise/global-enterprise-search-market-to-reach-us4-68bn-by-2019-frost-sullivan
https://www.siliconrepublic.com/enterprise/global-enterprise-search-market-to-reach-us4-68bn-by-2019-frost-sullivan
https://www.siliconrepublic.com/enterprise/global-enterprise-search-market-to-reach-us4-68bn-by-2019-frost-sullivan


[11] Brooke Cowan et al. “Named Entity Recognition in Travel-Related Search Queries.”
In: AAAI. 2015, pp. 3935–3941. url: https://pdfs.semanticscholar.org/2da4/
0f5dda818aea7cca17affa976735c0452cb6.pdf (visited on 01/28/2017).

[12] Hang Cui et al. “Probabilistic query expansion using query logs”. In: Proceedings
of the 11th international conference on World Wide Web. ACM, 2002, pp. 325–332.
url: http://dl.acm.org/citation.cfm?id=511489 (visited on 02/14/2017).

[13] Barb Darrow. Google Search Appliance: So Long. Fortune.com. Feb. 4, 2016. url:
http://fortune.com/2016/02/04/google-ends-search-appliance/ (visited on
03/27/2017).

[14] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. “Query expansion with locally-
trained word embeddings”. In: arXiv preprint arXiv:1605.07891 (2016). url: https:
//arxiv.org/abs/1605.07891 (visited on 01/28/2017).

[15] Enterprise Track. Text REtrieval Conference (TREC). Aug. 4, 2016. url: http://
trec.nist.gov/data/enterprise.html (visited on 03/26/2017).

[16] Zhiguo Gong, Maybin Muyeba, and Jingzhi Guo. “Business information query expan-
sion through semantic network”. In: Enterprise Information Systems 4.1 (Feb. 2010),
pp. 1–22. issn: 1751-7575, 1751-7583. doi: 10.1080/17517570903502856. url: http:
//www.tandfonline.com/doi/abs/10.1080/17517570903502856 (visited on
01/28/2017).

[17] Jiafeng Guo et al. “Named entity recognition in query”. In: Proceedings of the 32nd
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 2009, pp. 267–274. url: http://dl.acm.org/citation.cfm?id=
1571989 (visited on 01/28/2017).

[18] Gyeong June Hahm et al. “A personalized query expansion approach for engineer-
ing document retrieval”. In: Advanced Engineering Informatics 28.4 (Oct. 2014),
pp. 344–359. issn: 1474-0346. doi: 10.1016/j.aei.2014.04.002. url: https:
//www.sciencedirect.com/science/article/pii/S1474034614000317 (visited on
01/28/2017).

[19] Ben He and Iadh Ounis. “Combining fields for query expansion and adaptive query
expansion”. In: Information Processing & Management 43.5 (Sept. 2007), pp. 1294–
1307. issn: 03064573. doi: 10.1016/j.ipm.2006.11.002. url: http://linkinghub.
elsevier.com/retrieve/pii/S0306457306001956 (visited on 04/15/2017).

[20] Jeanette Jones. Various Survey Statistics: Workers Spend Too Much Time Searching
for Information. Cottrill Research. Nov. 8, 2013. url: http://www.cottrillresearch.
com/various-survey-statistics-workers-spend-too-much-time-searching-
for-information/ (visited on 04/04/2017).

[21] Jin Young Kim and W. Bruce Croft. “A field relevance model for structured docu-
ment retrieval”. In: European Conference on Information Retrieval. Springer, 2012,
pp. 97–108. url: http://link.springer.com/chapter/10.1007/978-3-642-
28997-2_9 (visited on 11/08/2016).

52

https://pdfs.semanticscholar.org/2da4/0f5dda818aea7cca17affa976735c0452cb6.pdf
https://pdfs.semanticscholar.org/2da4/0f5dda818aea7cca17affa976735c0452cb6.pdf
http://dl.acm.org/citation.cfm?id=511489
http://fortune.com/2016/02/04/google-ends-search-appliance/
https://arxiv.org/abs/1605.07891
https://arxiv.org/abs/1605.07891
http://trec.nist.gov/data/enterprise.html
http://trec.nist.gov/data/enterprise.html
https://doi.org/10.1080/17517570903502856
http://www.tandfonline.com/doi/abs/10.1080/17517570903502856
http://www.tandfonline.com/doi/abs/10.1080/17517570903502856
http://dl.acm.org/citation.cfm?id=1571989
http://dl.acm.org/citation.cfm?id=1571989
https://doi.org/10.1016/j.aei.2014.04.002
https://www.sciencedirect.com/science/article/pii/S1474034614000317
https://www.sciencedirect.com/science/article/pii/S1474034614000317
https://doi.org/10.1016/j.ipm.2006.11.002
http://linkinghub.elsevier.com/retrieve/pii/S0306457306001956
http://linkinghub.elsevier.com/retrieve/pii/S0306457306001956
http://www.cottrillresearch.com/various-survey-statistics-workers-spend-too-much-time-searching-for-information/
http://www.cottrillresearch.com/various-survey-statistics-workers-spend-too-much-time-searching-for-information/
http://www.cottrillresearch.com/various-survey-statistics-workers-spend-too-much-time-searching-for-information/
http://link.springer.com/chapter/10.1007/978-3-642-28997-2_9
http://link.springer.com/chapter/10.1007/978-3-642-28997-2_9


[22] Jinyoung Kim, Xiaobing Xue, and W. Bruce Croft. “A probabilistic retrieval model
for semistructured data”. In: Advances in Information Retrieval. Springer, 2009,
pp. 228–239. url: http : / / link . springer . com / chapter / 10 . 1007 / 978 - 3 -
642-00958-7_22 (visited on 06/03/2016).

[23] Milen Kouylekov et al. “Wikipedia-based Unsupervised Query Classification.” In:
IIR. Citeseer, 2013, pp. 116–119. url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.417.2061&rep=rep1&type=pdf#page=123 (visited on
02/25/2017).

[24] Michal Laclavik et al. “A search based approach to entity recognition: magnetic and
IISAS team at ERD challenge”. In: ERD ’14: Proceedings of the first international
workshop on Entity recognition & disambiguation. ACM Press, 2014, pp. 63–68. isbn:
978-1-4503-3023-7. doi: 10.1145/2633211.2634352. url: http://dl.acm.org/
citation.cfm?doid=2633211.2634352 (visited on 11/11/2016).

[25] Dieu-Thu Le and Raffaella Bernardi. “Query classification using topic models and
support vector machine”. In: Proceedings of ACL 2012 Student Research Workshop.
Association for Computational Linguistics, 2012, pp. 19–24. url: http://dl.acm.
org/citation.cfm?id=2390335 (visited on 02/25/2017).

[26] Yunyao Li et al. “Regular expression learning for information extraction”. In: Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2008, pp. 21–30. url: http://dl.acm.
org/citation.cfm?id=1613719 (visited on 11/20/2016).

[27] Xitong Liu et al. “Exploiting entity relationship for query expansion in enterprise
search”. In: Information Retrieval 17.3 (June 2014), pp. 265–294. issn: 1386-4564,
1573-7659. doi: 10.1007/s10791-013-9237-0. url: http://link.springer.com/
10.1007/s10791-013-9237-0 (visited on 01/15/2017).

[28] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to
Information Retrieval. Cambridge University Press, 2009. isbn: 0-521-86571-9. url:
http://nlp.stanford.edu/IR-book/ (visited on 01/14/2017).

[29] Jessie Ooi et al. “A survey of query expansion, query suggestion and query refine-
ment techniques”. In: Software Engineering and Computer Systems (ICSECS), 2015
4th International Conference on. IEEE, 2015, pp. 112–117. url: http://ieeexplore.
ieee.org/abstract/document/7333094/ (visited on 01/28/2017).

[30] Jie Peng, Ben He, and Iadh Ounis. “Predicting the usefulness of collection enrich-
ment for enterprise search”. In: Conference on the Theory of Information Retrieval.
Springer, 2009, pp. 366–370. url: http://link.springer.com/chapter/10.1007/
978-3-642-04417-5_41 (visited on 01/15/2017).

[31] Jie Peng et al. “A study of selective collection enrichment for enterprise search”. In:
Proceedings of the 18th ACM conference on Information and knowledge management.
ACM, 2009, pp. 1999–2002. url: http://dl.acm.org/citation.cfm?id=1646286
(visited on 04/15/2017).

53

http://link.springer.com/chapter/10.1007/978-3-642-00958-7_22
http://link.springer.com/chapter/10.1007/978-3-642-00958-7_22
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.417.2061&rep=rep1&type=pdf#page=123
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.417.2061&rep=rep1&type=pdf#page=123
https://doi.org/10.1145/2633211.2634352
http://dl.acm.org/citation.cfm?doid=2633211.2634352
http://dl.acm.org/citation.cfm?doid=2633211.2634352
http://dl.acm.org/citation.cfm?id=2390335
http://dl.acm.org/citation.cfm?id=2390335
http://dl.acm.org/citation.cfm?id=1613719
http://dl.acm.org/citation.cfm?id=1613719
https://doi.org/10.1007/s10791-013-9237-0
http://link.springer.com/10.1007/s10791-013-9237-0
http://link.springer.com/10.1007/s10791-013-9237-0
http://nlp.stanford.edu/IR-book/
http://ieeexplore.ieee.org/abstract/document/7333094/
http://ieeexplore.ieee.org/abstract/document/7333094/
http://link.springer.com/chapter/10.1007/978-3-642-04417-5_41
http://link.springer.com/chapter/10.1007/978-3-642-04417-5_41
http://dl.acm.org/citation.cfm?id=1646286


[32] Joaqun Prez-Iglesias et al. “Integrating the probabilistic models BM25/BM25F into
Lucene”. In: CoRR abs/0911.5046 (2009). url: http://arxiv.org/abs/0911.5046
(visited on 07/14/2016).

[33] Stefan Rd et al. “Piggyback: Using search engines for robust cross-domain named
entity recognition”. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-Volume 1. Association for
Computational Linguistics, 2011, pp. 965–975. url: http://dl.acm.org/citation.
cfm?id=2002594 (visited on 01/28/2017).

[34] Jason D. Rennie et al. “Tackling the poor assumptions of naive bayes text classi-
fiers”. In: ICML. Vol. 3. Washington DC, 2003, pp. 616–623. url: http://www.aaai.
org/Papers/ICML/2003/ICML03-081.pdf (visited on 03/26/2017).

[35] Stephen E. Robertson et al. “Okapi at Trec-3”. In: Text REtrieval Conference. Gaithers-
burg, USA, Nov. 1994. url: http://trec.nist.gov/pubs/trec3/papers/city.ps.
gz (visited on 03/30/2017).

[36] J Rocchio. “Relevance feedback in information retrieval”. In: In The SMART re-
trieval system (1971), pp. 313–323.

[37] Walid Shalaby et al. “Entity Type Recognition using an Ensemble of Distributional
Semantic Models to Enhance Query Understanding”. In: Computer Software and
Applications Conference (COMPSAC), 2016 IEEE 40th Annual. Vol. 1. IEEE, 2016,
pp. 631–636. url: http://ieeexplore.ieee.org/abstract/document/7552082/
(visited on 01/29/2017).

[38] Jagendra Singh and Aditi Sharan. “A novel model of selecting high quality pseudo-
relevance feedback documents using classification approach for query expansion”.
In: Computational Intelligence: Theories, Applications and Future Directions (WCI),
2015 IEEE Workshop on. IEEE, 2015, pp. 1–6. url: http://ieeexplore.ieee.org/
abstract/document/7495539/ (visited on 01/15/2017).

[39] Min Song et al. “Keyphrase extraction-based query expansion in digital libraries”.
In: Proceedings of the 6th ACM/IEEE-CS joint conference on Digital libraries. ACM,
2006, pp. 202–209. url: http://dl.acm.org/citation.cfm?id=1141800 (visited on
01/15/2017).

[40] Neha Soni and Jaswinder Singh. “A Detailed Study on Query Expansion Techniques
in Information Retrieval”. In: International Journal of Emerging Trends in Engineer-
ing and Development 4.4 (June 2014), pp. 433–444. url: http://www.rspublication.
com/ijeted/2014/july14/43.pdf (visited on 01/29/2017).

[41] K. Sparck Jones, S. Walker, and S. E. Robertson. “A probabilistic model of informa-
tion retrieval: development and comparative experiments: Part 1”. In: Information
Processing & Management 36.6 (Nov. 1, 2000), pp. 779–808. issn: 0306-4573. doi:
10.1016/S0306- 4573(00)00015- 7. url: http://www.sciencedirect.com/
science/article/pii/S0306457300000157 (visited on 12/13/2017).

54

http://arxiv.org/abs/0911.5046
http://dl.acm.org/citation.cfm?id=2002594
http://dl.acm.org/citation.cfm?id=2002594
http://www.aaai.org/Papers/ICML/2003/ICML03-081.pdf
http://www.aaai.org/Papers/ICML/2003/ICML03-081.pdf
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
http://ieeexplore.ieee.org/abstract/document/7552082/
http://ieeexplore.ieee.org/abstract/document/7495539/
http://ieeexplore.ieee.org/abstract/document/7495539/
http://dl.acm.org/citation.cfm?id=1141800
http://www.rspublication.com/ijeted/2014/july14/43.pdf
http://www.rspublication.com/ijeted/2014/july14/43.pdf
https://doi.org/10.1016/S0306-4573(00)00015-7
http://www.sciencedirect.com/science/article/pii/S0306457300000157
http://www.sciencedirect.com/science/article/pii/S0306457300000157


[42] Wolfgang Tannebaum and Andreas Rauber. “Using query logs of USPTO patent
examiners for automatic query expansion in patent searching”. In: Information Re-
trieval 17.5 (Oct. 2014), pp. 452–470. issn: 1386-4564, 1573-7659. doi: 10.1007/
s10791-014-9238-7. url: http://link.springer.com/10.1007/s10791-014-
9238-7 (visited on 01/14/2017).

[43] TFIDFSimilarity (Lucene 6.5.0 API). Mar. 2, 2017. url: https://lucene.apache.
org / core / 6 _ 5 _ 0 / core / org / apache / lucene / search / similarities /
TFIDFSimilarity.html (visited on 03/28/2017).

[44] Triggers. DuckDuckHack Docs. url: https://docs.duckduckhack.com/backend-
reference/triggers.html (visited on 04/14/2017).

[45] Howard Wan. “Query Classification for Solr”. Lucene/Solr Revolution. Boston, MA,
Oct. 14, 2016. url: https://www.youtube.com/watch?v=ek3ftFfhnWE (visited on
11/16/2016).

[46] Zhongyuan Wang and Haixun Wang. “Understanding Short Texts”. In: (2016). url:
https://www.microsoft.com/en-us/research/publication/understanding-
short-texts/ (visited on 03/14/2017).

[47] Zhongyuan Wang et al. “An Inference Approach to Basic Level of Categorization”.
In: ACM Press, 2015, pp. 653–662. isbn: 978-1-4503-3794-6. doi: 10.1145/2806416.
2806533. url: http://dl.acm.org/citation.cfm?doid=2806416.2806533 (visited
on 03/14/2017).

[48] Wentao Wu et al. “Probase: A probabilistic taxonomy for text understanding”. In:
Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data. ACM, 2012, pp. 481–492.

[49] Zheng Ye and Jimmy Xiangji Huang. “A learning to rank approach for quality-aware
pseudo-relevance feedback”. In: Journal of the Association for Information Science
and Technology 67.4 (Apr. 2016), pp. 942–959. issn: 23301635. doi: 10.1002/asi.
23430. url: http://doi.wiley.com/10.1002/asi.23430 (visited on 01/21/2017).

[50] Pengcheng Yin et al. “Neural enquirer: Learning to query tables”. In: arXiv preprint
arXiv:1512.00965 (2015). url: https : / / pdfs . semanticscholar . org / 5a82 /
9f63a9a03be652ed8568ab6ce77ef0f2a712.pdf (visited on 02/08/2017).

55

https://doi.org/10.1007/s10791-014-9238-7
https://doi.org/10.1007/s10791-014-9238-7
http://link.springer.com/10.1007/s10791-014-9238-7
http://link.springer.com/10.1007/s10791-014-9238-7
https://lucene.apache.org/core/6_5_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/6_5_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/6_5_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://docs.duckduckhack.com/backend-reference/triggers.html
https://docs.duckduckhack.com/backend-reference/triggers.html
https://www.youtube.com/watch?v=ek3ftFfhnWE
https://www.microsoft.com/en-us/research/publication/understanding-short-texts/
https://www.microsoft.com/en-us/research/publication/understanding-short-texts/
https://doi.org/10.1145/2806416.2806533
https://doi.org/10.1145/2806416.2806533
http://dl.acm.org/citation.cfm?doid=2806416.2806533
https://doi.org/10.1002/asi.23430
https://doi.org/10.1002/asi.23430
http://doi.wiley.com/10.1002/asi.23430
https://pdfs.semanticscholar.org/5a82/9f63a9a03be652ed8568ab6ce77ef0f2a712.pdf
https://pdfs.semanticscholar.org/5a82/9f63a9a03be652ed8568ab6ce77ef0f2a712.pdf

	Query Expansion Techniques for Enterprise Search
	ScholarWorks Citation

	Contents
	List of Tables
	List of Figures
	Introduction
	Challenges in Enterprise Search
	Characterizing Enterprise Search
	Research Question

	Background
	Ranking Algorithms: tf-idf and BM25
	Naïve Bayes
	Query Expansion
	Thesauri, Ontologies, and Word Vectors
	Neural Networks
	Entity Recognition in Queries
	Query Classification
	Collection Enrichment

	Methodology
	Problem Queries
	Alphanumeric Searches
	Entity Recognition
	Intent Classification
	Collection Enrichment
	Word Vectors
	Architecture and Experimental Design

	Implementation
	Solr Configuration
	Federated Search
	Spelling and Thesaurus Module
	Alphanumeric Identification Module
	Entity Recognition
	Intent Classification Module
	Collection Enrichment Module
	Word Vectors

	Results
	Relevancy Metric Selection
	Alphanumeric Identification
	Entity Recognition
	Intent Classification
	Collection Enrichment
	Word Vectors
	Overall Assessment

	Conclusion
	References

