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Abstract 

Speech recognition is a very useful technology because of its potential to develop 

applications, which are suitable for various needs of users. This research is an attempt to enhance 

the performance of a speech recognition system by combining the visual features (lip movement) 

with audio features. The results were calculated using utterances of numerals collected from 

participants inclusive of both male and female genders. Discrete Cosine Transform (DCT) 

coefficients were used for computing visual features and Mel Frequency Cepstral Coefficients 

(MFCC) were used for computing audio features. The classification was then carried out using 

Support Vector Machine (SVM). The results obtained from the combined/fused system were 

compared with the recognition rates of two standalone systems (Audio only and visual only). 
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1. Introduction: 

 Use of human biometric modalities such as face, speech, iris, lips, hand gestures, and 

fingerprints can be utilized to interface with and act as a control signal for a variety of 

applications. Of those, speech is one of the most natural/common forms of communication. 

Many interface solutions have been developed, which are based on speech recognition systems, 

which are implemented using a variety of techniques, ranging from the use of integral 

microchips [1] to fuzzy logic algorithms used for noisy speech [2]. Even if it is a strong human 

modality to be used, the systems utilizing it will have challenges in implementation due to poor 

performance under non-ideal conditions (noisy environment). In such cases, it is beneficial to 

include and fuse additional modalities such as lip-reading in the system. Two such human 

modalities can be fused together, improving performance. This processed output can then be 

used as a command signal to operate a control system.  

For example, research has been done to make a wheelchair capable of operating based 

only on speech recognition. However, in a noisy environment, a situation can occur in which the 

wheelchair is not able to recognize the correct direction which is spoken by the disabled person. 

Consequently, this may result in the wheelchair moving in the wrong direction. In such a case, if 

another modality of lip-reading is fused with the speech recognition, it will be helpful for 

improving the result of recognizing the correct command for the wheelchair. 

Use of such natural modalities is not limited to control of a wheelchair. Other possible 

applications include security systems or control of computer interfaces (like a mouse), which is 

used for moving the pointer on screen. Many small operations that a driver of a vehicle must 

carry out manually, such as changing the climate control and radio settings, can be carried out in 

an automated way using speech. 
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This thesis proposal is arranged into six sections as follows: The first section consists of 

the introduction as explained above; The second section is the background; The third section is 

of literature review, which discusses many of the popular algorithms, which have been 

implemented by the researchers so far in the same field of study; The fourth section is the 

methodology section which explains the proposed audio-visual speech recognition system.  

Followed by this methodology section, the results of the research and conclusion are discussed in 

the fifth and sixth sections.  
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2. Literature Review: 

Many speech recognition systems have been developed to make life easier for a human 

being. Many such systems are not completely robust and can be improved. This research project 

describes an approach for improving performance of speech recognition systems with the help of 

fusion of signal processing and image processing algorithms. The purpose of this implementation 

is to have an improved recognition system developed using the fusion of two human modalities, 

human speech and human lips.  

In the proposed study, three systems will be implemented. First will be a speech recognition 

system, second will be a lip-reading system, and the third will be an audio-visual speech 

recognition system. This third system will have the fusion of speech recognition and lip-reading 

algorithms in it. The main aim of this study is to compare the performances of these three 

systems and to prove that the feature level fusion-based system performs better than the two 

stand-alone systems.  

Basically, the speech recognition and lip-reading algorithms consist of three main stages 

of operation. Those three stages are data collection, feature extraction, and feature matching. In 

the first data collection stage, the speech samples and the face videos will be collected. In the 

feature extraction stage, these speech samples and videos will be used for extracting important 

features. A speech signal has a lot of information other than the linguistic message which is 

required to be suppressed for recognition purpose. This unwanted information includes, 

characteristics of environment, characteristics of the recording equipment. The task related to 

emphasizing upon the important linguistic information in a speech signal and suppressing all the 

other unwanted information is carried out in the stage of feature extraction. The features, which 

are extracted, are then processed using algorithms selected for these implementations. All such 
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algorithms consist of some specific mathematical calculations, which can be carried out on 

collected data using the development software MATLAB. 

Prior to being used for speech recognition, the process must be performed on a training 

set, where the samples are known. Features are extracted from each of the samples in the training 

set and stored in a training database, which are later used for pattern matching and classification. 

For speech samples that are unknown, they can have their features extracted and 

compared to the training database using pattern recognition and are then classified. This 

classification is desired to match the uttered word or phrase. 

To test the system, multiple subjects (persons) are recruited and asked to speak a set of 

words, which are then classified by the system. The classification from the system is then 

compared with the true value in each instance. From this a percentage match is calculated to 

determine the performance of the system.  
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2.a. Review of algorithms for speech recognition systems: 

 Speech is one of the primary ways of communication for human beings. Just like that of a 

fingerprint or iris, speech is also a characteristic that is unique for every individual. The unique 

information, which can be extracted from every individual, can be used to implement systems 

that can recognize the speech or voice. Such systems can be very useful for many applications 

such as ensuring secure access to systems [3], gender recognition, recognition of age, emotion, 

accent and speaker identity. Due to such a vast span of applications, researchers have always 

been inspired by this phenomenon of speech recognition. The basic block diagram of a speech 

recognition system is shown in Figure 1.   

 

 

 

 

 

 

 

 

Figure 1: Basic block diagram of Speech Recognition System 

As shown in the block diagram, the speech signal is recorded in a specific format based 

on the application. The possible formats are .MP3, .WAV, .AIFF and .AU. The speech specific 

attributes, which are required for efficient feature extraction, are mainly present in the voiced 

part of signal [29]. After the signals are recorded, the next step is to remove the silence/unvoiced 
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part of the signal, using silence removal and end-point detection techniques. After that, the 

necessary features are extracted from the speech signal [3]. These extracted features are then 

used for pattern matching purposes. Many algorithms have been developed and implemented for 

silence removal, feature extraction and pattern matching purposes. These algorithms are briefly 

discussed in the following sections. 

2.a.1 Silence Removal and End-Point Detection Algorithms: 

 For carrying out efficient feature extraction in any speech or speaker recognition 

application, preprocessing of silence removal and end-point detection is important. 

Conventionally, a three-state representation is used for classifying the events in speech [29]. 

These states are, (i)silence, (ii)unvoiced and (iii)voiced. No speech is produced in the silence 

state. The vocal cords are not vibrating in the unvoiced state whereas they are tensed and 

periodically vibrating in the voiced state [29]. Silence (background noise) and unvoiced part are 

distinguished together as silence/unvoiced from voiced part because, low energy content is 

present in unvoiced part. 

 The two widely used methods for silence removal are the Zeros Crossing Rate (ZCR) 

method and the Short Time Energy (STE) method.  

Zeros Crossing Rate (ZCR) Method: 

The measure of number of times in a given time interval/frame, the amplitude of speech 

signals passes through a value of zero is called the zero-crossing rate [30]. As mentioned in [30], 

the definition of zero-crossing rate is:  
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𝑍𝑛 =  ∑ |𝑠𝑔𝑛[𝑥(𝑚)] − 𝑠𝑔𝑛[𝑥(𝑚 − 1)]|𝑤(𝑛 − 𝑚)

∞

𝑚=−∞

 

-------(1) 

Where, sgn[x(n)] = 1, x(n) ≥ 0       

                = -1, x(n) < 0 

and w(n) = 
1

2𝑁
 for, 0 ≤ n ≤ N-1 

                = 0, Otherwise 

Here, x(m) represents data sequence, w(n-m) represents a limited time window sequence 

and N is the window length. In a speech signal, the energy in the voiced part is concentrated at 

lower frequencies and the energy in the unvoiced part is found at higher frequencies. Zero 

crossing rate and energy distribution with frequency are strongly related. If the zero-crossing rate 

is higher, the signal is unvoiced and if it is lower, then the signal is voiced [30]. 

Short Time Energy (STE) Method: 

In Short-Time Energy algorithm, amplitude of signal is taken into consideration. For 

unvoiced speech, the amplitude is lower and for the voiced speech, it is higher. These amplitude 

variations can be represented using energy of speech signal [30]. The short time energy is 

calculated as: 

𝐸𝑛 = ∑ [𝑥(𝑚)𝑤(𝑛 −𝑚)]2
∞

𝑚=−∞

 

-------(2) 
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 In STE, it cannot be specified accurately that how much greater is the energy in unvoiced 

part of a speech signal as it varies in every case [29]. ZCR has one rule, which specifies that, for 

a clean speech of 10ms, if the ZCR of a portion exceeds 50 then that portion is labeled as 

unvoiced and if it is about 12, then it is labeled as voiced [29][49]. 

2.a.2 Feature Extraction Algorithms: 

During the process of feature extraction, analysis of the speech signal is carried out. 

During this process, the required information from the speech signal is identified for producing a 

meaningful representation of the signal [3]. This feature extraction step mainly includes, 

measurement of important characteristics of the signal such as energy or frequency response. It 

also includes parameterization of the signal in which these measurements are augmented with 

perceptually meaningful derived measurements and then these numbers are conditioned to form 

the feature vectors [3]. For some applications, it is also required to transform the original type of 

signal to some other useful form of signal.  

Linear Predictive Coding (LPC) Method: 

In this method, the speech signal is passed through the speech analysis filter for removing 

the redundancy in the signal [32]. While doing so, residual error is generated as an output. As 

compared to original signal, this residual error can be quantized by smaller number of bits [32]. 

So, this residual error and speech parameters can be transferred instead of transferring the 

complete signal.  A technique in which least mean squared error theory is used for computing a 

parametric model is called as Linear Prediction (LP). As mentioned in [32], the speech signal is 

approximated as linear combination of its previous samples. Formants are described by the 

obtained LPC coefficients and the resonant peak frequencies are called the formant frequencies. 
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Linear predictive coefficients and peaks in the spectrum of filter are calculated for finding the 

locations of formants in a speech signal [32]. 

Linear Predictive Cepstral Coefficient (LPCC) Method: 

The main assumption behind this method is that the nature of the sound being produced is 

based on the shape of the vocal tract [6]. For this purpose, a digital all-pole filter is used for 

modeling the vocal tract [7]. In this algorithm, one vocal tract transfer function is calculated 

using a set of Linear Predictive Coefficients. The autocorrelation method used in this algorithm 

consists of calculating filter gain and the autocorrelation of windowed speech signals [6].  

As explained in [6], the vocal tract transfer function is calculated as. 

𝑉(𝑧) =
𝐺

1 − ∑ 𝑎𝑘𝑧−𝑘
𝑝
𝑘=1

 

-------(3) 

Where, 𝑉(𝑧) is the transfer function, G is the filter gain, 𝑎𝑘 is a set of Liner Prediction 

Coefficients (LPC) and p is the order of all-pole filter. 𝑎𝑘 is the same as explained in the 

previous section. 

A matrix of simultaneous equations is calculated in the autocorrelation method involved 

in this technique. 

[

𝑅[0] 𝑅[1] ⋯ 𝑅[𝑝 − 1]

𝑅[1] 𝑅[2] ⋯ 𝑅[𝑝 − 2]
⋮ ⋮ ⋱ ⋮

𝑅[𝑝 − 1] 𝑅[𝑝 − 2] ⋯ 𝑅[0]

] [

𝑎1
𝑎2
⋮
𝑎𝑝

]  =    [

𝑅[1]
𝑅[2]
⋮

𝑅[𝑝]

] 

    -------(4) 
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Where, R[n] is the autocorrelation function of signal. The gain G is calculated as, 

𝐺 =  √𝑅[0] − ∑ 𝑎𝑘𝑅[𝑘]
𝑝
𝑘=1   

    -------(5) 

 Furthermore, in this algorithm a cepstrum of speech sequence is evaluated, which is 

referred to as cepstral analysis. The Inverse Discrete Fourier Transform (IDFT) of the log 

magnitude of the DFT of a signal is called as cepstrum. It is calculated using Equation (6). 

c[n]  =  𝐹−1{𝑙𝑜𝑔|𝐹{𝑥[𝑛]}|} 

-------(6) 

 Where, 𝑥[𝑛] is the signal, 𝐹 is DFT and 𝐹−1 is IDFT. This Cepstrum is used for 

estimation of dominant fundamental frequency in clean stationary speech signal. 

The Linear Predictive Cepstral Coefficients are evaluated from LPCs using a recursive 

method. This recursive procedure is calculated as: 

𝑐[0] = 𝑖𝑛(𝐺) 

𝑐[𝑛] =  𝑎𝑛 + ∑ (
𝑘

𝑛
)𝑛−1

𝑘=1 𝑐[𝑘]𝑎𝑛−𝑘  for 1≤ n ≤ p 

𝑐[𝑛] =  ∑ (
𝑛−𝑘

𝑛
)𝑛−1

𝑘=1 𝑐[𝑛 − 𝑘]𝑎𝑘 for n > p 

-------(7) 

Where, c is the LPCC coefficient and p is the total number of samples in the sequence and 𝑎𝑘 are 

the predictor coefficients. 
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Perceptual Linear Predictive Cepstral Coefficient (PLPCC) Method: 

In this algorithm, various concepts of psychophysics of hearing are used. The three 

concepts of psychophysics which are used in this algorithm are, critical band spectral resolution, 

equal loudness curve and intensity loudness power law [40].  These concepts are made useful for 

finding the all-pole model of short-term spectrum of speech [8]. The short-term power spectrum 

is computed using Fourier Transform, and then it is transformed to a Bark scale, which is a 

frequency scale on which equal distances correspond with perceptually equal distances [31]. The 

sensitivity of human hearing at different frequencies is approximated using a function relating 

the intensity of a sound and its perceived loudness. As mentioned in [31], The auditory spectrum 

is approximated using the all-pole model of LP and then the LP parameters are transformed to 

cepstral coefficients. The flow chart of PLPCC [31] is as shown in Figure 2. 

 

 

 

 

 

Figure 2: Flow chart of PLPCC algorithm 

 As shown in the flow chart, frame blocking, and windowing is carried out on the speech 

signal in the pre-processing stage. DFT and its squared magnitude is computed. The power 

spectrum of signal is then integrated in the overlapping critical band filter responses. The 

spectrum is then pre-emphasized to simulate the unequal sensitivity of human ear. The inverse 
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Discrete Fourier Transform (IDFT) is performed and then cestrum coefficients are computed 

using autoregressive model derived from regression analysis [33].  

Mel Frequency Cepstral Coefficient (MFCC) Method: 

This algorithm is based on hearing capabilities of human ears. Known variations of the 

human ear’s critical bandwidth with frequency are considered while implementing MFCC 

algorithm [9]. Steps such as framing, windowing, Discrete Fourier Transform (DFT) and 

Discrete Cosine Transform (DCT) are included in the implementation of MFCC.  

In this method, a set of triangular filters is used for computing a weighted sum of filter 

spectral components [9]. The magnitude frequency response of every filter is triangular. Sum of 

the filtered spectral components is calculated for getting each filter output. The MFCC algorithm 

is discussed further in detail in the methodology section. 

Principal Component Analysis (PCA) Method: 

The principal component analysis has been used in many applications for feature 

extraction. The method takes advantage of dimensional reduction. In PCA, the eigenvectors are 

extracted from the feature vector. Eigenvalues and covariance matrices are calculated for 

obtaining these eigenvectors. Only those eigenvectors with higher eigenvalues are selected to 

carry out the dimensional reduction. This is done because the eigenvectors with higher 

eigenvalues account for higher variability in the data. 

In one of the previous algorithms, KL (Karhunen-Loeve) transformation was employed 

instead of DCT (Discrete Cosine Transform) on the MF (Mel Frequency) output to carry out the 

feature extraction. This transform used was based on PCA. It was used to reflect the statistics of 

speech data more precisely than the DCT [4].  
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In another algorithm proposed, PCA was applied on FFT (Fast Fourier Transform) to 

calculate the filter bank coefficients [5]. Kernel PCA based algorithm for feature extraction was 

proposed to overcome the issue of additive noise. In this algorithm, again, PCA was used instead 

of DCT, in which main speech element was projected onto low order features and noise element 

was projected onto high order features [5]. 
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2.b. Review of algorithms for Lip reading or Visual Speech Recognition [VSR]: 

 The concept of lip reading or visual speech recognition [VSR] has attracted many 

researchers and many algorithms have been proposed by the researchers for implementing 

automated VSR systems. 

 Lip reading is important for people who have hearing impairment and can only use the 

visual signs to understand the speech. In many ways, such automated visual speech recognition is 

useful for people without disabilities also. Lip reading systems are mainly useful for people 

without disabilities when the acoustic speech is not understandable [13]. Especially in a noisy 

environment, this visual component of speech is unconsciously used by everyone for carrying 

out normal communication [13]. Such systems also have wide range of applications in the fields 

of human-computer interface, video surveillance, security systems, defense systems and car 

navigation systems.   

 

 

 

 

 

` 

 

Figure 3: Basic block diagram of Lip Reading System 

 Figure 3 shows the steps involved in a lip-reading system. The first step of image 

acquisition involves breaking the video into frames [14]. The number of frames, which are 
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formed from a video, depends upon the algorithms, which are selected for further steps involved 

in the implementation. Many techniques and algorithms have been proposed and used for all 

these steps, which are involved in a lip-reading system. The most popular techniques are taken 

into consideration as a part of the following discussion. 

2.b.1 Face detection and lip localization techniques: 

 One of the most popular algorithms used for face detection is the Viola Jones algorithm. 

This algorithm was proposed by Paul Viola and Michael Jones, and it is considered efficient for 

detecting faces. It was shown that, while operating on 384 by 288 pixel images, this algorithm 

could detect faces at the rate of 15 frames per second [15]. As explained in [15], this algorithm 

was divided into three main contributions of object detection framework. The first of them was 

integral image. Features resembling Haar basis functions were used within this algorithm, and 

integral image representation was used for evaluating these features rapidly. Haar like features 

use contrast variance in the adjacent rectangular groups of pixels in an image [26]. This contrast 

variance is used for determining light and dark areas. Haar-like features are formed by two or 

three adjacent groups with relative contrast variance [26]. In any image, the total number of 

Haar-like features is very large. For carrying out fast classification, only the important features 

are required to be selected. In the Viola-Jones algorithm, this selection of important features was 

carried out using Adaboost and this was the second contribution of the paper. This Adaboost is a 

process which was used for finding relevant and irrelevant features. In the third contribution of 

this algorithm, more complex classifiers were combined in a cascade structure for increasing the 

speed of the detector. 

 Another algorithm which is widely used for face detection purpose is the Kanade-Lucas-

Tomasi (KLT) algorithm. In this algorithm, initially, feature points are detected and then 
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displacement of these points from one frame to another frame is calculated [16]. The movement 

of the head is computed using this displacement and optical flow tracker. Figure 4 shows the 

flow chart of KLT algorithm [16].  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Flow chart of KLT algorithm 

As explained in [16], two simple steps are used in KLT algorithm for tracking the face. 

Firstly, traceable feature points from the first frame are found and then calculated displacement 

is used to track those features in next frame. The traceable feature points used are Harris corners. 

These Harris corner detectors are popularly used for detecting corners in the field of computer 
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vision. After detecting the corners, optical flow is computed for each translational motion and the 

corners are detected accordingly in the successive frames by connecting the motion vectors [16]. 

 If (x,y) is considered as one of the corner point, then it is displaced by some variable 

vector, (b1, b2, …, bn). The coordinates of the new point are then calculated using Equation (9), 

𝑥2 = 𝑥 + 𝑏1 

𝑦2 = 𝑦 + 𝑏2 

-------(9) 

 The displacement with respect to each coordinate is calculated using the wrap function as 

follows: 

𝑊(𝑥; 𝑝) = (𝑥 + 𝑏1; 𝑥 + 𝑏2) 

-------(10) 

Where, p is the displacement parameter. 

The methods used for lip localization mainly consist of color space-based techniques. 

Within these methods, color spaces like RGB (Red-Green-Blue), HSI (Hue-Saturation-Intensity), 

and YCbCr (Luminance-Component blue- Component red) or L*a*b space are used [14]. As 

explained in [17], the mouth region of human face contains more red, that is Cr component than 

blue, that is Cb component. This factor of chrominance color ratio can be used in various ways 

for lip localization. According to the results in [17], the saturation component of HSI color space 

with Cr and Cb component gives good results for lip localization. 
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2.b.2 Feature Extraction Techniques: 

 Out of all the steps involved in a lip-reading algorithm, feature extraction is the most 

important and crucial part. In general, feature extraction techniques can be divided into two types 

[14]. One type is Pixel-Based, and the other type is Lip Contour Based.  

 

Figure 5: Feature extraction Techniques for Lip-Reading Systems 

Pixel-Based or Image-Based Techniques: 

 One of the most popular pixel-based feature extraction method is the use of Discrete 

Cosine Transform (DCT). DCT is similar to Discrete Fourier Transform (DFT) as both these are 

used for transforming an image from spatial domain to frequency domain. DCT is mainly used 

for separating an image into spectral sub bands of different importance [27]. In [18], 2D-DCT 

was used as one of the methods for the feature extraction purpose. In that attempt, the features 

were extracted using Equation (11).  
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𝐵𝑝𝑞 = 𝛼𝑝𝛼𝑞 ∑ ∑𝐴𝑚𝑛

𝑁−1

𝑛=0
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2𝑀
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2𝑁
 

-------(11) 

Considering the image A of size M by N, Bpq is the DCT coefficient of image A at 

location (p,q).  
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-------(12) 

Another well-known transform used for feature extraction is Discrete Wavelet Transform 

(DWT). As mentioned in [19], wavelet transform can be used as a multiscale differentiator as it 

represents singularity of an image at multiple scales. This method is also useful in case the 

images are captured with multiple orientations like horizontal, vertical, and diagonal. In wavelet 

decomposition, each stage of filtering splits the image into four parts with the help of low-pass 

and high-pass filters. Out of these parts, the image with a low-spatial frequency is selected for 

the next decomposition level. After carrying out three such levels of decomposition, the resultant 

matrix representing the lowest spatial frequency sub-image is extracted as the feature vector. 

With the help of this methodology, only those coefficients, which play significant role in lip 

motion, are selected [19]. 
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 Often, these transforms described above are combined with one of the techniques, which 

is useful for dimensional reduction [19]. Two of the most commonly used methods for 

dimensional reduction are Principal Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA). 

 To implement a lip-reading system, PCA was combined with DCT [20]. In this 

algorithm, 32 x 16 matrix was considered as 1D vector Xi, where i = {1, 2, 3…. S}, and S is the 

number of training samples. Covariance matrix C and mean vector m were calculated for all 

these Xi. Eventually eigenvectors and eigenvalues of all C were calculated. Only the K 

eigenvectors with the largest eigenvalues were selected to generate the matrix PPCA. This PCA 

method is used to reduce the mean square error [21]. This mean square error is defined as, 

𝐸‖𝑥 − 𝑥̂‖2 = ∑𝐸(𝑥𝑖 − 𝑥𝑖̂)
2

𝑝

𝑖=1

 

-------(13) 

 Where, x is the random vector such that xT = [x1, x2, …, xp] and 𝑥̂ is the projection of x 

into subspace V.  

 LDA method consists of two scatter matrices called within-class scatter matrix Sw and 

between class scatter matrix Sb. These matrices are defined as follows: 

𝑆𝑏 = 
1

𝑁
 ∑𝑙𝑖𝑆𝑏𝑖

𝑐

𝑖=1

 

𝑆𝑏𝑖 = (𝜇𝑖 − 𝑥̅)(𝜇𝑖 − 𝑥̅)
𝑇 

-------(14) 

Where, 𝑙𝑖 is number of data points in class 𝑖 and   ∑ 𝑙𝑖 
𝑐
𝑖=1 = 𝑁. µ𝑖 is mean point of ith class, 𝑥̅ is 

the mean of all data points and we have c known classes, L1, L2, …, Lc. 
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𝑆𝑤 = 
1

𝑁
 ∑𝑆𝑤𝑖

𝑐

𝑖=1

 

𝑆𝑤𝑖 =∑(𝑥𝑗 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑖)
𝑇

𝑗𝜖𝐿𝑖

 

-------(15) 

 In this algorithm, the data is projected to a lower dimension. Matrices in lower 

dimension are then defined as: 

𝑆𝑏
𝑊 = 𝑊𝑇𝑆𝑏𝑊 

𝑆𝑤
𝑊 = 𝑊𝑇𝑆𝑤𝑊 

     -------(16) 

Next, a transformation matrix W is found such that Sb is minimized and Sw is maximized. 

This results in the ratio of Sb and Sw being maximized. This function is calculated as, 

𝐽(𝑊) =  
|𝑊𝑇𝑆𝑏𝑊|

|𝑊𝑇𝑆𝑤𝑊|
 

-------(17) 

 So, if J(W) is maximized, we can get the matrix W using, 

(𝑆𝑏 − 𝜆𝑖𝑆𝑤)𝑊𝑖 = 0 

-------(18) 

A combination of DCT and LDA algorithms were used in [22] for extracting the features 

for lip-reading. As mentioned in [22], the transformation matrix W and transformed features 

were calculated to keep maximum distance between different classifications and minimum 

distance within each classification.   
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Lip Contour or model-based techniques: 

The Active Contour Model (ACM) technique which is also known as Snake was 

introduced [23]. In this method, an energy minimizing spline was used. This spline was created 

to concentrate upon features such as lines and edges. Image forces and external constraint forces 

were used to attract these splines towards the features. As mentioned in [23], image forces are 

responsible for pushing the snakes towards salient features like lines and edges whereas the 

external forces push the snakes near a local minimum. It was described within the paper that 

image energy responsible for pushing the snakes towards salient features is a combination of 

three energy functionals which are Line Functional, Edge Functional and Terminal Functional.  

Two additional well-known model-based methods used for feature extraction are the 

Active Shape Model (ASM) and the Active Appearance Model (AAM).  

 In ASM, a statistical shape model calculated using labeled training data is used for the 

shape constraint [24]. Initially, a mean shape is calculated using aligned images and the PCA 

technique. Landmark points are then used for calculating inner and outer contours. An 

approximated shape of lips can then be defined by using Equation (19). 

𝑥 =  𝑥̅ + 𝑃𝑏 

-------(19) 

 In this equation, 𝑥̅ is the mean shape, P is the matrix of first t important eigenvectors and 

b is the vector of t weights [24]. In this way, the valid shape of lip images, x is obtained. 

 AAM is an extension of ASM method as it uses combination of model described, using 

shape variation and the statistical model of grey levels [24]. In AAM, intensity values from 

normalized training images are sampled into a vector, g. Then the appearance model is obtained 

using Equation (20). 
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𝑔 =  𝑔̅ + 𝑃𝑔𝑏𝑔 

-------(20) 

 In this equation, 𝑔̅ is the mean, Pg are the main modes of variation, and bg are the texture 

parameters. After obtaining model g, the difference between the model and testing images can be 

calculated by the model estimate onto the target image. The iterative Active Appearance Model 

algorithm is used for this purpose.  

Other than these image-based and model-based techniques, two of the most advanced 

techniques used for lip reading are Neural Networks and Hidden Markov Model. The Neural 

Networks technique was first introduced by Beala and Finaly [25] for lip-reading. Later on, 

techniques like Back Propagation [BP], Time-Delay Neural Network [TDNN], Hidden Markov 

Model (HMM) were introduced to improve the performance of neural network-based lip-reading 

systems. Compared to image based and model-based techniques, Neural Networks and Hidden 

Markov Model techniques are computationally expensive. 
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2.c Pattern Matching Algorithms for lip-reading and speech recognition systems: 

After the feature extraction from audio or visual speech samples is done, pattern 

matching is required. This block decides to which of the training word class the testing word 

belongs. For that purpose, the task is to find out the difference between extracted feature vectors.  

In that case, the distortion between speech samples can be referred as the distance between 

feature vectors. 

The most common method used for finding out the differences is Euclidean distance. 

This Euclidean distance is referred as the local distance between the feature vectors. This method 

of pattern matching has remained useful for many speech recognition algorithms, but it has 

certain drawbacks. If the length of feature vectors is not the same, then this method of pattern 

matching is not suitable for getting accurate recognition results. In that case, many other methods 

of pattern matching can be used. 

Dynamic Time Warping (DTW): 

In Dynamic Time Warping, the entire processing is executed in small steps [10]. Local 

distance measurement is carried out for all of these small steps. This approach allows for the 

different durations of all the utterances of same word. Additionally, even if the words are of the 

same length, the different parts of the word are spoken with different emphasis. Therefore, the 

rates with which speech signals for different words are created are different. For overcoming 

these problems, certain time alignment is performed using the DTW algorithm [10]. DTW is a 

good algorithm for finding out the lowest distance path without a lot of computation. 
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Support Vector Machine (SVM): 

Many of the speech recogntion applications implemented using SVM are developed in 

combination with Hidden Markov Models (HMM) algorithm. In HMM, certain stochastic 

models are generated and the probability of unknown utterances getting generated by each model 

is compared [11]. In SVM algorithm, the distance between samples and the classification border 

is maximised. Unseen patterns are generalised by maximizing this distance. This distance is 

referred to as margin. Compared to Neural Network classifiers, SVMs are better performers 

because they don’t have problems like convergence and stability. 

One algorithm was implemented using pure SVM in which the Token Passing Model 

algorithm was utilized [12]. This algorithm is an extension of the Viterbi algorithm. In this 

approach, one probability matrix was built with one row per class and one column per frame. 

Then, the Token Passing Model algorithm was used for obtaining the chain of recognised words 

from this matrix.  

When the performance of this algorithm was compared with the HMM algorithm, it was 

observed that SVMs are better performers than HMMs. It was eventually concluded in the 

approach that, for a small database, SVMs are able to improve recognition accuracy of HMMs 

[12]. Similar results can be obtained with a huge database as well.  

Other techniques such as Gaussian Mixture Model and Vector Quantization are also used 

for pattern matching purpose. 
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2.d Applications of Speech Recognition Systems: 

 Presently, there is a vast number of applications of speech recognition systems. One of 

the main applications of it is present in the field of security systems. These systems are mainly 

used for automatic speaker identification or speaker verification.  

 Now these applications are divided into different categories such as isolated word 

recognition systems, keyword recognition systems, and multiple word recognition systems. All 

these applications are mainly used in the field of communication. There are present systems such 

as automated operator services in which all the functions of an operator are handled 

automatically by the speech recognition systems. These functions include billing and general 

inquiries. Such a system was introduced by AT&T. Additionally, certain voice dialing systems 

have been developed by AT&T and Bell Atlantic. In such systems, it is possible to complete the 

call without pushing the buttons on the telephone. Other than telecommunication services like 

AT&T, such automated speech recognition based customer service applications are also present 

in banking systems and airports. 

Some real world applications such as live subtitling on television, off-line notetaking 

systems, speech to text conversion and dictation tools for various professions like the medical 

field are also present. These systems are also used for applications like speech enhancement. The 

applications related to noise reduction, processing of degraded speech, bandwidth reduction and 

interference reduction come under this category. Other similar applications such as waveform 

coding, distortion compensation and multiplexing are also present. Other command and control 

applications include avionics, battle management, interface to computer systems, and database 

management [3]. 



35 
 

3. Methodology: 

Figure 6 shows a block diagram of implemented Audio-Visual Speech Recognition 

System. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Block Diagram of proposed Audio-Visual Speech Recognition System 

As shown in the block diagram, audio and video parts of each utterance from the database 

were separated before carrying out the feature extraction. The software called ‘Any Video 

Converter’ was used for separating these audio and video parts. After separating the audio and 

video components, the video stream was used for visual feature extraction, and the audio stream 

was used for audio feature extraction.  
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3.a. Audio Feature Extraction: 

Before carrying out the feature extraction from the speech samples, a silence removal and 

end-point detection step was implemented for better efficiency.  

3.a.1 Silence removal and end-point detection: 

 The method used in proposed algorithm mainly consisted of Probability Density Function 

(PDF) of background noise and a Linear Pattern Classifier. The voiced part of sample was 

classified from the silence/unvoiced part using this classifier. As mentioned in [29], the results 

obtained from this algorithm are better than Zero Crossing Rate (ZCR) and Short Time Energy 

(STE) methods. As explained in [29], this method consists of 5 steps as follows: 

 In the first step, the mean and standard deviation of first 1600 samples of the audio were 

calculated with a sampling rate of 16000 samples per second, using Equations (21) and (22). 

𝜇 =  
1

1600
 ∑ 𝑥(𝑖)

1600

𝑖=1

 

-------(21) 

𝜎 =  √
1

1600
∑(𝑥(𝑖)  − 𝜇)2
1600

𝑖 =1

 

-------(22) 

Where, 𝜇 is the mean and 𝜎 is the standard deviation. These two values are used to characterize 

the background noise. 
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 In the second step, Mahalanobis distance was calculated for every sample using Equation 

(23). 

𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
|𝑥 −  𝜇|

𝜎
 

-------(23) 

 The Gaussian Probability density is described using a bell-shaped curve and it is 

calculated using mean 𝜇 and variance 𝜎2 [29]. This is usually written as, p(x) ~ N(𝜇 𝜎2)  and it 

is read as, 𝑥 distributed normally with mean 𝜇 and variance 𝜎2 [29]. In this curve, the peak 

occurs at 𝑥 =  𝜇 and width is proportional to standard deviation, 𝜎. The probabilities follow the 

Equation (24): 

Pr[|x −  𝜇|]  ≤  𝜎  =  0.68 

Pr[|x −  𝜇|]  ≤  2𝜎  =  0.95 

Pr[|x − 𝜇|] ≤ 3𝜎 = 0.997 

-------(24) 

As shown in Equation (24), 99.7% of the Gaussian distribution is in the range of 

 |𝜇|  ≤  3. Hence, the Mahalanobis distance was then checked whether it was greater than 3. If it 

was greater than 3, the sample was treated as voiced sample, otherwise it was treated as 

silence/unvoiced. This was done because the threshold of 3 rejects the samples up to 99.7% 

according to Equation (24) and hence it accepts only the voiced samples [29]. 

 The audio was divided into 10ms non-overlapping windows. In each window, the 

Mahalanobis distance was calculated for each sample.  
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 In the third step, all the voiced samples (as determined by Mahalanobis distance) were 

marked as 1 and all the unvoiced samples were marked as 0. In step four, each window would 

then be classified as voiced or unvoiced based on a majority of samples within that window. If 

the majority of samples (>50%) were classified as voiced (Mahalanobis distance), then the 

window is classified as voiced; otherwise, it was classified as unvoiced. 

 In the fifth step, parts of the signal that include voiced speech were collected together for 

further processing with unvoiced sections removed.  

3.a.2 Feature Extraction: 

Based on information in literature, Mel Frequency Cepstral Coefficient (MFCC) was 

used in the proposed system. This technique was chosen to take advantage of the frequency 

bands, which are positioned logarithmically on the Mel scale in MFCC. This approximates the 

human auditory system’s response more closely than other techniques. Also, based on the 

comparisons in made in [3], it was observed that, MFCC has better performance as compared to 

other methods used for feature extraction. Figure 7 shows the block diagram for MFCC.  
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Figure 7: Audio Feature Extraction using MFCC Technique 

Pre-emphasis: 

 In the first stage of pre-emphasis, the amount of energy in the high frequencies is 

boosted. Considering the spectrum for voiced segments like vowels, more energy is present at 

lower frequencies than the higher frequencies. This energy drop across frequencies is due to the 

nature of glottal pulse. If this high energy frequency is boosted, then these higher formants 

become more available for feature extraction, which in turn improves the performance of the 

system.  

 A first order high-pass filter was used for carrying out this pre-emphasis. For the input 

signal x[n], the filter equation is given as: 

𝑦[𝑛]  =  𝑥[𝑛]  −  𝑎𝑥[𝑛 − 1] 

-------(25) 

Where, 0.9 ≤ 𝑎 ≤ 1.0. Its transfer function is given as: 
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𝐻(𝑧)  =  1 −  𝑎𝑧−1 

-------(26) 

Figure 8 shows the magnitude response of this high pass filter for different values of 𝑎. As 

shown in the figure, for 𝑎 = 0.95, the gain is 6db/octave. A filter with this value, as shown in 

Figure 8c, was used for the final implementation. 

 

(a)                                                                           (b) 

 

                                       (c)                                                                      (d) 

Figure 8: Magnitude response of pre-emphasis filter for different values of a 

(a) a = 0.5 (b) a = 0.75 (c) a = 0.95 (d) a = 1 



41 
 

Windowing: 

 Since the spectrum of every speech signal changes quickly, the spectral features are not 

extracted from the entire utterance. Speech is a non-stationary signal; hence, its statistical 

properties are not constant across time. Because of this, speech is windowed to extract the 

spectral features. For a small window, it can be assumed that the signal is stationary.  

 The three important parameters of windowing are, wideness of the window in 

milliseconds, the offset between successive windows, and the shape of the window. Every 

window of the speech signal is called a frame and is paired with images. Frame size is the 

number of milliseconds in the frame and frame shift is the number of milliseconds between left 

edges of successive windows. In the proposed system, frame size of 25ms and frame shift of 

15ms was used. The signal was extracted using Equation (27). 

𝑦[𝑛]  =  𝑤[𝑛]𝑠[𝑛] 

-------(27) 

Where, 𝑠[𝑛] is the value of signal at time sample 𝑛 and 𝑤[𝑛] is the value of window at time 

sample 𝑛. 

 Hamming window was used during the implementation. This window avoids the 

discontinuities in the signal as it shrinks the values of signal towards zero at window boundaries. 

Equation (28) gives the value of Hamming window. 

𝑤[𝑛]  =  0.54 −  0.46 𝑐𝑜𝑠(2𝜋𝑛/(𝐿 − 1), 𝑖𝑓  0 ≤  𝑛 ≤  𝐿 − 1 

𝑤[𝑛]  =  0,                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

-------(28) 
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Where, 𝐿 is the window length. 

Figure 9 shows the curves of generalized hamming window for different values of α. 

 

Figure 9: Hamming window curves 

As explained by Equation 28, the value of α was chosen to be 0.46. 

Discrete Fourier Transform: 

 Discrete Fourier Transform (DFT) was used for extracting the spectral information from 

the windowed signal. The windowed signal x[n] was input to the DFT. The output of DFT 

represented the magnitude and phase of the frequency component in the original signal. Fast 

Fourier Transform (FFT) is the commonly used algorithm for computing DFT.  For this system, 

a 512-point FFT was used with a frequency resolution of 31.25 Hz/bin. 
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Mel Filter Bank and log: 

 FFT yields information about the amount of energy at each frequency band. Human 

hearing is less sensitive at higher frequencies (above 1000 Hz) [28]. This property of human 

hearing was used for feature extraction. The frequency output of DFT was warped onto the mel 

scale in this MFCC feature extraction. Mel is the unit of pitch. It is defined that any pair of 

sounds which are perceptually equidistant in speech are separated by an equal number of mels. 

The mel frequency is calculated from the raw acoustic frequency using Equation (29). 

𝑚𝑒𝑙(𝑓)  =  1127 𝑙𝑛(1 + (𝑓/700)) 

-------(29) 

A bank of filters for collecting the energy from each frequency band was created during 

MFCC computation. Total 26 filters were used to calculate the filter bank. Figure 10 shows this 

mel bank of triangular filters. 
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Figure 10: Mel Bank Filters 

In this filter bank, 10 filters were spaced linearly below 1000 Hz and other filters were 

spaced logarithmically above 1000 Hz. This was done because, the mapping between frequency 

in Hertz and the mel scale is linear below 1000 Hz, and it is logarithmic above 1000 Hz [37]. 

Then, the log of all mel spectrum values was calculated as feature estimates. The result is less 

sensitivity to input variations.  

The Cepstrum: 

 When a glottal source waveform of a specific fundamental frequency is passed through 

the vocal tract, a speech waveform is created. All the characteristics of this glottal pulse are not 

important for speech recognition. The exact position of the vocal tract is the most important 
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information. Cepstrum is a tool that can be used to accomplish this. Cepstrum is defined as the 

inverse DFT of the log magnitude of the DFT of a signal. 

 In the proposed system, 26 mel bank filters were used for calculating 13 coefficients. Mel 

Frequency Cepstral Coefficients (MFCC) were calculated using Equation (30). 

𝐶𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝑑𝑐𝑡 [𝑙𝑜𝑔 (𝑎𝑏𝑠(𝑋(𝑘)))] 

-------(30) 

Here, DCT was used instead of IFFT for computational efficiency. The MFCCs were 

computed by integrating spectral coefficients in each triangular frequency. The 26 values 

correspond to 26 filters accordingly. As observed in [43] [48], the recognition performance 

obtained after using first 10 to 13 coefficients was better than any other sub-band frequency 

range. Also, use of DCT decorrelates the features [46] and most of the information contained in 

the signal is accumulated in DCT at lower order coefficients [46]. The excitation information or 

the periodicity in the audio waveform is represented by higher order DCT coefficients, whereas, 

in this experiment, vocal tract shape or smooth spectral shape were more important [47].  

Consequently, for MFCC extraction in this system, only the first 13 values were used [44] [45]. 

Figure 11 shows the plot of magnitude spectrum of a frame data and magnitude spectrum of 

MFCC coefficients calculated for the same frame. 
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Figure 11: Magnitude spectrum of frame and MFCC features 

From these 13 values of MFCC coefficients, delta and delta-delta coefficients were calculated 

using Equation (31). 

𝑑𝑡  =  
∑ 𝑛(𝐶𝑡+𝑛 − 𝐶𝑡−𝑛)
𝑁
𝑛 =1

2∑ 𝑛2𝑁
𝑛 =1

 

-------(31) 

Here, 𝑑𝑡 is the delta coefficient, t is the frame, 𝐶𝑡+𝑛  and 𝐶𝑡−𝑛 are the static coefficients. 

Value of N was selected as 2. Delta-delta coefficients were calculated using the same formula but 

by applying it on delta coefficients. In this way, for every frame of every speech sample, 39 

coefficients (13 MFCC + 13 Delta + 13 Delta-delta) were calculated. 
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3.a.3 Dynamic Time Warping: 

 Dynamic Time Warping is a distance algorithm which is used for locally stretching or 

shrinking the time series before applying the classification technique [38].  

 There are two-time series, Q and C. Where, Q = q1, q2, …, qi, …, qn = Query sequence. 

And, C = c1, c2, …, cj, …, cm = Candidate sequence. Here, n and m are the number of frames in Q 

and C respectively. All the frames in both the sequences contain equal number of features in it. 

 To align these sequences, a matrix of size n by m is constructed such that ith and jth 

element of matrix contains the distance d(qi, cj) between the two points, qi and cj. This distance is 

calculated using Equation (32). 

d(𝑞𝑖, 𝑐𝑗)  =  (𝑞𝑖  −  𝑐𝑗) 

-------(32) 

 The distance matrix is calculated using Equation (33): 

𝐷(i, j)  =  𝑑(i, j)  +  min{ 𝐷(i, j − 1) , 𝐷(i − 1, j) , 𝐷(i − 1, j − 1) } 

𝑑(i, j)  =  Euclidean Distance =  |query(i) − reference(j)|  =  Local Distance 

𝐷(i, j)  =  Global Distance =  Total Summation of all the local distances 

-------(33) 

 Here, each matrix element, (i,j) belongs to alignment between the points qi and cj. 

Warping Path: 

 The set of matrix elements that defines the mapping between Q and C is called as the 

warping path, W. The kth element of W is defined as, Wk = (i, j) [38]. So, we have, 
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W = w1, w2, …, wk…,  wK max(m,n) ≤ K < m+n-1 

 After finding this warping matrix, the optimal warping path is searched. This warping 

path is related to following constraints [38]: 

1. Boundary conditions: w1 = (1,1) and wk = (m,n), the warping path should start and finish 

in the diagonally opposite corner cells of the matrix. 

2. Continuity: If, wk = (a,b) then, Wk-1 = (a’,b’). Here, a-a’ ≤ 1 and b-b’ ≥ 0. The allowable 

steps in the warping path are restricted to adjacent cells because of this constraint.  

3. Monotonicity: If, wk = (a,b) then, Wk-1 = (a’,b’). Here, a-a’ ≥ 0 and b-b’ ≥ 0. The points in 

W are forced to be monotonically spaced in time using this constraint. 

These conditions are satisfied by many warping paths but the path which minimizes the 

warping cost is calculated. This cost is calculated using Equation (34): 

DTW(q, C)  =  min {
√∑ 𝑤𝑘

𝑘
𝑘=1

𝑘
⁄

 

-------(34) 

 In the implemented system, this dynamic time warping was carried out after calculating 

the MFCC features of audio samples in the training dataset. The number of frames extracted after 

silence removal and end-point detection were different for all the audio samples. Hence, the 

number of MFCC features calculated for every audio sample were also different. A cell matrix 

was formed with all the number of frames related to audio samples with utterance ‘zero’. Then, 

the median of these number of frames was calculated. The audio sample which was having the 

number of frames equal to this median, was selected as the reference sample. All the other audio 
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samples with utterance ‘zero’ were warped against this reference sample. Same procedure was 

carried out on all the other digits from ‘one’ to ‘nine’. In this way, in total ten (one matrix for 

each digit) training feature matrices were formed. 
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3.b Visual Feature Extraction: 

 The frame rate of all the videos collected was 25 frames per second. Given that each 

video has a duration of 2 seconds, each video was comprised of 50 frames.  

3.b.1 Region of Interest(ROI) detection and lip localization: 

For Region of Interest(ROI) detection and lip localization, the Viola-Jones algorithm was 

used. As explained previously, this algorithm works very efficiently for detecting faces and face 

components based on Haar-like features. These features are comprised of two edge features 

which are line features and rectangle features [15]. In this algorithm, the images are classified 

using simple features instead of pixels directly because, such systems are faster than pixel-based 

systems [15]. As explained in [15], there are three types of features used, two-rectangle features, 

three-rectangle features, and four-rectangle features. The value of the two-rectangle features is 

computed by taking the difference between the sum of pixels within two rectangles. The value of 

three rectangle features is calculated by taking difference between the sum of two outside 

rectangles and sum in the center rectangle. The value of four-rectangle feature is calculated by 

taking difference between diagonal pairs of rectangles.  

 These rectangle features are calculated using integral image. Equation (35) is used for 

calculating integral image at location (x,y): 

𝑖𝑖(𝑥, 𝑦) =   ∑ 𝑖(𝑥′, 𝑦′)

𝑥′≤𝑥,𝑦′≤𝑦

 

-------(35) 

Where, ii(x,y) is the integral image and i(x, y) is the original image. Equations (36) and (37) are 

used for calculating the integral image with one pass of original image. 
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𝑠(𝑥, 𝑦) = 𝑠(𝑥, 𝑦 − 1) + 𝑖(𝑥, 𝑦) 

-------(36) 

𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(𝑥 − 1, 𝑦) + 𝑠(𝑥, 𝑦) 

-------(37) 

Here, s(x,y) is the cumulative row sum, s(x,-1) = 0 and ii(-1,y) = 0. 

After these rectangle features are calculated, the AdaBoost learning algorithm is used for 

classification. This was used for boosting the performance of simple learning algorithm (also 

called weak learning algorithm) [15]. Out of many rectangle features calculated from an image, 

very small number of features should be combined to get an efficient classification. Weak 

learning algorithm is good for completing this task [15]. The equation for weak classifier is as 

follows: 

ℎ𝑗(𝑥) =  {
1         𝑖𝑓 𝑝𝑗𝑓𝑗(𝑥)  < 𝑝𝑗𝜃𝑗
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

-------(38) 

Where, ℎ𝑗(𝑥) is the weak classifier, 𝑓𝑗 is the feature, 𝑝𝑗 is the parity indicating direction of 

inequality sign, and 𝜃𝑗  is the threshold. The optimal threshold classification function is 

determined by the weak learner. In this way, a single rectangle feature is selected by this 

algorithm, which is best for separating positive and negative examples. 

 This ROI detection and lip localization technique was applied on all the 50 frames 

formed. All the 50 lip images extracted from every video were resized to 64 x 64. Feature 

extraction was then carried out on all these images. 
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3.b.2 Feature Extraction: 

 Many popular algorithms used for visual feature extraction have been discussed in the 

previous sections. The performance of all these algorithms was compared in [34] and [14]. 

Experimental results found that the image transform based visual features work significantly 

better than lip contour-based features [34]. This is because most of the speech-reading 

information is present in the oral cavity which cannot be captured by lip contours. When the 

image transform based algorithms were compared together, it was found that the DCT based 

technique works better than other techniques. Table 1 shows the overall summery [14]. As 

mentioned in the table, model based, or lip contour-based techniques are mainly useful when 

translational, rotational or scaling invariance is present within the database. Still their 

performance is low as compared to image pixel-based techniques. Considering all these things, 

the DCT based technique was used for visual feature extraction purpose in the proposed system. 

Model Example Distortion Lip 

Extraction 

Performance Limitation 

Image-

Based 

DCT, DWT, 

PCA 

Real 

Environment 

Visual only High 

 DCT is 

better than 

others 

Restricted to 

illumination, 

mouth rotation, 

dimensionality 

Model-

Based 

ACM 

(snakes), 

ASM, AAM 

Deformable 

templates 

Noise and 

channel 

Acoustic and 

visual 

Low but 

robust, 

invariant to 

translation, 

rotation, 

scaling and 

illumination 

Inner outer lip 

contours, color 

of skin and lip 

matched, 

computationally 

expensive 

Table 1: Comparison of Feature Extraction Techniques for Lip-Reading [14]. 

The ROI image of size 64x64 was divided into 16 non-overlapping blocks of 16x16 and 

then DCT was applied to each of these blocks. Sixteen transform coefficients were calculated 

using Equation (39), where S is a size n x m image, u = 0, 1, 2, 3…, n and v = 0, 1, 2, 3…., m. 
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𝑆(𝑢, 𝑣) =
2

√𝑛𝑚
𝐶(𝑢)𝐶(𝑣) ∑ ∑𝑆(𝑥, 𝑦)

𝑛−1

𝑥=0

𝑐𝑜𝑠
2(𝑥 + 1)𝑢𝜋

2𝑛
𝑐𝑜𝑠

2(𝑦 + 1)𝑢𝜋

2𝑚

𝑚−1

𝑦=0

 

-------(39) 

                                                           And, C(u) = 2-1/2   for u = 0           

             = 1       otherwise.                                                                                            

Then energy coefficient E(i) for each block is computed using Equation (40). 

𝐸(𝑖) = ∑∑ 𝑆(𝑗, 𝑘)

16

𝑘 =1

16

𝑗 =1

  

-------(40) 

Where, i = 1, 2, 3, 4…, 16 and S is the transform coefficient. In this way, 800 coefficients 

(16*50) were calculated from every video. All these energy coefficients were stored in one 

vector, which was the targeted vector of visual features. 
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3.c Fusion and Classification: 

 The feature vector created from the videos consisted of 800 coefficients, and the feature 

vector created form audio samples consisted of 39 coefficients per frame of audio every sample. 

These feature vectors were concatenated to form a vector of features for every video in the 

database. 

 The Support Vector Machine (SVM) was used for classification purpose. This method 

was chosen due to its mathematical simplicity, and it avoids over-fitting [41]. As mentioned in 

[41], SVM is also well suited to classifying the MFCC features. In case of binary SVM, the 

optimal hyperplane is found such that it divides the two classes [36]. The distance between the 

data points and the hyperplane, which is refered to as the margin, is calculated. After hyperplane 

and margins are calculated, the class is chosen such that, it classifies the test datum with 

maximum margin [36].  

 Consider, training vector, xi ϵ Rd , i = 1,…l, and the label vector, y ϵ {1,-1}l 

Then, this SVM technique requires to find an optimum solution for Equation (41): 

𝑚𝑖𝑛
𝑤𝜖𝐻, 𝑏𝜖𝑅, 𝜉𝑖𝜖𝑅 

     
1

2
𝑤𝑇𝑤 +  𝐶∑𝜉𝑖

𝑙

𝑖=1

 

subject to    𝑦𝑖(𝑤
𝑇𝜑(𝑥𝑖)  +  𝑏)  ≥  1 − 𝜉𝑖   

 𝜉𝑖  ≥  0, i =  1, . . . , i 

-------(41) 
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 Here, w is the weight vector, C is the regularization constant and 𝜑 is the mapping 

function used for projecting the training data onto a suitable feature space H. This optimization 

problem is solved using equation (42): 

𝑚𝑖𝑛
𝛼𝜖𝑅 

     
1

2
𝛼𝑇(𝑲 •  (𝒚𝒚𝑇)) 𝛼 − 𝒆𝑇𝛼 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝟎 ≤  α ≤ 𝐶𝒆, 𝑦
𝑇𝛼 =  0  

-------(42) 

  Here e is a vector of all 1s, K is the kernel matrix and • is called as the Hadamard-Schur 

product [36].  

 To apply this binary SVM classifier on multiple classes, an approach called One-Versus-

Rest was used in the implemented system. In this approach, SVM constructs, K separate 

classifiers for k-class classification. Accordingly, in SVMs, the jth classifier yields the decision 

function expressed by Equation (43): 

𝑓𝑗(x)  =  𝑤𝑗
𝑇𝜑(𝑥)  + 𝑏𝑗  

-------(43) 

 Here, Wj and bj are hyperplane parameters calculated during jth classifier, and 𝑓𝑗(x) is the 

distance between x and margin of classifier j. During multiclass classification, observation is 

assigned to that class j* which produces largest value in all the M classifiers [39]. Equation (44) 

is expressed for explaining this concept: 

 



56 
 

j ∗ =  arg 
𝑚𝑎𝑥

𝑗 = 1. . . 𝑀 𝑓𝑗(x)  =  arg 
𝑚𝑎𝑥

𝑗 = 1. . . 𝑀  𝑤𝑗
𝑇𝜑(𝑥)  + 𝑏𝑗   

-------(44) 

 While carrying out the classification, every test sample was first time warped against all 

ten (0 to 9) the reference samples one by one. Then these ten-time warped versions of the test 

sample were classified against all the ten-training feature (0 to 9) matrices. After carrying out 

these ten classifications, in total ten values of j* were calculated based on all individual digit (0-

9) classifications. The maximum of these ten j* values was used to determine the best match.  
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3.d. Testing: 

As discussed in the introduction, the aim of this research is to compare the results of two 

standalone systems (A Lip Reading System and a Speech Recognition System) with a feature-

level fusion-based system (An Audio-Visual Speech Recognition System). The database, which 

was used for this comparison is called ‘vVISWa’ (Visual Vocabulary of Independent Standard 

Words) [35] database. Another database which was used for the comparison was collected in the 

Grand Valley State University’s campus. Both these databases are comprised of frontal profile 

utterances of numerals/digits. The duration of all the videos collected was approximately 2 

seconds.  

The experiments were carried out using three combinations of these two databases. In the 

first combination, five male participants and five female participants were included from the 

‘vVISWa’ database. Four utterances were recorded from these ten participants for each digit. Out 

of these four utterances, two utterances per person per digit were included in the training dataset, 

and the other two utterances were included in the testing dataset. In this way, both training and 

testing datasets consisted of two hundred videos (10*2*10) each.  

In the second combination, videos collected from three male participants and two female 

participants were included in the training dataset. The testing dataset comprised of the videos 

collected from two male participants and three female participants. These participants in the 

testing dataset were different than that of the training dataset, but all of them belonged to the 

‘vVISWa’ database. Just like that of combination one, two utterances per digit per person were 

included in combination two database. In this way, both training and testing datasets consisted of 

hundred videos (10*2*5) each.  
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In the third combination, the same training dataset of two hundred videos from the 

combination one was used.  The videos collected from the Grand Valley State University’s 

campus were included in the testing dataset. The participants included in this testing dataset were 

belonging to different nationalities and different ethnicities. The algorithm was tested against this 

diversified dataset to check the robustness of the system. This testing dataset consisted of five 

male participants and five female participants. One utterance per person per digit was recorded 

from these university campus participants. In this way, the testing dataset of combination three 

consisted of hundred videos (10*1*10).  

To compare the performances of the stand-alone speech recognition system and the 

fusion based Audio-visual speech recognition system, a statistical analysis method called 

McNemar’s test is used [42]. It is performed in Microsoft Excel using the results data obtained. 

For performing this test, four values were calculated using Equation (45) based on data 

obtained from the results. 

𝑒00  =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑏𝑜𝑡ℎ 𝑠𝑦𝑠𝑡𝑒𝑚 1 𝑎𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 2 

𝑒01  =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 1 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 2 

𝑒10  =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 2 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 1 

𝑒11  =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑏𝑜𝑡ℎ 𝑠𝑦𝑠𝑡𝑚 1 𝑎𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 2 

-------(45) 

For this experiment, system 1 is the stand-alone speech recognition system, and system 2 

is the fusion based audio-visual speech recognition system. After computing these four values, 

the value of the 𝜒2  test statistic is calculated using equation (46). 
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𝜒2  =  
(|𝑒01  −  𝑒10|  −  1)

2

𝑒01  + 𝑒10
 

-------(46) 

 The value of the 𝜒2 test statistic is then compared with a 𝜒2 distribution with 1 degree of 

freedom. Based on this comparison, the null hypothesis is either rejected or accepted. In 

equations (47) and (48), µ0  and µ1  denote theoretical outcomes of the two classification 

systems.  The null hypothesis, as shown in equation (47), is that both classifiers are the same. To 

accept this null hypothesis, the test statistic calculated in equation (46) would need to be greater 

than that of the distribution for the corresponding confidence level. Table 2 shows values 

calculated from a 𝜒2 distribution with 1 degree of freedom, which are used for comparison with 

the test statistic. 

𝐻0 : µ0  =  µ1 

-------(47) 

𝐻1 : µ0  ≠  µ1 

-------(48) 

 For example, if the value of the test statistic calculated with equation (46) was 3.40, then 

the null hypothesis could be rejected with a confidence of 93%. This is because 3.40 is greater 

than 𝜒2(𝛼, 𝑑𝑜𝑓) = 𝜒2(0.07,1) = 3.283, where 𝛼 = 1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. 
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Confidence 
Level Alpha 

Value of  

𝜒2 Distribution 

80% 0.20 1.6424 

81% 0.19 1.7176 

82% 0.18 1.7976 

83% 0.17 1.8829 

84% 0.16 1.9742 

85% 0.15 2.0723 

86% 0.14 2.1780 

87% 0.13 2.2925 

88% 0.12 2.4173 

89% 0.11 2.5542 

90% 0.10 2.7055 

91% 0.09 2.8744 

92% 0.08 3.0649 

93% 0.07 3.2830 

94% 0.06 3.5374 

95% 0.05 3.8415 

96% 0.04 4.2179 

97% 0.03 4.7093 

98% 0.02 5.4119 

99% 0.01 6.6349 

      
 

Table 2: Confidence levels and corresponding values of 𝜒2 Distribution. 
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4. Results: 

4.a. Speech Recognition results: 

As discussed in the methodology section, before carrying out the feature extraction on the 

audio samples, silence removal and end-point detection algorithm was implemented on every 

sample. Figure 12 shows the speech signal waveform before silence removal and end-point 

detection, and Figure 13 shows the speech signal waveform after silence removal and end-point 

detection. 

 

Figure 12: Speech signal waveform before silence removal and end-point detection 
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Figure 13: Speech signal waveform after silence removal and end-point detection 

 After implementing the silence removal and end-point detection algorithm, feature 

extraction was carried out on the signals. As explained in the methodology section, first step in 

the MFCC feature extraction was pre-emphasis. Figure 14 shows the waveform obtained after 

implementing the pre-emphasis step on the silence removed and end-point detected audio signal. 

 



63 
 

 

Figure 14: Effect of pre-emphasis 

When the audio sample after pre-emphasis step was heard, it was observed that, it 

sounded sharper with a lower volume. 

After pre-emphasis, steps of frame-blocking and windowing were implemented. For 

keeping the continuity in the first and last points in the frame, all the frames of signal were 

multiplied with a hamming window.  

After windowing, FFT of the audio sample was calculated for extracting the spectral 

information from the windowed signal. When FFT is performed on a frame of signal, it is 

assumed that the signal within the frame is periodic and continuous. However, if the signal 

within the frame is not periodic and continuous, it can introduce some undesirable effects in the 
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frequency response. Hence, each frame was multiplied by hamming window before 

implementing the FFT step. Figure 15 shows this effect of windowing on FFT.  

 

Figure 15: Effect of windowing on FFT 

As shown in Figure 15, the peak in the frequency response of windowed signal was 

sharper and more distinct. It can also be seen that, the amplitude of side lobes in case of FFT of 

windowed signal was much lesser than that of original signal. 

After this step, the frequency output of FFT was warped onto the mel scale for MFCC 

feature extraction.  

Figure 16 shows the plot of MFCC coefficients for the audio sample of digits zero and 

one collected from one of the participants. Here the X-axis of every image indicates the different 
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frame number and Y-axis denotes the MFCC coefficient number. The intensity of a pixel located 

at a point (x, y) indicates the value of MFCC coefficient number ‘y’ for a frame ‘x’. 

 

 

Figure 16: MFCC coefficients for utterance zero and one 

As discussed in the methodology, Dynamic Time Warping was used after MFCC feature 

extraction for time alignment of signals. Figure 17 shows the result of an audio sample related to 

digit ‘two’ time warped against the reference signal related to digit ‘two.’ Figure 18 shows the 

result of an audio sample related to digit ‘four’ time warped against the same reference signal 

related to digit ‘two.’ For displaying these results, energies in the frequency domain for all the 

frames in both the signals were plotted against corresponding frame number. These energies of 

signals were plotted before and after implementing DTW.  
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Figure 17: Energy plots before and after DTW [test signal of digit ‘two’, reference signal of digit ‘two’] 

 

Figure 18: Energy plots before and after DTW [test signal of digit ‘four’, reference signal of digit ‘two’] 
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As shown in Figure 17 and Figure 18, the number of frames in both test signal and 

reference signal are different than each other. Both these signals were aligned together using 

Dynamic Time Warping technique such that the Euclidean distance between their points is the 

smallest. It can be observed in the plots obtained after DTW, that the number of frames in both 

the signals after are equal. Figure 19 shows the Dynamic Time Warping path plotted on the local 

similarity matrix for these two signals. 

 

 

Figure 19: Dynamic Time Warping path 
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4.b. Lip Reading results: 

Figure 20 and Figure 21 show the results obtained after applying the Viola-Jones 

technique for region of interest detection on the videos. The image shown in figure 19 is the 20th 

frame of a video. This video belongs to the database collected in the Grand Valley State 

University campus. As displayed in the image, face, eyes, nose and lips were detected as the 

regions of interest. Out of these regions, the lips area was taken out for further processing. Figure 

20 shows the resized image of a lip from the same 20th frame of video. 

 

Figure 20: ROI detection in 20th frame of a video from GVSU campus Database 

 

Figure 21: Resized extract of lip image from 20th frame of a video 
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Figure 22 shows the result obtained after applying the Viola-Jones technique for region 

of interest detection on the video belonging to the vVISWA database. As seen the Figure 21, all 

the videos belonging to vVISWA database were collected by keeping black background, 

whereas, the videos collected in the university campus had some other objects in the background 

along with the background of a white board. Irrespective of variable background, the Viola-Jones 

technique was able to detect the region of interest very efficiently on all the videos. It was also 

able to overcome the occlusions of facial hair and glasses on faces of some participants. The 

participants in the videos collected in the university campus are more diverse, hence face colors 

of participants in this database were different. The algorithm was still able to detect the ROIs 

correctly.  

 

Figure 22: ROI detection in 24th frame of a video from vVISWA Database 
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The results obtained from all these three combinations of databases are as shown in Table 3: 

Combination Database Visual only 

Recognition 

using DCT 

Features 

 

Audio only 

Recognition 

using MFCC 

Features 

 

Audio-Visual 

Speech 

Recognition 

 

     

1. vVISWA Dataset of 

5 Males and 5 

Females 

53% 93% 96% 

     

2. vVISWA Dataset 

with different people 

in Training (3 Males, 

2 Females) and 

Testing (2 Males and 

3 Females) dataset 

41% 87% 92% 

     

3. Training with 

vVISWA dataset of 

10 people and testing 

with database 

collected in GVSU 

campus (10 people) 

36% 78% 86% 

 

Table 3: Results 

 As shown in Table 3, the results obtained from research work indicate significant 

improvement in the recognition rates due to fusion of audio and visual features. The results 

obtained from the algorithm using database combinations 1 and 2 are better than that of 

combination 3. Irrespective of the fact that ROI detection worked efficiently on the combination 

3 participants with different races and face colors, recognition rates of the system were less than 

the other two combinations. The recognition rate of audio only stand-alone system was also less 

in combination 3. This is mainly because participants had different accents due to their different 

nationality or ethnicity. The lip movement done by these participants was also very different than 

the participants in combination 1 and 2.  
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  e00 e01 e10 e11 Chi-Square value 

Database Combination 1 2 12 6 178 1.9444 

Database Combination 2 5 8 3 79 2.1818 

Database Combination 3 5 17 9 64 2.4231 

Total of three combinations 12 37 18 321 6.5455 
 

Table 4: McNemar’s Test Results 

 The performance of the two different classification systems were compared using the 

McNemar’s Test as described in the testing section of methodology, the results of which are 

shown in Table 4. From these results, it can be concluded that the performance of the stand-alone 

speech recognition system and the fusion based audio-visual speech recognition system were 

significantly different with a 98% confidence level. As a total, the fusion based audio-visual 

speech system correctly classified 37 utterances that were incorrectly characterized by the audio-

only system. This is more than double the 18 utterances that were incorrectly characterized by 

the fusion system but correctly characterized by the audio only. Based on these values of 𝑒01and 

𝑒10, it can be concluded that, the performance of fusion based audio-visual speech recognition 

system was better than standalone speech recognition system. The two different systems can also 

be analyzed based on performance on the three different databases (all with different 

characteristics that make them more or less challenging to characterize). For these subsets of 

results, it is more difficult to show that the two systems are different with at most 88% 

confidence and as little as 83% confidence. This is due to the limited number of outcomes that 

varied between the two classifiers.  
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5. Conclusion: 

In this thesis, an audio-visual speech recognition system was implemented and tested 

using the videos of numeral digits. The videos were collected from participants belonging to 

different ethnicities to test the robustness of the system. The performance of the system was 

compared with two stand-alone systems (audio only and visual only recognition systems). The 

MFCC features were extracted from the audio samples and the DCT features were extracted 

from the lip movements in videos for classification purpose. 

From the details discussed in the results section, it can be concluded that the implemented 

system was able to deliver a better recognition rate with the fusion of audio and video features as 

compared to the two stand-alone systems. If the performances of two stand-alone systems are 

compared together in all the three database combinations, the recognition rate of audio only 

speech recognition system was better than visual only recognition system. 

In future work the performance in noisy environments may by combining other human 

modalities such as iris movements and hand gestures. A Support Vector Machine was used for 

classification. It was observed that, most of the execution time taken by MATLAB was mainly 

for carrying out the classification step. This execution time and overall performance of the 

system could be further tested using other computationally complex classification methods such 

as Neural Network based Hidden Markov Model or Random Forest Classifier.  

This system was built and tested to recognize the numeral digits. This work can be further 

extended for applications such as voice-activated computers or voice-controlled driver’s assistant 

systems in which more commands are required in the vocabulary. The database would then be 

required to be increased from digits to words or full sentences/phrases for that purpose.    
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Appendix A: 

%-------Vikrant Satish Acharya--------------------------------------------- 

%-------EGR 696: Master’s Thesis: Fusion of audio and visual information for 

implementing improved speech recognition system.----------- 

%-------fusion.m----------------------------------------------------------- 

  

clear all; 

close all; 

clc; 
  

%------------------------------Speech-Training------------------------------------ 
  

Testing_Words = {'Zero','One','Two','Three','Four','Five','Six','Seven','Eight','Nine'}; 

%Sample Frequency 

fs=16000; 

Thresh=0.3; 

TR_row=0; 

for TR_p=1:200 

  %for TR_q=1:5 

   TR_row = TR_row + 1; 

   TR_filename='E:\VIKRANT\GVSU\Thesis(EGR 695)\codes\Speech 

Recognition\Demo2\Train\'; 

   %TR_filename='E:\VIKRANT\GVSU\Thesis(EGR 695)\codes\Speech 

Recognition\Code Pieces\'; 

   [TR_x,Fs]=audioread(strcat(TR_filename,num2str(TR_p),'.wav')); 

   TR_samplePerFrame=floor(fs/100); 

TR_bgSampleCount=floor(fs/5); %according to formula, 1600 sample needed for 8 khz 

%calculation of mean and std 

TR_bgSample=[]; 

for i=1:1:TR_bgSampleCount 

    TR_bgSample=[TR_bgSample TR_x(i)]; 

end 

TR_meanvalue=mean(TR_bgSample); 

TR_std_dev=std(TR_bgSample); 

%identify voiced or not for each value 

for i=1:1:length(TR_x) 

   if(abs(TR_x(i)-TR_meanvalue)/TR_std_dev > Thresh) 

       TR_voiced(i)=1; 

   else 

       TR_voiced(i)=0; 

   end 

end 
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%identify voiced or not for each frame 

%discard insufficient samples of last frame 

TR_useful_samples=length(TR_x)-mod(length(TR_x),TR_samplePerFrame); 

TR_frameCount=TR_useful_samples/TR_samplePerFrame; 

TR_voiced_frameCount=0; 

for i=1:1:TR_frameCount 

   TR_cVoiced=0; 

   TR_cUnVoiced=0; 

   for j=i*TR_samplePerFrame-TR_samplePerFrame+1:1:(i*TR_samplePerFrame) 

       if(TR_voiced(j)==1) 

           TR_cVoiced=(TR_cVoiced+1); 

       else 

           TR_cUnVoiced=TR_cUnVoiced+1; 

       end 

   end 

%mark frame for voiced/unvoiced 

   if(TR_cVoiced>TR_cUnVoiced) 

       TR_voiced_frameCount=TR_voiced_frameCount+1; 

       TR_voicedUnvoiced(i)=1; 

   else 

       TR_voicedUnvoiced(i)=0; 

   end 

end 

TR_reqd_signal=[]; 

for i=1:1:TR_frameCount 

    if(TR_voicedUnvoiced(i)==1) 

    for j=i*TR_samplePerFrame-TR_samplePerFrame+1:1:(i*TR_samplePerFrame) 

            TR_reqd_signal= [TR_reqd_signal TR_x(j)]; 

    end 

    end 

end 

   TR_data{TR_row} = TR_reqd_signal; 

TR_signals={}; 

TR_iter = 0; 

TR_signals=TR_data'; 

TR_Data = mfcc1(TR_signals,Testing_Words,16000); 

%end 

zero = TR_Data(1:10:191); 

zero_x1 = zero(14); 

zero_x2 = cell2mat(zero_x1);  

zero_ref = (zero_x2)'; %ref 

for rw = 1:3 

    zero1 = zero(rw); 
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    zero2 = cell2mat(zero1); 

    zero_test = (zero2)'; 

    SM = simmx(abs(zero_ref),abs(zero_test)); 

    [p,q,C] = dp(1-SM); 

    C(size(C,1),size(C,2)); 

    zero_testi1 = zeros(1, size(zero_ref,2)); 

    for i = 1:length(zero_testi1); zero_testi1(i) = q(min(find(p >= i))); end 

    zero_testx = pvsample(zero_test, zero_testi1-1, 128); 

    zero4 = zero_testx(:); 

    zero5 = (zero4)'; 

    zero_Feature_Vector(rw,:) = zero5(:);  

end 

one = TR_Data(2:10:192); 

one_x1 = one(7); 

one_x2 = cell2mat(one_x1);  

one_ref = (one_x2)'; %ref 

for rw = 1:3 

    one1 = one(rw); 

    one2 = cell2mat(one1); 

    one_test = (one2)'; 

    SM = simmx(abs(one_ref),abs(one_test)); 

    [p,q,C] = dp(1-SM); 

    C(size(C,1),size(C,2)); 

    one_testi1 = zeros(1, size(one_ref,2)); 

    for i = 1:length(one_testi1); one_testi1(i) = q(min(find(p >= i))); end 

    one_testx = pvsample(one_test, one_testi1-1, 128); 

    one4 = one_testx(:); 

    one5 = (one4)'; 

    one_Feature_Vector(rw,:) = one5(:);  

end 

two = TR_Data(3:10:193); 

two_x1 = two(9); 

two_x2 = cell2mat(two_x1);  

two_ref = (two_x2)'; %ref 

for rw = 1:3 

    two1 = two(rw); 

    two2 = cell2mat(two1); 

    two_test = (two2)'; 

    SM = simmx(abs(two_ref),abs(two_test)); 

    [p,q,C] = dp(1-SM); 

    C(size(C,1),size(C,2)); 

    two_testi1 = zeros(1, size(two_ref,2)); 

    for i = 1:length(two_testi1); two_testi1(i) = q(min(find(p >= i))); end 
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    two_testx = pvsample(two_test, two_testi1-1, 128); 

    two4 = two_testx(:); 

    two5 = (two4)'; 

    two_Feature_Vector(rw,:) = two5(:);  

end 

three = TR_Data(4:10:194); 

three_x1 = three(11); 

three_x2 = cell2mat(three_x1);  

three_ref = (three_x2)'; %ref 

for rw = 1:3 

    three1 = three(rw); 

    three2 = cell2mat(three1); 

    three_test = (three2)'; 

    SM = simmx(abs(three_ref),abs(three_test)); 

    [p,q,C] = dp(1-SM); 

    C(size(C,1),size(C,2)); 

    three_testi1 = zeros(1, size(three_ref,2)); 

    for i = 1:length(three_testi1); three_testi1(i) = q(min(find(p >= i))); end 

    three_testx = pvsample(three_test, three_testi1-1, 128); 

    three4 = three_testx(:); 

    three5 = (three4)'; 

    three_Feature_Vector(rw,:) = three5(:);  

end 

four = TR_Data(5:10:195); 

four_x1 = four(12); 

four_x2 = cell2mat(four_x1);  

four_ref = (four_x2)'; %ref 

for rw = 1:3 

    four1 = four(rw); 

    four2 = cell2mat(four1); 

    four_test = (four2)'; 

    SM = simmx(abs(four_ref),abs(four_test)); 

    [p,q,C] = dp(1-SM); 

    C(size(C,1),size(C,2)); 

    four_testi1 = zeros(1, size(four_ref,2)); 

    for i = 1:length(four_testi1); four_testi1(i) = q(min(find(p >= i))); end 

    four_testx = pvsample(four_test, four_testi1-1, 128); 

    four4 = four_testx(:); 

    four5 = (four4)'; 

    four_Feature_Vector(rw,:) = four5(:);  

end 

five = TR_Data(6:10:196); 

five_x1 = five(8); 
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five_x2 = cell2mat(five_x1);  

five_ref = (five_x2)'; %ref 

for rw = 1:3 

    five1 = five(rw); 

    five2 = cell2mat(five1); 

    five_test = (five2)'; 

    SM = simmx(abs(five_ref),abs(five_test)); 

    [p,q,C] = dp(1-SM); 

    C(size(C,1),size(C,2)); 

    five_testi1 = zeros(1, size(five_ref,2)); 

    for i = 1:length(five_testi1); five_testi1(i) = q(min(find(p >= i))); end 

    five_testx = pvsample(five_test, five_testi1-1, 128); 

    five4 = five_testx(:); 

    five5 = (five4)'; 

    five_Feature_Vector(rw,:) = five5(:);  

end 

six = TR_Data(7:10:197); 

six_x1 = six(5); 

six_x2 = cell2mat(six_x1);  

six_ref = (six_x2)'; %ref 

for rw = 1:3 

    six1 = six(rw); 

    six2 = cell2mat(six1); 

    six_test = (six2)'; 

    SM = simmx(abs(six_ref),abs(six_test)); 

    [p,q,C] = dp(1-SM); 

    C(size(C,1),size(C,2)); 

    six_testi1 = zeros(1, size(six_ref,2)); 

    for i = 1:length(six_testi1); six_testi1(i) = q(min(find(p >= i))); end 

    six_testx = pvsample(six_test, six_testi1-1, 128); 

    six4 = six_testx(:); 

    six5 = (six4)'; 

    six_Feature_Vector(rw,:) = six5(:);  

end 

seven = TR_Data(8:10:198); 

seven_x1 = seven(12); 

seven_x2 = cell2mat(seven_x1);  

seven_ref = (seven_x2)'; %ref 

for rw = 1:3 

    seven1 = seven(rw); 

    seven2 = cell2mat(seven1); 

    seven_test = (seven2)'; 

    SM = simmx(abs(seven_ref),abs(seven_test)); 



78 
 

    [p,q,C] = dp(1-SM); 

    C(size(C,1),size(C,2)); 

    seven_testi1 = zeros(1, size(seven_ref,2)); 

    for i = 1:length(seven_testi1); seven_testi1(i) = q(min(find(p >= i))); end 

    seven_testx = pvsample(seven_test, seven_testi1-1, 128); 

    seven4 = seven_testx(:); 

    seven5 = (seven4)'; 

    seven_Feature_Vector(rw,:) = seven5(:);  

end 

eight = TR_Data(9:10:199); 

eight_x1 = eight(10); 

eight_x2 = cell2mat(eight_x1);  

eight_ref = (eight_x2)'; %ref 

for rw = 1:3 

    eight1 = eight(rw); 

    eight2 = cell2mat(eight1); 

    eight_test = (eight2)'; 

    SM = simmx(abs(eight_ref),abs(eight_test)); 

    [p,q,C] = dp(1-SM); 

    C(size(C,1),size(C,2)); 

    eight_testi1 = zeros(1, size(eight_ref,2)); 

    for i = 1:length(eight_testi1); eight_testi1(i) = q(min(find(p >= i))); end 

    eight_testx = pvsample(eight_test, eight_testi1-1, 128); 

    eight4 = eight_testx(:); 

    eight5 = (eight4)'; 

    eight_Feature_Vector(rw,:) = eight5(:);  

end 

nine = TR_Data(10:10:200); 

nine_x1 = nine(17); 

nine_x2 = cell2mat(nine_x1);  

nine_ref = (nine_x2)'; %ref 

for rw = 1:3 

    nine1 = nine(rw); 

    nine2 = cell2mat(nine1); 

    nine_test = (nine2)'; 

    SM = simmx(abs(nine_ref),abs(nine_test)); 

    [p,q,C] = dp(1-SM); 

    C(size(C,1),size(C,2)); 

    nine_testi1 = zeros(1, size(nine_ref,2)); 

    for i = 1:length(nine_testi1); nine_testi1(i) = q(min(find(p >= i))); end 

    nine_testx = pvsample(nine_test, nine_testi1-1, 128); 

    nine4 = nine_testx(:); 

    nine5 = (nine4)'; 
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    nine_Feature_Vector(rw,:) = nine5(:);  

end 

  
  

%---------------------------------Lip-Training--------------------------------- 

TRLP_subject=0; 

TRLP_digit=0; 
  

for TRLP_subject = 1:200 

    %for TRLP_digit = 1:3 

         

TRLP_Video = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\Training\',num2str(TRLP_subject),'.avi');  

%Create a VideoFileReader Object 

TRLP_videoFReader = vision.VideoFileReader(TRLP_Video); 
  

%Create a VideoPlayer Object 

TRLP_videoPlayer = vision.VideoPlayer; 
  

%Define size of VideoPlayer and Create Object to Display Multiple Video At a time 

TRLP_WindowSize = [600 500]; 

TRLP_originalVideo = vision.VideoPlayer('Name', 'TRLP_Original'); 

TRLP_originalVideo.Position = [20 TRLP_originalVideo.Position(2) 

TRLP_WindowSize]; 
  

TRLP_detectorVideo = vision.VideoPlayer('Name','TRLP_Detection'); 

TRLP_detectorVideo.Position = [200 TRLP_detectorVideo.Position(2) 

TRLP_WindowSize]; 
  

TRLP_extractVideo = vision.VideoPlayer('Name','MouthExtract'); 

TRLP_extractVideo.Position = [400 TRLP_extractVideo.Position(2) 

TRLP_WindowSize];   

% noOfFrame = videoFReader.NumberOfFrames; 

% disp(noOfFrame);  
  

%Define Counter as 0 for Giving Image Name 

TRLP_fcnt=0; 

mkdir('Frames'); 

%Read Only First 40 Frame From Video 

while ~isDone(TRLP_videoFReader) 
     

    %counter Increment 

    TRLP_fcnt =TRLP_fcnt+1;  
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    %Create A path of the Image to Write 

    TRLP_filename = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TR_Detected\Frames\',num2str(TRLP_subject),'_',num2str(TRLP_dig

it),'_',num2str(TRLP_fcnt),'.jpg'); 
     

    %Read Frame from Video 

    TRLP_videoFrame=step(TRLP_videoFReader); 
     

    %videoFrame = imresize(videoFrame,[420 380]); 

    %write a Frame into the Images/Frame Folder 

    imwrite(TRLP_videoFrame,TRLP_filename,'jpg'); 

end 

     

%initialize counter is 0 

TRLP_cnt=0;   
  

%Call the Function buildDetector 

TRLP_detector = buildDetector(); 

TRLP_aa=[]; 
  

%Read the Frame from Given Path and Perform Some Operation On It. 

for i=1:TRLP_fcnt 

   %increment the Counter 

   TRLP_cnt = TRLP_cnt + 1; 
    

   %Set the Path of Frame to Get 

   TRLP_getFrame = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TR_Detected\Frames\',num2str(TRLP_subject),'_',num2str(TRLP_dig

it),'_',num2str(i),'.jpg'); 
    

   %Read the Frames from Given path 

   TRLP_frame = imread(TRLP_getFrame);  
    

   TRLP_Rframe=step(TRLP_videoFReader); 

   %frame = imresize(frame,[480 720]); 

   %Call the Function detectFaceParts send paramert (detector,Image,width 

   %of Boundry Box) 

   [TRLP_bbox TRLP_bbimg TRLP_faces TRLP_bbfaces] = 

detectFaceParts(TRLP_detector,TRLP_frame,2); 

%    bbox = detectSideFaceParts(detector,frame,2); 
    

   %Playing a Original Video 

   step(TRLP_originalVideo,TRLP_frame); 

   %-----------------------------End Original Video --------------------- 
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   %Create a Path to Store a Result Image into the Folder Name as 

   %DetectedFrame 

   TRLP_filename1 = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TR_Detected\Detected 

Frames\',num2str(TRLP_subject),'_',num2str(TRLP_digit),'_',num2str(TRLP_cnt),'.jpg'); 
    

   %write a Frame into the Images/DetectedFrame Folder 

   imwrite(TRLP_bbimg,TRLP_filename1,'jpg'); 
    

   %Playing a Result Video 

   step(TRLP_detectorVideo,TRLP_bbimg); 

   %--------------End Facial Feature Detected Video ------------------ 
     

   TRLP_aa = [TRLP_aa ; TRLP_bbox(:,13:16)]; 
    

   %mouth Feature Extration 

   TRLP_featurePoint = TRLP_bbox(:,13:16); 

   %disp(featurePoint); 

   if TRLP_featurePoint(1,1)==0  

       TRLP_featurePoint = TRLP_aa(1,:); 

   end 

    

   %Insrease the size of Bbox 

   TRLP_featurePoint = [TRLP_featurePoint(1,1) TRLP_featurePoint(1,2)-5 

TRLP_featurePoint(1,3) TRLP_featurePoint(1,4)+3]; 
    

   disp(TRLP_featurePoint); 

   %Crop specific Area of Mouth using Crop function 

   TRLP_extractFrame = imcrop(TRLP_frame,TRLP_featurePoint); 
    

   TRLP_filename3 = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TR_Detected\Extract\',num2str(TRLP_subject),'_',num2str(TRLP_dig

it),'_',num2str(TRLP_cnt),'.jpg'); 

   %Write all the Images into the folder 

   imwrite(TRLP_extractFrame,TRLP_filename3,'jpg'); 
    
    

   %Make Same Width and Height of all crop Images 

   TRLP_resizeFrame = imresize(TRLP_extractFrame,[64 64]); 
    

   %Create a Path to Store the Mouth Images 
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   TRLP_filename2 = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TR_Detected\Resize 

Extract\MouthExtract',num2str(TRLP_subject),'_',num2str(TRLP_digit),'_',num2str(TRL

P_cnt),'.jpg'); 
    

   %Write all the Images into the folder 

   imwrite(TRLP_resizeFrame,TRLP_filename2,'jpg'); 
    

   %Play Mouth Extract Frame into Video 

   %step(extractVideo,resizeFrame);    

   %------------------End Mouth Extracted Video -----------------------    

end 

end 

  

rmdir('Frames','s'); 

%Realease all the VideoFile and VideoPlayer Object 

release(TRLP_originalVideo); 

release(TRLP_detectorVideo); 

release(TRLP_videoFReader); 
  

%-------------------------------DCT---------------------------------------- 

%---Calculation of 800 DCT coeffients for all 50 frames of the input videos 

%---using 16*16 block-------------------------------------------------------- 

TRLP_iter = 0; 

 for TRLP_subject = 1:200 

    %for TRLP_digit = 0:9 

        for fr = 1:50 

    TRLP_iter = TRLP_iter+1; 

    TRLP_resize_extract = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TR_Detected\Resize 

Extract\MouthExtract',num2str(TRLP_subject),'_',num2str(fr),'.jpg'); 

    TRLP_f = imread(TRLP_resize_extract); 

    TRLP_f = rgb2gray(TRLP_f); 

    TRLP_f = im2double(TRLP_f);  

    TRLP_T = dctmtx(16); 

    TRLP_dct = @(block_struct) TRLP_T * block_struct.data * TRLP_T'; 

    TRLP_B1 = blockproc(TRLP_f,[16 16],TRLP_dct); 

    TRLP_fun = @(block_struct) sum(block_struct.data(:)); 

    TRLP_B2 = blockproc(TRLP_B1,[16 16],TRLP_fun); 

    TRLP_DCT_Feature = cell(1,160000); 

    TRLP_D{TRLP_iter} = TRLP_B2(:)'; 

    TRLP_DCT_Feature = cat(2,TRLP_D{:});  

        end 



83 
 

    %end 

 end 

     

TRLP_DCT_Feature = reshape(TRLP_DCT_Feature,[],200); 

TRLP_DCT_Feature = TRLP_DCT_Feature'; 

%-------------------------------------------------------------------------- 

  

%-------------------------Normalisation------------------------------------ 

TRLP_DCT_Feature_Vector = normalise(TRLP_DCT_Feature); 

%-------------------------------------------------------------------------- 
  
  

%---------------------------Fusion----------------------------------------- 

%--------------Fusion of MFCC and DCT Training feature vectors------------- 

TRFusion_Feature_Vector = horzcat(TRSP_MFCC_Feature,TRLP_DCT_Feature); 

%-------------------------------------------------------------------------- 

  
  

%------------------------------Speech-Testing------------------------------------ 
  

Testing_Words = {'Zero','One','Two','Three','Four','Five','Six','Seven','Eight','Nine'}; 

%Sample Frequency 

fs=16000; 

Thresh=0.3; 

TE_row=0; 

for TE_p=1:200 

 %for TE_q=0:9 

   TE_row = TE_row + 1; 

   TE_filename='E:\VIKRANT\GVSU\Thesis(EGR 695)\codes\Speech 

Recognition\Demo2\Test\'; 

   [TE_x,TE_fs]=audioread(strcat(TE_filename,num2str(TE_p),'.wav')); 

   TE_samplePerFrame=floor(TE_fs/100); 

TE_bgSampleCount=floor(TE_fs/5); %according to formula, 1600 sample needed for 8 

khz 

%calculation of mean and std 

TE_bgSample=[]; 

for i=1:1:TE_bgSampleCount 

    TE_bgSample=[TE_bgSample TE_x(i)]; 

end 

TE_meanvalue=mean(TE_bgSample); 

TE_std_dev=std(TE_bgSample); 

%identify voiced or not for each value 

for i=1:1:length(TE_x) 
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   if(abs(TE_x(i)-TE_meanvalue)/TE_std_dev > Thresh) 

       TE_voiced(i)=1; 

   else 

       TE_voiced(i)=0; 

   end 

end 

%identify voiced or not for each frame 

%discard insufficient samples of last frame 

TE_useful_samples=length(TE_x)-mod(length(TE_x),TE_samplePerFrame); 

TE_frameCount=TE_useful_samples/TE_samplePerFrame; 

TE_voiced_frameCount=0; 

for i=1:1:TE_frameCount 

   TE_cVoiced=0; 

   TE_cUnVoiced=0; 

   for j=i*TE_samplePerFrame-TE_samplePerFrame+1:1:(i*TE_samplePerFrame) 

       if(TE_voiced(j)==1) 

           TE_cVoiced=(TE_cVoiced+1); 

       else 

           TE_cUnVoiced=TE_cUnVoiced+1; 

       end 

   end 

%mark frame for voiced/unvoiced 

   if(TE_cVoiced>TE_cUnVoiced) 

       TE_voiced_frameCount=TE_voiced_frameCount+1; 

       TE_voicedUnvoiced(i)=1; 

   else 

       TE_voicedUnvoiced(i)=0; 

   end 

end 

TE_reqd_signal=[]; 

for i=1:1:TE_frameCount 

    if(TE_voicedUnvoiced(i)==1) 

    for j=i*TE_samplePerFrame-TE_samplePerFrame+1:1:(i*TE_samplePerFrame) 

            TE_reqd_signal= [TE_reqd_signal TE_x(j)]; 

    end 

    end 

end 

t1 = (0:length(TE_x)-1)/fs; 

    t1 = (0:length(TE_x)-1)/fs; 

    figure(); plot(t1,TE_x)  

    title('original signal'); 

    xlabel('time[sec]')  

    ylabel('Audio Signal Amplitude') 
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    t2 = (0:length(TE_reqd_signal)-1)/fs; 

    figure(); plot(t2, TE_reqd_signal); 

    title('Signal after silence removal'); 

    xlabel('time[sec]')  

    ylabel('Audio Signal Amplitude') 

    fs = 16000; 

n=512; 

t=(1:n)'/fs; 

startIndex=500; 

endIndex=startIndex+n-1; 

original=TE_x(startIndex:endIndex); 

windowed=original.*hamming(n); 

[mag1, phase1, freq1]=fftTwoSide(original, fs); 

[mag2, phase2, freq2]=fftTwoSide(windowed, fs); 

figure(); 

subplot(3,2,1); plot(original); grid on; axis([-inf inf -1 1]); title('Original 

signal');xlabel('Sample Number');ylabel('Amplitude'); 

subplot(3,2,2); plot(windowed); grid on; axis([-inf inf -1 1]); title('Windowed 

signal');xlabel('Sample Number');ylabel('Amplitude'); 

subplot(3,2,3); plot(freq1, mag1); grid on; title('Energy spectrum (linear 

scale)');xlabel('Frequency[Hz]');ylabel('Amplitude'); 

subplot(3,2,4); plot(freq2, mag2); grid on; title('Energy spectrum (linear 

scale)');xlabel('Frequency[Hz]');ylabel('Amplitude'); 

subplot(3,2,5); plot(freq1, 20*log(mag1)); grid on; axis([-inf inf -80 120]); title('Energy 

spectrum (db)');xlabel('Frequency[Hz]');ylabel('Amplitude'); 

subplot(3,2,6); plot(freq2, 20*log(mag2)); grid on; axis([-inf inf -80 120]); title('Energy 

spectrum (db)');xlabel('Frequency[Hz]');ylabel('Amplitude'); 

TE_data{TE_row} = TE_reqd_signal; 

TE_signals={}; 

TE_signals=TE_data'; 

TE_Data = mfcc1(TE_signals,Testing_Words,16000); 

end 

for rw = 1:1 

    TE_Data1_0 = TE_Data(rw); 

    TE_Data2_0 = cell2mat(TE_Data1_0); 

    TE_Data3_0 = (TE_Data2_0)'; 

    SM = simmx(abs(zero_ref),abs(TE_Data3_0)); 

    figure(),subplot(121) 

    imagesc(SM) 

    colormap(1-gray) 

    [p,q,C] = dp(1-SM); 

    hold on; plot(q,p,'r'); hold off 

    subplot(122) 
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    imagesc(C) 

    hold on; plot(q,p,'r'); hold off 

    C(size(C,1),size(C,2)); 

    TE_Data3_0i1 = zeros(1, size(zero_ref,2)); 

    for i = 1:length(TE_Data3_0i1); TE_Data3_0i1(i) = q(min(find(p >= i))); end 

    TE_Data3_0x = pvsample(TE_Data3_0, TE_Data3_0i1-1, 128); 

    TE_Feature_Vector_0(rw,:) = TE_Data3_0x(:);  
     

    energy1 = []; 

    coeff = TE_Data3_0(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy1(col) = Total_ene; 

    end 

    energy2 = []; 

    coeff = zero_ref(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy2(col) = Total_ene; 

    end 

    energy3 = []; 

    coeff = TE_Data3_0x(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy3(col) = Total_ene; 

    end 

figure(), plot(energy1); 

title('Plot before DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

figure(), plot(energy3); 

title('Plot after DTW'); 

xlabel('Frames');ylabel('Energy'); 
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hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

end 

for rw = 1:1 

    TE_Data1_1 = TE_Data(rw); 

    TE_Data2_1 = cell2mat(TE_Data1_1); 

    TE_Data3_1 = (TE_Data2_1)'; 

    SM = simmx(abs(one_ref),abs(TE_Data3_1)); 

    figure(),subplot(121) 

    imagesc(SM) 

    colormap(1-gray) 

    [p,q,C] = dp(1-SM); 

    hold on; plot(q,p,'r'); hold off 

    subplot(122) 

    imagesc(C) 

    hold on; plot(q,p,'r'); hold off 

    C(size(C,1),size(C,2)); 

    TE_Data3_1i1 = zeros(1, size(one_ref,2)); 

    for i = 1:length(TE_Data3_1i1); TE_Data3_1i1(i) = q(min(find(p >= i))); end 

    TE_Data3_1x = pvsample(TE_Data3_1, TE_Data3_1i1-1, 128); 

    TE_Feature_Vector_1(rw,:) = TE_Data3_1x(:);  
     

    energy1 = []; 

    coeff = TE_Data3_1(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy1(col) = Total_ene; 

    end 

    energy2 = []; 

    coeff = one_ref(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy2(col) = Total_ene; 

    end 

    energy3 = []; 

    coeff = TE_Data3_1x(1:13,:); 
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    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy3(col) = Total_ene; 

    end 

figure(), plot(energy1); 

title('Plot before DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

figure(), plot(energy3); 

title('Plot after DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

end 

for rw = 1:1 

    TE_Data1_2 = TE_Data(rw); 

    TE_Data2_2 = cell2mat(TE_Data1_2); 

    TE_Data3_2 = (TE_Data2_2)'; 

    SM = simmx(abs(two_ref),abs(TE_Data3_2)); 

    figure(),subplot(121) 

    imagesc(SM) 

    colormap(1-gray) 

    [p,q,C] = dp(1-SM); 

    hold on; plot(q,p,'r'); hold off 

    subplot(122) 

    imagesc(C) 

    hold on; plot(q,p,'r'); hold off 

    C(size(C,1),size(C,2)); 

    TE_Data3_2i1 = zeros(1, size(two_ref,2)); 

    for i = 1:length(TE_Data3_2i1); TE_Data3_2i1(i) = q(min(find(p >= i))); end 

    TE_Data3_2x = pvsample(TE_Data3_2, TE_Data3_2i1-1, 128); 

    TE_Feature_Vector_2(rw,:) = TE_Data3_2x(:);  
     

    energy1 = []; 
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    coeff = TE_Data3_2(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy1(col) = Total_ene; 

    end 

    energy2 = []; 

    coeff = two_ref(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy2(col) = Total_ene; 

    end 

    energy3 = []; 

    coeff = TE_Data3_2x(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy3(col) = Total_ene; 

    end 

figure(), plot(energy1); 

title('Plot before DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

figure(), plot(energy3); 

title('Plot after DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

end 

for rw = 1:1 

    TE_Data1_3 = TE_Data(rw); 

    TE_Data2_3 = cell2mat(TE_Data1_3); 



90 
 

    TE_Data3_3 = (TE_Data2_3)'; 

    SM = simmx(abs(three_ref),abs(TE_Data3_3)); 

    figure(),subplot(121) 

    imagesc(SM) 

    colormap(1-gray) 

    [p,q,C] = dp(1-SM); 

    hold on; plot(q,p,'r'); hold off 

    subplot(122) 

    imagesc(C) 

    hold on; plot(q,p,'r'); hold off 

    C(size(C,1),size(C,2)); 

    TE_Data3_3i1 = zeros(1, size(three_ref,2)); 

    for i = 1:length(TE_Data3_3i1); TE_Data3_3i1(i) = q(min(find(p >= i))); end 

    TE_Data3_3x = pvsample(TE_Data3_3, TE_Data3_3i1-1, 128); 

    TE_Feature_Vector_3(rw,:) = TE_Data3_3x(:);  
     

    energy1 = []; 

    coeff = TE_Data3_3(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy1(col) = Total_ene; 

    end 

    energy2 = []; 

    coeff = three_ref(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy2(col) = Total_ene; 

    end 

    energy3 = []; 

    coeff = TE_Data3_3x(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy3(col) = Total_ene; 

    end 

figure(), plot(energy1); 

title('Plot before DTW'); 

xlabel('Frames');ylabel('Energy'); 
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hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

figure(), plot(energy3); 

title('Plot after DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

end 

for rw = 1:1 

    TE_Data1_4 = TE_Data(rw); 

    TE_Data2_4 = cell2mat(TE_Data1_4); 

    TE_Data3_4 = (TE_Data2_4)'; 

    SM = simmx(abs(four_ref),abs(TE_Data3_4)); 

    figure()%subplot(121) 

    imagesc(SM) 

    colormap(1-gray) 

    [p,q,C] = dp(1-SM); 

    hold on; plot(q,p,'r'); hold off 

%     title('DTW Path on the local similarity matrix');  

%     xlabel('Test signal frames');ylabel('Reference signal frames'); 

    subplot(122) 

    imagesc(C) 

    hold on; plot(q,p,'r'); hold off 

    C(size(C,1),size(C,2)); 

    TE_Data3_4i1 = zeros(1, size(four_ref,2)); 

    for i = 1:length(TE_Data3_4i1); TE_Data3_4i1(i) = q(min(find(p >= i))); end 

    TE_Data3_4x = pvsample(TE_Data3_4, TE_Data3_4i1-1, 128); 

    TE_Feature_Vector_4(rw,:) = TE_Data3_4x(:);  
     

    energy1 = []; 

    coeff = TE_Data3_4(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy1(col) = Total_ene; 

    end 
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    energy2 = []; 

    coeff = four_ref(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy2(col) = Total_ene; 

    end 

    energy3 = []; 

    coeff = TE_Data3_4x(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy3(col) = Total_ene; 

    end 

figure(), plot(energy1); 

title('Plot before DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

figure(), plot(energy3); 

title('Plot after DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

end 

for rw = 1:1 

    TE_Data1_5 = TE_Data(rw); 

    TE_Data2_5 = cell2mat(TE_Data1_5); 

    TE_Data3_5 = (TE_Data2_5)'; 

    SM = simmx(abs(five_ref),abs(TE_Data3_5)); 

    figure(),subplot(121) 

    imagesc(SM) 

    colormap(1-gray) 

    [p,q,C] = dp(1-SM); 

    hold on; plot(q,p,'r'); hold off 
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    subplot(122) 

    imagesc(C) 

    hold on; plot(q,p,'r'); hold off 

    C(size(C,1),size(C,2)); 

    TE_Data3_5i1 = zeros(1, size(five_ref,2)); 

    for i = 1:length(TE_Data3_5i1); TE_Data3_5i1(i) = q(min(find(p >= i))); end 

    TE_Data3_5x = pvsample(TE_Data3_5, TE_Data3_5i1-1, 128); 

    TE_Feature_Vector_5(rw,:) = TE_Data3_5x(:);  
     

    energy1 = []; 

    coeff = TE_Data3_5(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy1(col) = Total_ene; 

    end 

    energy2 = []; 

    coeff = five_ref(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy2(col) = Total_ene; 

    end 

    energy3 = []; 

    coeff = TE_Data3_5x(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy3(col) = Total_ene; 

    end 

figure(), plot(energy1); 

title('Plot before DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

figure(), plot(energy3); 

title('Plot after DTW'); 



94 
 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

end 

for rw = 1:1 

    TE_Data1_6 = TE_Data(rw); 

    TE_Data2_6 = cell2mat(TE_Data1_6); 

    TE_Data3_6 = (TE_Data2_6)'; 

    SM = simmx(abs(six_ref),abs(TE_Data3_6)); 

    figure(),subplot(121) 

    imagesc(SM) 

    colormap(1-gray) 

    [p,q,C] = dp(1-SM); 

    hold on; plot(q,p,'r'); hold off 

    subplot(122) 

    imagesc(C) 

    hold on; plot(q,p,'r'); hold off 

    C(size(C,1),size(C,2)); 

    TE_Data3_6i1 = zeros(1, size(six_ref,2)); 

    for i = 1:length(TE_Data3_6i1); TE_Data3_6i1(i) = q(min(find(p >= i))); end 

    TE_Data3_6x = pvsample(TE_Data3_6, TE_Data3_6i1-1, 128); 

    TE_Feature_Vector_6(rw,:) = TE_Data3_6x(:);  
     

    energy1 = []; 

    coeff = TE_Data3_6(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy1(col) = Total_ene; 

    end 

    energy2 = []; 

    coeff = six_ref(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy2(col) = Total_ene; 

    end 

    energy3 = []; 
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    coeff = TE_Data3_6x(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy3(col) = Total_ene; 

    end 

figure(), plot(energy1); 

title('Plot before DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

figure(), plot(energy3); 

title('Plot after DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

end 

for rw = 1:1 

    TE_Data1_7 = TE_Data(rw); 

    TE_Data2_7 = cell2mat(TE_Data1_7); 

    TE_Data3_7 = (TE_Data2_7)'; 

    SM = simmx(abs(seven_ref),abs(TE_Data3_7)); 

    figure(),subplot(121) 

    imagesc(SM) 

    colormap(1-gray) 

    [p,q,C] = dp(1-SM); 

    hold on; plot(q,p,'r'); hold off 

    subplot(122) 

    imagesc(C) 

    hold on; plot(q,p,'r'); hold off 

    C(size(C,1),size(C,2)); 

    TE_Data3_7i1 = zeros(1, size(seven_ref,2)); 

    for i = 1:length(TE_Data3_7i1); TE_Data3_7i1(i) = q(min(find(p >= i))); end 

    TE_Data3_7x = pvsample(TE_Data3_7, TE_Data3_7i1-1, 128); 

    TE_Feature_Vector_7(rw,:) = TE_Data3_7x(:);  
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    energy1 = []; 

    coeff = TE_Data3_7(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy1(col) = Total_ene; 

    end 

    energy2 = []; 

    coeff = seven_ref(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy2(col) = Total_ene; 

    end 

    energy3 = []; 

    coeff = TE_Data3_7x(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy3(col) = Total_ene; 

    end 

figure(), plot(energy1); 

title('Plot before DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

figure(), plot(energy3); 

title('Plot after DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

end 

for rw = 1:1 

    TE_Data1_8 = TE_Data(rw); 
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    TE_Data2_8 = cell2mat(TE_Data1_8); 

    TE_Data3_8 = (TE_Data2_8)'; 

    SM = simmx(abs(eight_ref),abs(TE_Data3_8)); 

    figure(),subplot(121) 

    imagesc(SM) 

    colormap(1-gray) 

    [p,q,C] = dp(1-SM); 

    hold on; plot(q,p,'r'); hold off 

    subplot(122) 

    imagesc(C) 

    hold on; plot(q,p,'r'); hold off 

    C(size(C,1),size(C,2)); 

    TE_Data3_8i1 = zeros(1, size(eight_ref,2)); 

    for i = 1:length(TE_Data3_8i1); TE_Data3_8i1(i) = q(min(find(p >= i))); end 

    TE_Data3_8x = pvsample(TE_Data3_8, TE_Data3_8i1-1, 128); 

    TE_Feature_Vector_8(rw,:) = TE_Data3_8x(:);  
     

    energy1 = []; 

    coeff = TE_Data3_8(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy1(col) = Total_ene; 

    end 

    energy2 = []; 

    coeff = eight_ref(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy2(col) = Total_ene; 

    end 

    energy3 = []; 

    coeff = TE_Data3_8x(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy3(col) = Total_ene; 

    end 

figure(), plot(energy1); 

title('Plot before DTW'); 
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xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

figure(), plot(energy3); 

title('Plot after DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

end 

for rw = 1:1 

    TE_Data1_9 = TE_Data(rw); 

    TE_Data2_9 = cell2mat(TE_Data1_9); 

    TE_Data3_9 = (TE_Data2_9)'; 

    SM = simmx(abs(nine_ref),abs(TE_Data3_9)); 

    figure(),subplot(121) 

    imagesc(SM) 

    colormap(1-gray) 

    [p,q,C] = dp(1-SM); 

    hold on; plot(q,p,'r'); hold off 

    subplot(122) 

    imagesc(C) 

    hold on; plot(q,p,'r'); hold off 

    C(size(C,1),size(C,2)); 

    TE_Data3_9i1 = zeros(1, size(nine_ref,2)); 

    for i = 1:length(TE_Data3_9i1); TE_Data3_9i1(i) = q(min(find(p >= i))); end 

    TE_Data3_9x = pvsample(TE_Data3_9, TE_Data3_9i1-1, 128); 

    TE_Feature_Vector_9(rw,:) = TE_Data3_9x(:);  
     

    energy1 = []; 

    coeff = TE_Data3_9(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy1(col) = Total_ene; 

    end 

    energy2 = []; 
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    coeff = nine_ref(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy2(col) = Total_ene; 

    end 

    energy3 = []; 

    coeff = TE_Data3_9x(1:13,:); 

    for col = 1:size(coeff,2) 

      Fourier = fft(coeff(:,col));  

      ene = Fourier.*conj(Fourier); 

      Total_ene = sum(ene); 

      energy3(col) = Total_ene; 

    end 

figure(), plot(energy1); 

title('Plot before DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

figure(), plot(energy3); 

title('Plot after DTW'); 

xlabel('Frames');ylabel('Energy'); 

hold on 

plot(energy2); 

xlabel('Frames');ylabel('Energy'); 

legend('Test Signal','Reference Signal') 

hold off 

end 

  
  

%---------------------------------Lip-Testing------------------------------ 

TELP_subject=0; 

TELP_digit=0; 
  

for TELP_subject = 1:200 

    %for TELP_digit = 1:3 

         

TELP_Video = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\Testing\',num2str(TELP_subject),'.avi');  
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%Create a VideoFileReader Object 

TELP_videoFReader = vision.VideoFileReader(TELP_Video); 
  

%Create a VideoPlayer Object 

TELP_videoPlayer = vision.VideoPlayer; 
  

%Define size of VideoPlayer and Create Object to Display Multiple Video At a time 

TELP_WindowSize = [600 500]; 

TELP_originalVideo = vision.VideoPlayer('Name', 'TELP_Original'); 

TELP_originalVideo.Position = [20 TELP_originalVideo.Position(2) 

TELP_WindowSize]; 
  

TELP_detectorVideo = vision.VideoPlayer('Name','TELP_Detection'); 

TELP_detectorVideo.Position = [200 TELP_detectorVideo.Position(2) 

TELP_WindowSize]; 
  

TELP_extractVideo = vision.VideoPlayer('Name','MouthExtract'); 

TELP_extractVideo.Position = [400 TELP_extractVideo.Position(2) 

TELP_WindowSize];   

% noOfFrame = videoFReader.NumberOfFrames; 

% disp(noOfFrame);  
  

%Define Counter as 0 for Giving Image Name 

TELP_fcnt=0; 

mkdir('Frames'); 

%Read Only First 40 Frame From Video 

while ~isDone(TELP_videoFReader) 
     

    %counter Increment 

    TELP_fcnt =TELP_fcnt+1;  
     

    %Create A path of the Image to Write 

    TELP_filename = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TE_Detected\Frames\',num2str(TELP_subject),'_',num2str(TELP_digi

t),'_',num2str(TELP_fcnt),'.jpg'); 
     

    %Read Frame from Video 

    TELP_videoFrame=step(TELP_videoFReader); 
     

    %videoFrame = imresize(videoFrame,[420 380]); 

    %write a Frame into the Images/Frame Folder 

    imwrite(TELP_videoFrame,TELP_filename,'jpg'); 

end 

     



101 
 

%initialize counter is 0 

TELP_cnt=0;   
  

%Call the Function buildDetector 

TELP_detector = buildDetector(); 

TELP_aa=[]; 
  

%Read the Frame from Given Path and Perform Some Operation On It. 

for i=1:TELP_fcnt 

   %increment the Counter 

   TELP_cnt = TELP_cnt + 1; 
    

   %Set the Path of Frame to Get 

   TELP_getFrame = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TE_Detected\Frames\',num2str(TELP_subject),'_',num2str(TELP_digi

t),'_',num2str(i),'.jpg'); 
    

   %Read the Frames from Given path 

   TELP_frame = imread(TELP_getFrame);  
    

   TELP_Rframe=step(TELP_videoFReader); 

   %frame = imresize(frame,[480 720]); 

   %Call the Function detectFaceParts send paramert (detector,Image,width 

   %of Boundry Box) 

   [TELP_bbox TELP_bbimg TELP_faces TELP_bbfaces] = 

detectFaceParts(TELP_detector,TELP_frame,2); 

%    bbox = detectSideFaceParts(detector,frame,2); 
    

   %Playing a Original Video 

   step(TELP_originalVideo,TELP_frame); 

   %-----------------------------End Original Video --------------------- 
    
    

   %Create a Path to Store a Result Image into the Folder Name as 

   %DetectedFrame 

   TELP_filename1 = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TE_Detected\Detected 

Frames\',num2str(TELP_subject),'_',num2str(TELP_digit),'_',num2str(TELP_cnt),'.jpg'); 
    

   %write a Frame into the Images/DetectedFrame Folder 

   imwrite(TELP_bbimg,TELP_filename1,'jpg'); 
    

   %Playing a Result Video 

   step(TELP_detectorVideo,TELP_bbimg); 
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   %--------------End Facial Feature Detected Video ------------------ 
     

   TELP_aa = [TELP_aa ; TELP_bbox(:,13:16)]; 
    

   %mouth Feature Extration 

   TELP_featurePoint = TELP_bbox(:,13:16); 

   %disp(featurePoint); 

   if TELP_featurePoint(1,1)==0  

       TELP_featurePoint = TELP_aa(1,:); 

   end 

    

   %Insrease the size of Bbox 

   TELP_featurePoint = [TELP_featurePoint(1,1) TELP_featurePoint(1,2)-5 

TELP_featurePoint(1,3) TELP_featurePoint(1,4)+3]; 
    

   disp(TELP_featurePoint); 

   %Crop specific Area of Mouth using Crop function 

   TELP_extractFrame = imcrop(TELP_frame,TELP_featurePoint); 
    

   TELP_filename3 = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TE_Detected\Extract\',num2str(TELP_subject),'_',num2str(TELP_digi

t),'_',num2str(TELP_cnt),'.jpg'); 

   %Write all the Images into the folder 

   imwrite(TELP_extractFrame,TELP_filename3,'jpg'); 
    
    

   %Make Same Width and Height of all crop Images 

   TELP_resizeFrame = imresize(TELP_extractFrame,[64 64]); 
    

   %Create a Path to Store the Mouth Images 

   TELP_filename2 = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TE_Detected\Resize 

Extract\MouthExtract',num2str(TELP_subject),'_',num2str(TELP_digit),'_',num2str(TEL

P_cnt),'.jpg'); 
    

   %Write all the Images into the folder 

   imwrite(TELP_resizeFrame,TELP_filename2,'jpg'); 
    

   %Play Mouth Extract Frame into Video 

   %step(extractVideo,resizeFrame);    

   %------------------End Mouth Extracted Video -----------------------    

end 

end 
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rmdir('Frames','s'); 

%Realease all the VideoFile and VideoPlayer Object 

release(TELP_originalVideo); 

release(TELP_detectorVideo); 

release(TELP_videoFReader); 
  

%-------------------------------DCT---------------------------------------- 

TELP_iter = 0; 

 for TELP_subject = 1:200 

    %for TELP_digit = 0:9 

        for fr = 1:50 

    TELP_iter = TELP_iter+1; 

    TELP_resize_extract = strcat('E:\VIKRANT\GVSU\Thesis(EGR 

695)\codes\Fusion\TE_Detected\Resize 

Extract\MouthExtract',num2str(TELP_subject),'_',num2str(fr),'.jpg'); 

    TELP_f = imread(TELP_resize_extract); 

    TELP_f = rgb2gray(TELP_f); 

    TELP_f = im2double(TELP_f);  

    TELP_T = dctmtx(16); 

    TELP_dct = @(block_struct) TELP_T * block_struct.data * TELP_T'; 

    TELP_B1 = blockproc(TELP_f,[16 16],TELP_dct); 

    TELP_fun = @(block_struct) sum(block_struct.data(:)); 

    TELP_B2 = blockproc(TELP_B1,[16 16],TELP_fun); 

    TELP_DCT_Feature = cell(1,160000); 

    TELP_D{TELP_iter} = TELP_B2(:)'; 

    TELP_DCT_Feature = cat(2,TELP_D{:});  

        end 

    %end 

 end 

     

TELP_DCT_Feature = reshape(TELP_DCT_Feature,[],200); 

TELP_DCT_Feature = TELP_DCT_Feature'; 

%-------------------------------------------------------------------------- 

  

%-------------------------Normalisation------------------------------------ 

TELP_DCT_Feature_Vector = normalise(TELP_DCT_Feature); 

%-------------------------------------------------------------------------- 

  
  

%---------------------------Fusion----------------------------------------- 

%--------------Fusion of MFCC and DCT Training feature vectors------------- 

TEFusion_Feature_Vector = horzcat(TESP_MFCC_Feature,TELP_DCT_Feature); 

%-------------------------------------------------------------------------- 
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%-------------------------------Label of Class----------------------------- 

%Formation of Labels Matrix for Training Feature Vector from 0 to 9-------- 

labels=[]; 

val=0; 

%cnt = 0; 

for i=1:size(TRFusion_Feature_Vector,1) 

%cnt=cnt+1; 

    labels(1,i)=val; 

    val=val+1; 

    if val>9 

       val=0; 

    end 

end 

class = (labels)'; 

%-------------------------------------------------------------------------- 

  
  

%[index] = multisvm(Zero_Feature_Vector,class,TE_Feature_Vector_0) 
  

Model_0=svm.train(abs(zero_Feature_Vector),class); 

[predict_0,matrix_0]=svm.predict(Model_0,abs(TE_Feature_Vector_0)); 

maximum(1,:) = max(matrix_0); 
  

Model_1=svm.train(abs(one_Feature_Vector),class); 

[predict_1,matrix_1]=svm.predict(Model_1,abs(TE_Feature_Vector_1)); 

maximum(2,:) = max(matrix_1); 
  

Model_2=svm.train(abs(two_Feature_Vector),class); 

[predict_2,matrix_2]=svm.predict(Model_2,abs(TE_Feature_Vector_2)); 

maximum(3,:) = max(matrix_2); 
  

Model_3=svm.train(abs(three_Feature_Vector),class); 

[predict_3,matrix_3]=svm.predict(Model_3,abs(TE_Feature_Vector_3)); 

maximum(4,:) = max(matrix_3); 
  

Model_4=svm.train(abs(four_Feature_Vector),class); 

[predict_4,matrix_4]=svm.predict(Model_4,abs(TE_Feature_Vector_4)); 

maximum(5,:) = max(matrix_4); 
  

Model_5=svm.train(abs(five_Feature_Vector),class); 

[predict_5,matrix_5]=svm.predict(Model_5,abs(TE_Feature_Vector_5)); 

maximum(6,:) = max(matrix_5); 
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Model_6=svm.train(abs(six_Feature_Vector),class); 

[predict_6,matrix_6]=svm.predict(Model_6,abs(TE_Feature_Vector_6)); 

maximum(7,:) = max(matrix_6); 
  

Model_7=svm.train(abs(seven_Feature_Vector),class); 

[predict_7,matrix_7]=svm.predict(Model_7,abs(TE_Feature_Vector_7)); 

maximum(8,:) = max(matrix_7); 
  

Model_8=svm.train(abs(eight_Feature_Vector),class); 

[predict_8,matrix_8]=svm.predict(Model_8,abs(TE_Feature_Vector_8)); 

maximum(9,:) = max(matrix_8); 
  

Model_9=svm.train(abs(nine_Feature_Vector),class); 

[predict_9,matrix_9]=svm.predict(Model_9,abs(TE_Feature_Vector_9)); 

maximum(10,:) = max(matrix_9); 
  

%scores(TE_row,:) = maximum; 

[digit_score,Digit] = max(maximum); 

%clear maximum; 
  

%maximum 

Recognized_Digit(TE_row,:) = Digit-1; 

%Recognized_Digit = Digit-1 

end 

  
 

function [p,q,D] = dp(M) 

% [p,q] = dp(M)  

%    Use dynamic programming to find a min-cost path through matrix M. 

%    Return state sequence in p,q 

% 2003-03-15 dpwe@ee.columbia.edu 

  

% Copyright (c) 2003 Dan Ellis <dpwe@ee.columbia.edu> 

% released under GPL - see file COPYRIGHT 

  

[r,c] = size(M); 
  

% costs 

D = zeros(r+1, c+1); 

D(1,:) = NaN; 

D(:,1) = NaN; 

D(1,1) = 0; 

D(2:(r+1), 2:(c+1)) = M; 
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% traceback 

phi = zeros(r,c); 
  

for i = 1:r;  

  for j = 1:c; 

    [dmax, tb] = min([D(i, j), D(i, j+1), D(i+1, j)]); 

    D(i+1,j+1) = D(i+1,j+1)+dmax; 

    phi(i,j) = tb; 

  end 

end 

  

% Traceback from top left 

i = r;  

j = c; 

p = i; 

q = j; 

while i > 1 & j > 1 

  tb = phi(i,j); 

  if (tb == 1) 

    i = i-1; 

    j = j-1; 

  elseif (tb == 2) 

    i = i-1; 

  elseif (tb == 3) 

    j = j-1; 

  else     

    error; 

  end 

  p = [i,p]; 

  q = [j,q]; 

end 

  

% Strip off the edges of the D matrix before returning 

D = D(2:(r+1),2:(c+1)); 
 

 

function [f,t]=enframe(x,win,inc) 

%ENFRAME split signal up into (overlapping) frames: one per row. 

[F,T]=(X,WIN,INC) 

% 

%   F = ENFRAME(X,LEN) splits the vector X(:) up into 

%   frames. Each frame is of length LEN and occupies 
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%   one row of the output matrix. The last few frames of X 

%   will be ignored if its length is not divisible by LEN. 

%   It is an error if X is shorter than LEN. 

% 

%   F = ENFRAME(X,LEN,INC) has frames beginning at increments of INC 

%   The centre of frame I is X((I-1)*INC+(LEN+1)/2) for I=1,2,... 

%   The number of frames is fix((length(X)-LEN+INC)/INC) 

% 

%   F = ENFRAME(X,WINDOW) or ENFRAME(X,WINDOW,INC) multiplies 

%   each frame by WINDOW(:) 

% 

%   The second output argument, T, gives the time in samples at the centre 

%   of each frame. T=i corresponds to the time of sample X(i).  

% 

% Example of frame-based processing: 

%          INC=20                                                           % set frame increment 

%          NW=INC*2                                                         % oversample by a factor of 2 (4 

is also often used) 

%          S=cos((0:NW*7)*6*pi/NW);                             % example input signal 

%          W=sqrt(hamming(NW+1)); W(end)=[];      % sqrt hamming window of period 

NW 

%          F=enframe(S,W,INC);                          % split into frames 

%          ... process frames ... 

%          X=overlapadd(F,W,INC);                       % reconstitute the time waveform (omit 

"X=" to plot waveform) 
  

%      Copyright (C) Mike Brookes 1997 

%      Version: $Id: enframe.m,v 1.7 2009/11/01 21:08:21 dmb Exp $ 

% 

%   VOICEBOX is a MATLAB toolbox for speech processing. 

%   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   This program is free software; you can redistribute it and/or modify 

%   it under the terms of the GNU General Public License as published by 

%   the Free Software Foundation; either version 2 of the License, or 

%   (at your option) any later version. 

% 

%   This program is distributed in the hope that it will be useful, 

%   but WITHOUT ANY WARRANTY; without even the implied warranty of 

%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

%   GNU General Public License for more details. 
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% 

%   You can obtain a copy of the GNU General Public License from 

%   http://www.gnu.org/copyleft/gpl.html or by writing to 

%   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

nx=length(x(:)); 

nwin=length(win); 

if (nwin == 1) 

   len = win; 

else 

   len = nwin; 

end 

if (nargin < 3) 

   inc = len; 

end 

nf = fix((nx-len+inc)/inc); 

f=zeros(nf,len); 

indf= inc*(0:(nf-1)).'; 

inds = (1:len); 

f(:) = x(indf(:,ones(1,len))+inds(ones(nf,1),:)); 

if (nwin > 1) 

    w = win(:)'; 

    f = f .* w(ones(nf,1),:); 

end 

if nargout>1 

    t=(1+len)/2+indf; 

end 

 

 

function [mag, phase, freq, powerDb]=fftTwoSide(signal, fs, plotOpt)  

% fftTwoSide: Two-sided FFT for real/complex signals  

%   Usage: [mag, phase, freq, powerDb]=fftTwoSide(signal, fs)  
  

%   Roger Jang, 20060411  
  

if nargin<1, selfdemo; return; end  

if nargin<2, fs=1; end  

if nargin<3, plotOpt=0; end  
  

N = length(signal);     % ??  

freqStep = fs/N;        % ?????????  
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time = (0:N-1)/fs;      % ???????  

z = fft(signal);        % Spectrum  

freq = freqStep*(-N/2:N/2-1);   % ???????  

z = fftshift(z);        % ?????????  

mag=abs(z);         % Magnitude  

phase=unwrap(angle(z));     % Phase  

powerDb=20*log(mag+eps);    % Power in db  
  

if plotOpt  

    % ====== Plot time-domain signals  

    subplot(3,1,1);  

    plot(time, signal, '.-');  

    title(sprintf('Input signals (fs=%d)', fs));  

    xlabel('Time (seconds)'); ylabel('Amplitude'); axis tight  

    % ====== Plot spectral power  

    subplot(3,1,2);  

    plot(freq, powerDb, '.-'); grid on  

    title('Power spectrum');  

    xlabel('Frequency (Hz)'); ylabel('Power (db)'); axis tight  

    % ====== Plot phase  

    subplot(3,1,3);  

    plot(freq, phase, '.-'); grid on  

    title('Phase');  

    xlabel('Frequency (Hz)'); ylabel('Phase (Radian)'); axis tight  

end  
 

 

function mel = frq2mel(frq) 

%FRQ2ERB  Convert Hertz to Mel frequency scale MEL=(FRQ) 

%   mel = frq2mel(frq) converts a vector of frequencies (in Hz) 

%   to the corresponding values on the Mel scale which corresponds 

%   to the perceived pitch of a tone 

  

%   The relationship between mel and frq is given by: 

% 

%   m = ln(1 + f/700) * 1000 / ln(1+1000/700) 

% 

%   This means that m(1000) = 1000 

% 

%   References: 

% 

%     [1] S. S. Stevens & J. Volkman "The relation of pitch to 

%       frequency", American J of Psychology, V 53, p329 1940 
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%     [2] C. G. M. Fant, "Acoustic description & classification 

%       of phonetic units", Ericsson Tchnics, No 1 1959 

%       (reprinted in "Speech Sounds & Features", MIT Press 1973) 

%     [3] S. B. Davis & P. Mermelstein, "Comparison of parametric 

%       representations for monosyllabic word recognition in 

%       continuously spoken sentences", IEEE ASSP, V 28, 

%       pp 357-366 Aug 1980 

%     [4] J. R. Deller Jr, J. G. Proakis, J. H. L. Hansen, 

%       "Discrete-Time Processing of Speech Signals", p380, 

%       Macmillan 1993 

%     [5] HTK Reference Manual p73 

%    
  
  
  

%      Copyright (C) Mike Brookes 1998 

%      Version: $Id: frq2mel.m,v 1.5 2009/12/30 10:30:05 dmb Exp $ 

% 

%   VOICEBOX is a MATLAB toolbox for speech processing. 

%   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   This program is free software; you can redistribute it and/or modify 

%   it under the terms of the GNU General Public License as published by 

%   the Free Software Foundation; either version 2 of the License, or 

%   (at your option) any later version. 

% 

%   This program is distributed in the hope that it will be useful, 

%   but WITHOUT ANY WARRANTY; without even the implied warranty of 

%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

%   GNU General Public License for more details. 

% 

%   You can obtain a copy of the GNU General Public License from 

%   http://www.gnu.org/copyleft/gpl.html or by writing to 

%   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

mel = sign(frq).*log(1+abs(frq)/700)*1127.01048; 

if ~nargout 

    plot(frq,mel,'-x'); 

    xlabel(['Frequency (' xticksi 'Hz)']); 
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    ylabel(['Frequency (' yticksi 'Mel)']); 

end 

 

 

function x = istft(d, ftsize, w, h) 

% X = istft(D, F, W, H)                   Inverse short-time Fourier transform. 

%   Performs overlap-add resynthesis from the short-time Fourier transform  

%   data in D.  Each column of D is taken as the result of an F-point  

%   fft; each successive frame was offset by H points (default 

%   W/2, or F/2 if W==0). Data is hann-windowed at W pts, or  

%       W = 0 gives a rectangular window (default);  

%       W as a vector uses that as window. 

%       This version scales the output so the loop gain is 1.0 for 

%       either hann-win an-syn with 25% overlap, or hann-win on 

%       analysis and rect-win (W=0) on synthesis with 50% overlap. 

% dpwe 1994may24.  Uses built-in 'ifft' etc. 

% $Header: /home/empire6/dpwe/public_html/resources/matlab/pvoc/RCS/istft.m,v 1.5 

2010/08/12 20:39:42 dpwe Exp $ 

  

if nargin < 2; ftsize = 2*(size(d,1)-1); end 

if nargin < 3; w = 0; end 

if nargin < 4; h = 0; end  % will become winlen/2 later 
  

s = size(d); 

if s(1) ~= (ftsize/2)+1 

  error('number of rows should be fftsize/2+1') 

end 

cols = s(2); 
  

if length(w) == 1 

  if w == 0 

    % special case: rectangular window 

    win = ones(1,ftsize); 

  else 

    if rem(w, 2) == 0   % force window to be odd-len 

      w = w + 1; 

    end 

    halflen = (w-1)/2; 

    halff = ftsize/2; 

    halfwin = 0.5 * ( 1 + cos( pi * (0:halflen)/halflen)); 

    win = zeros(1, ftsize); 

    acthalflen = min(halff, halflen); 

    win((halff+1):(halff+acthalflen)) = halfwin(1:acthalflen); 
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    win((halff+1):-1:(halff-acthalflen+2)) = halfwin(1:acthalflen); 

    % 2009-01-06: Make stft-istft loop be identity for 25% hop 

    win = 2/3*win; 

  end 

else 

  win = w; 

end 

  

w = length(win); 

% now can set default hop 

if h == 0  

  h = floor(w/2); 

end 

  

xlen = ftsize + (cols-1)*h; 

x = zeros(1,xlen); 
  

for b = 0:h:(h*(cols-1)) 

  ft = d(:,1+b/h)'; 

  ft = [ft, conj(ft([((ftsize/2)):-1:2]))]; 

  px = real(ifft(ft)); 

  x((b+1):(b+ftsize)) = x((b+1):(b+ftsize))+px.*win; 

end; 
 

 

function frq = mel2frq(mel) 

%MEL2FRQ  Convert Mel frequency scale to Hertz FRQ=(MEL) 

%   frq = mel2frq(mel) converts a vector of Mel frequencies 

%   to the corresponding real frequencies. 

%   The Mel scale corresponds to the perceived pitch of a tone 

  

%   The relationship between mel and frq is given by: 

% 

%   m = ln(1 + f/700) * 1000 / ln(1+1000/700) 

% 

%   This means that m(1000) = 1000 

% 

%   References: 

% 

%     [1] S. S. Stevens & J. Volkman "The relation of pitch to 

%       frequency", American J of Psychology, V 53, p329 1940 

%     [2] C. G. M. Fant, "Acoustic description & classification 

%       of phonetic units", Ericsson Tchnics, No 1 1959 
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%       (reprinted in "Speech Sounds & Features", MIT Press 1973) 

%     [3] S. B. Davis & P. Mermelstein, "Comparison of parametric 

%       representations for monosyllabic word recognition in 

%       continuously spoken sentences", IEEE ASSP, V 28, 

%       pp 357-366 Aug 1980 

%     [4] J. R. Deller Jr, J. G. Proakis, J. H. L. Hansen, 

%       "Discrete-Time Processing of Speech Signals", p380, 

%       Macmillan 1993 

%     [5] HTK Reference Manual p73 

%    
  
  
  

%      Copyright (C) Mike Brookes 1998 

%      Version: $Id: mel2frq.m,v 1.5 2009/12/30 10:30:25 dmb Exp $ 

% 

%   VOICEBOX is a MATLAB toolbox for speech processing. 

%   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   This program is free software; you can redistribute it and/or modify 

%   it under the terms of the GNU General Public License as published by 

%   the Free Software Foundation; either version 2 of the License, or 

%   (at your option) any later version. 

% 

%   This program is distributed in the hope that it will be useful, 

%   but WITHOUT ANY WARRANTY; without even the implied warranty of 

%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

%   GNU General Public License for more details. 

% 

%   You can obtain a copy of the GNU General Public License from 

%   http://www.gnu.org/copyleft/gpl.html or by writing to 

%   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

frq=700*sign(mel).*(exp(abs(mel)/1127.01048)-1); 

if ~nargout 

    plot(mel,frq,'-x'); 

    xlabel(['Frequency (' xticksi 'Mel)']); 

    ylabel(['Frequency (' yticksi 'Hz)']); 

end 
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function [x,mc,mn,mx]=melbankm(p,n,fs,fl,fh,w) 

%MELBANKM determine matrix for a mel/erb/bark-spaced filterbank 

[X,MN,MX]=(P,N,FS,FL,FH,W) 

% 

% Inputs: 

%       p   number of filters in filterbank or the filter spacing in k-mel/bark/erb 

[ceil(4.6*log10(fs))] 

%       n   length of fft 

%       fs  sample rate in Hz 

%       fl  low end of the lowest filter as a fraction of fs [default = 0] 

%       fh  high end of highest filter as a fraction of fs [default = 0.5] 

%       w   any sensible combination of the following: 

%             'b' = bark scale instead of mel 

%             'e' = erb-rate scale 

%             'l' = log10 Hz frequency scale 

%             'f' = linear frequency scale 

% 

%             'c' = fl/fh specify centre of low and high filters 

%             'h' = fl/fh are in Hz instead of fractions of fs 

%             'H' = fl/fh are in mel/erb/bark/log10 

% 

%             't' = triangular shaped filters in mel/erb/bark domain (default) 

%             'n' = hanning shaped filters in mel/erb/bark domain 

%             'm' = hamming shaped filters in mel/erb/bark domain 

% 

%             'z' = highest and lowest filters taper down to zero [default] 

%             'y' = lowest filter remains at 1 down to 0 frequency and 

%                   highest filter remains at 1 up to nyquist freqency 

% 

%             'u' = scale filters to sum to unity 

% 

%             's' = single-sided: do not double filters to account for negative frequencies 

% 

%             'g' = plot idealized filters [default if no output arguments present] 

% 

% Note that the filter shape (triangular, hamming etc) is defined in the mel (or erb etc) 

domain. 

% Some people instead define an asymmetric triangular filter in the frequency domain. 

% 

%              If 'ty' or 'ny' is specified, the total power in the fft is preserved. 

% 
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% Outputs:  x     a sparse matrix containing the filterbank amplitudes 

%                 If the mn and mx outputs are given then size(x)=[p,mx-mn+1] 

%                 otherwise size(x)=[p,1+floor(n/2)] 

%                 Note that the peak filter values equal 2 to account for the power 

%                 in the negative FFT frequencies. 

%           mc    the filterbank centre frequencies in mel/erb/bark 

%           mn    the lowest fft bin with a non-zero coefficient 

%           mx    the highest fft bin with a non-zero coefficient 

%                 Note: you must specify both or neither of mn and mx. 

% 

% Examples of use: 

% 

% (a) Calcuate the Mel-frequency Cepstral Coefficients 

% 

%       f=rfft(s);                  % rfft() returns only 1+floor(n/2) coefficients 

%       x=melbankm(p,n,fs);         % n is the fft length, p is the number of filters wanted 

%       z=log(x*abs(f).^2);         % multiply x by the power spectrum 

%       c=dct(z);                   % take the DCT 

% 

% (b) Calcuate the Mel-frequency Cepstral Coefficients efficiently 

% 

%       f=fft(s);                        % n is the fft length, p is the number of filters wanted 

%       [x,mc,na,nb]=melbankm(p,n,fs);   % na:nb gives the fft bins that are needed 

%       z=log(x*(f(na:nb)).*conj(f(na:nb))); 

% 

% (c) Plot the calculated filterbanks 

% 

%      plot((0:floor(n/2))*fs/n,melbankm(p,n,fs)')   % fs=sample frequency 

% 

% (d) Plot the idealized filterbanks (without output sampling) 

% 

%      melbankm(p,n,fs); 

% 

% References: 

% 

% [1] S. S. Stevens, J. Volkman, and E. B. Newman. A scale for the measurement 

%     of the psychological magnitude of pitch. J. Acoust Soc Amer, 8: 185–19, 1937. 

% [2] S. Davis and P. Mermelstein. Comparison of parametric representations for 

%     monosyllabic word recognition in continuously spoken sentences. 

%     IEEE Trans Acoustics Speech and Signal Processing, 28 (4): 357–366, Aug. 1980. 
  
  

%      Copyright (C) Mike Brookes 1997-2009 
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%      Version: $Id: melbankm.m,v 1.11 2010/01/02 20:02:22 dmb Exp $ 

% 

%   VOICEBOX is a MATLAB toolbox for speech processing. 

%   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   This program is free software; you can redistribute it and/or modify 

%   it under the terms of the GNU General Public License as published by 

%   the Free Software Foundation; either version 2 of the License, or 

%   (at your option) any later version. 

% 

%   This program is distributed in the hope that it will be useful, 

%   but WITHOUT ANY WARRANTY; without even the implied warranty of 

%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

%   GNU General Public License for more details. 

% 

%   You can obtain a copy of the GNU General Public License from 

%   http://www.gnu.org/copyleft/gpl.html or by writing to 

%   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% Note "FFT bin_0" assumes DC = bin 0 whereas "FFT bin_1" means DC = bin 1 

  

if nargin < 6 

    w='tz'; % default options 

    if nargin < 5 

        fh=0.5; % max freq is the nyquist 

        if nargin < 4 

            fl=0; % min freq is DC 

        end 

    end 

end 

sfact=2-any(w=='s');   % 1 if single sided else 2 

wr=' ';   % default warping is mel 

for i=1:length(w) 

    if any(w(i)=='lebf'); 

        wr=w(i); 

    end 

end 

if any(w=='h') || any(w=='H') 

    mflh=[fl fh]; 
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else 

    mflh=[fl fh]*fs; 

end 

if ~any(w=='H') 

    switch wr 

                    case 'f'       % no transformation 

        case 'l' 

            if fl<=0 

                error('Low frequency limit must be >0 for l option'); 

            end 

            mflh=log10(mflh);       % convert frequency limits into log10 Hz 

        case 'e' 

            mflh=frq2erb(mflh);       % convert frequency limits into erb-rate 

        case 'b' 

            mflh=frq2bark(mflh);       % convert frequency limits into bark 

        otherwise 

            mflh=frq2mel(mflh);       % convert frequency limits into mel 

    end 

end 

melrng=mflh*(-1:2:1)';          % mel range 

fn2=floor(n/2);     % bin index of highest positive frequency (Nyquist if n is even) 

if isempty(p) 

    p=ceil(4.6*log10(fs));         % default number of filters 

end 

if any(w=='c')              % c option: specify fiter centres not edges 

if p<1 

    p=round(melrng/(p*1000))+1; 

end 

melinc=melrng/(p-1); 

mflh=mflh+(-1:2:1)*melinc; 

else 

    if p<1 

    p=round(melrng/(p*1000))-1; 

end 

melinc=melrng/(p+1); 

end 

  

% 

% Calculate the FFT bins corresponding to [filter#1-low filter#1-mid filter#p-mid 

filter#p-high] 

% 

switch wr 

        case 'f' 
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        blim=(mflh(1)+[0 1 p p+1]*melinc)*n/fs; 

    case 'l' 

        blim=10.^(mflh(1)+[0 1 p p+1]*melinc)*n/fs; 

    case 'e' 

        blim=erb2frq(mflh(1)+[0 1 p p+1]*melinc)*n/fs; 

    case 'b' 

        blim=bark2frq(mflh(1)+[0 1 p p+1]*melinc)*n/fs; 

    otherwise 

        blim=mel2frq(mflh(1)+[0 1 p p+1]*melinc)*n/fs; 

end 

mc=mflh(1)+(1:p)*melinc;    % mel centre frequencies 

b1=floor(blim(1))+1;            % lowest FFT bin_0 required might be negative) 

b4=min(fn2,ceil(blim(4))-1);    % highest FFT bin_0 required 

% 

% now map all the useful FFT bins_0 to filter1 centres 

% 

switch wr 

        case 'f' 

        pf=((b1:b4)*fs/n-mflh(1))/melinc; 

    case 'l' 

        pf=(log10((b1:b4)*fs/n)-mflh(1))/melinc; 

    case 'e' 

        pf=(frq2erb((b1:b4)*fs/n)-mflh(1))/melinc; 

    case 'b' 

        pf=(frq2bark((b1:b4)*fs/n)-mflh(1))/melinc; 

    otherwise 

        pf=(frq2mel((b1:b4)*fs/n)-mflh(1))/melinc; 

end 

% 

%  remove any incorrect entries in pf due to rounding errors 

% 

if pf(1)<0 

    pf(1)=[]; 

    b1=b1+1; 

end 

if pf(end)>=p+1 

    pf(end)=[]; 

    b4=b4-1; 

end 

fp=floor(pf);                  % FFT bin_0 i contributes to filters_1 fp(1+i-b1)+[0 1] 

pm=pf-fp;                       % multiplier for upper filter 

k2=find(fp>0,1);   % FFT bin_1 k2+b1 is the first to contribute to both upper and lower 

filters 
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k3=find(fp<p,1,'last');  % FFT bin_1 k3+b1 is the last to contribute to both upper and 

lower filters 

k4=numel(fp); % FFT bin_1 k4+b1 is the last to contribute to any filters 

if isempty(k2) 

    k2=k4+1; 

end 

if isempty(k3) 

    k3=0; 

end 

if any(w=='y')          % preserve power in FFT 

    mn=1; % lowest fft bin required (1 = DC) 

    mx=fn2+1; % highest fft bin required (1 = DC) 

    r=[ones(1,k2+b1-1) 1+fp(k2:k3) fp(k2:k3) repmat(p,1,fn2-k3-b1+1)]; % filter 

number_1 

    c=[1:k2+b1-1 k2+b1:k3+b1 k2+b1:k3+b1 k3+b1+1:fn2+1]; % FFT bin1 

    v=[ones(1,k2+b1-1) pm(k2:k3) 1-pm(k2:k3) ones(1,fn2-k3-b1+1)]; 

else 

    r=[1+fp(1:k3) fp(k2:k4)]; % filter number_1 

    c=[1:k3 k2:k4]; % FFT bin_1 - b1 

    v=[pm(1:k3) 1-pm(k2:k4)]; 

    mn=b1+1; % lowest fft bin_1 

    mx=b4+1;  % highest fft bin_1 

end 

if b1<0 

    c=abs(c+b1-1)-b1+1;     % convert negative frequencies into positive 

end 

% end 

if any(w=='n') 

    v=0.5-0.5*cos(v*pi);      % convert triangles to Hanning 

elseif any(w=='m') 

    v=0.5-0.46/1.08*cos(v*pi);  % convert triangles to Hamming 

end 

if sfact==2  % double all except the DC and Nyquist (if any) terms 

    msk=(c+mn>2) & (c+mn<n-fn2+2);  % there is no Nyquist term if n is odd 

    v(msk)=2*v(msk); 

end 

% 

% sort out the output argument options 

% 

if nargout > 2 

    x=sparse(r,c,v); 

    if nargout == 3     % if exactly three output arguments, then 

        mc=mn;          % delete mc output for legacy code compatibility 



120 
 

        mn=mx; 

    end 

else 

    x=sparse(r,c+mn-1,v,p,1+fn2); 

end 

if any(w=='u') 

    sx=sum(x,2); 

    x=x./repmat(sx+(sx==0),1,size(x,2)); 

end 

% 

% plot results if no output arguments or g option given 

% 

if ~nargout || any(w=='g') % plot idealized filters 

    ng=201;     % 201 points 

    me=mflh(1)+(0:p+1)'*melinc; 

    switch wr 

                case 'f' 

            fe=me; % defining frequencies 

            xg=repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng); 

        case 'l' 

            fe=10.^me; % defining frequencies 

            xg=10.^(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng)); 

        case 'e' 

            fe=erb2frq(me); % defining frequencies 

            xg=erb2frq(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng)); 

        case 'b' 

            fe=bark2frq(me); % defining frequencies 

            xg=bark2frq(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng)); 

        otherwise 

            fe=mel2frq(me); % defining frequencies 

            xg=mel2frq(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng)); 

    end 

  

    v=1-abs(linspace(-1,1,ng)); 

    if any(w=='n') 

        v=0.5-0.5*cos(v*pi);      % convert triangles to Hanning 

    elseif any(w=='m') 

        v=0.5-0.46/1.08*cos(v*pi);  % convert triangles to Hamming 
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    end 

    v=v*sfact;  % multiply by 2 if double sided 

    v=repmat(v,p,1); 

    if any(w=='y')  % extend first and last filters 

        v(1,xg(1,:)<fe(2))=sfact; 

        v(end,xg(end,:)>fe(p+1))=sfact; 

    end 

    if any(w=='u') % scale to unity sum 

        dx=(xg(:,3:end)-xg(:,1:end-2))/2; 

        dx=dx(:,[1 1:ng-2 ng-2]); 

        vs=sum(v.*dx,2); 

        v=v./repmat(vs+(vs==0),1,ng)*fs/n; 

    end 

    plot(xg',v','b'); 

    set(gca,'xlim',[fe(1) fe(end)]); 

%     xlabel(['Frequency ('xticksi 'Hz)']); 

end 

 

function c=melcepst(s,fs,w,nc,p,n,inc,fl,fh) 

%MELCEPST Calculate the mel cepstrum of a signal C=(S,FS,W,NC,P,N,INC,FL,FH) 

% 

% 

% Simple use: c=melcepst(s,fs)  % calculate mel cepstrum with 12 coefs, 256 sample 

frames 

%                 c=melcepst(s,fs,'e0dD') % include log energy, 0th cepstral coef, delta and 

delta-delta coefs 

% 

% Inputs: 

%     s  speech signal 

%     fs  sample rate in Hz (default 11025) 

%     nc  number of cepstral coefficients excluding 0'th coefficient (default 12) 

%     n   length of frame in samples (default power of 2 < (0.03*fs)) 

%     p   number of filters in filterbank (default: floor(3*log(fs)) = approx 2.1 per ocatave) 

%     inc frame increment (default n/2) 

%     fl  low end of the lowest filter as a fraction of fs (default = 0) 

%     fh  high end of highest filter as a fraction of fs (default = 0.5) 

% 

%       w   any sensible combination of the following: 

% 

%               'R'  rectangular window in time domain 

%               'N' Hanning window in time domain 

%               'M' Hamming window in time domain (default) 

% 
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%             't'  triangular shaped filters in mel domain (default) 

%             'n'  hanning shaped filters in mel domain 

%             'm'  hamming shaped filters in mel domain 

% 

%               'p' filters act in the power domain 

%               'a' filters act in the absolute magnitude domain (default) 

% 

%              '0'  include 0'th order cepstral coefficient 

%               'e'  include log energy 

%               'd' include delta coefficients (dc/dt) 

%               'D' include delta-delta coefficients (d^2c/dt^2) 

% 

%             'z'  highest and lowest filters taper down to zero (default) 

%             'y'  lowest filter remains at 1 down to 0 frequency and 

%                 highest filter remains at 1 up to nyquist freqency 

% 

%              If 'ty' or 'ny' is specified, the total power in the fft is preserved. 

% 

% Outputs:  c     mel cepstrum output: one frame per row. Log energy, if requested, is the 

%                 first element of each row followed by the delta and then the delta-delta 

%                 coefficients. 

% 

  

% BUGS: (1) should have power limit as 1e-16 rather than 1e-6 (or possibly a better way 

of choosing this) 

%           and put into VOICEBOX 

%       (2) get rdct to change the data length (properly) instead of doing it explicitly 

(wrongly) 
  

%      Copyright (C) Mike Brookes 1997 

%      Version: $Id: melcepst.m,v 1.7 2009/10/19 10:20:32 dmb Exp $ 

% 

%   VOICEBOX is a MATLAB toolbox for speech processing. 

%   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   This program is free software; you can redistribute it and/or modify 

%   it under the terms of the GNU General Public License as published by 

%   the Free Software Foundation; either version 2 of the License, or 

%   (at your option) any later version. 

% 

%   This program is distributed in the hope that it will be useful, 
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%   but WITHOUT ANY WARRANTY; without even the implied warranty of 

%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

%   GNU General Public License for more details. 

% 

%   You can obtain a copy of the GNU General Public License from 

%   http://www.gnu.org/copyleft/gpl.html or by writing to 

%   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if nargin<2 fs=11025; end 

if nargin<3 w='M'; end 

if nargin<4 nc=13; end 

if nargin<5 p=floor(3*log(fs)); end 

if nargin<6 n=256; end   %pow2(floor(log2(0.03*fs))); end 

if nargin<9 

   fh=0.5;    

   if nargin<8 

     fl=0; 

     if nargin<7 

        inc=floor(n/2); 

     end 

  end 

end 

  

if length(w)==0 

   w='M'; 

end 

if any(w=='R') 

   z=enframe(s,n,inc); 

elseif any (w=='N') 

   z=enframe(s,hanning(n),inc); 

else 

   z=enframe(s,hamming(n),inc); 

end 

f=rfft(z.'); 

% pl = (0:length(f)-1)*50/length(f); 

% figure, plot(pl,abs(f)); 

% title('magnitude'); 

[m,a,b]=melbankm(p,n,fs,fl,fh,w); 

%figure,plot((0:floor(n/2))*fs/n,melbankm(p,n,fs)'); 

%xlabel('Frequency[Hz]');ylabel('Amplitude'); 

pw=f(a:b,:).*conj(f(a:b,:)); 
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pth=max(pw(:))*1E-20; 

if any(w=='p') 

   y=log(max(m*pw,pth)); 

else 

   ath=sqrt(pth); 

   y=log(max(m*abs(f(a:b,:)),ath)); 

end 

c=rdct(y).'; 

nf=size(c,1); 

nc=nc+1; 

if p>nc 

   c(:,nc+1:end)=[]; 

elseif p<nc 

   c=[c zeros(nf,nc-p)]; 

end 

if ~any(w=='0') 

   c(:,1)=[]; 

   nc=nc-1; 

end 

if any(w=='e') 

   c=[log(sum(pw)).' c]; 

   nc=nc+1; 

end 

  

% calculate derivative 

  

if any(w=='D') 

  vf=(4:-1:-4)/60; 

  af=(1:-1:-1)/2; 

  ww=ones(5,1); 

  cx=[c(ww,:); c; c(nf*ww,:)]; 

  vx=reshape(filter(vf,1,cx(:)),nf+10,nc); 

  vx(1:8,:)=[]; 

  ax=reshape(filter(af,1,vx(:)),nf+2,nc); 

  ax(1:2,:)=[]; 

  vx([1 nf+2],:)=[]; 

  if any(w=='d') 

     c=[c vx ax]; 

  else 

     c=[c ax]; 

  end 

elseif any(w=='d') 

  vf=(4:-1:-4)/60; 
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  ww=ones(4,1); 

  cx=[c(ww,:); c; c(nf*ww,:)]; 

  vx=reshape(filter(vf,1,cx(:)),nf+8,nc); 

  vx(1:8,:)=[]; 

  c=[c vx]; 

end    
  

if nargout<1 

   [nf,nc]=size(c); 

   t=((0:nf-1)*inc+(n-1)/2)/fs; 

   ci=(1:nc)-any(w=='0')-any(w=='e'); 

   imh = imagesc(t,ci,c.'); 

   axis('xy'); 

   xlabel('Time (s)'); 

   ylabel('Mel-cepstrum coefficient'); 

    map = (0:63)'/63; 

    colormap([map map map]); 

    colorbar; 

end 

 

 

function [cepstral] = mfcc1(x,y,fs) 
  

% Calculate mfcc's with a frequency(fs) and store in ceptral cell. Display 

% y at a time when x is calculated 

cepstral = cell(size(x,1),1); 

for i = 1:size(x,1) 

% disp(y(i,:)) 

nc = 13; 

p = 26;  

n = 400;    

inc = 240; 

cepstral{i} = melcepst(x{i},fs,'E0dD',nc,p,n,inc); 

end 

  

%MELCEPST Calculate the mel cepstrum of a signal C=(S,FS,W,NC,P,N,INC,FL,FH) 

%s   speech signal 

%     fs  sample rate in Hz (default 11025) 

%     nc  number of cepstral coefficients excluding 0'th coefficient (default 12) 

%     n   length of frame in samples (default power of 2 < (0.03*fs)) 

%     p   number of filters in filterbank (default: floor(3*log(fs)) = approx 2.1 per ocatave) 

%     inc frame increment (default n/2) 

%     fl  low end of the lowest filter as a fraction of fs (default = 0) 
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%     fh  high end of highest filter as a fraction of fs (default = 0.5) 
 

 

function c = pvsample(b, t, hop) 

% c = pvsample(b, t, hop)   Interpolate an STFT array according to the 'phase vocoder' 

%     b is an STFT array, of the form generated by 'specgram'. 

%     t is a vector of (real) time-samples, which specifies a path through  

%     the time-base defined by the columns of b.  For each value of t,  

%     the spectral magnitudes in the columns of b are interpolated, and  

%     the phase difference between the successive columns of b is  

%     calculated; a new column is created in the output array c that  

%     preserves this per-step phase advance in each bin. 

%     hop is the STFT hop size, defaults to N/2, where N is the FFT size 

%     and b has N/2+1 rows.  hop is needed to calculate the 'null' phase  

%     advance expected in each bin. 

%     Note: t is defined relative to a zero origin, so 0.1 is 90% of  

%     the first column of b, plus 10% of the second. 

% 2000-12-05 dpwe@ee.columbia.edu 

% $Header: /homes/dpwe/public_html/resources/matlab/dtw/../RCS/pvsample.m,v 1.3 

2003/04/09 03:17:10 dpwe Exp $ 

  

if nargin < 3 

  hop = 0; 

end 

  

[rows,cols] = size(b); 
  

N = 2*(rows-1); 
  

if hop == 0 

  % default value 

  hop = N/2; 

end 

  

% Empty output array 

c = zeros(rows, length(t)); 
  

% Expected phase advance in each bin 

dphi = zeros(1,N/2+1); 

dphi(2:(1 + N/2)) = (2*pi*hop)./(N./(1:(N/2))); 
  

% Phase accumulator 

% Preset to phase of first frame for perfect reconstruction 

% in case of 1:1 time scaling 
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ph = angle(b(:,1)); 
  

% Append a 'safety' column on to the end of b to avoid problems  

% taking *exactly* the last frame (i.e. 1*b(:,cols)+0*b(:,cols+1)) 

b = [b,zeros(rows,1)]; 
  

ocol = 1; 

for tt = t 

  % Grab the two columns of b 

  bcols = b(:,floor(tt)+[1 2]); 

  tf = tt - floor(tt); 

  bmag = (1-tf)*abs(bcols(:,1)) + tf*(abs(bcols(:,2))); 

  % calculate phase advance 

  dp = angle(bcols(:,2)) - angle(bcols(:,1)) - dphi'; 

  % Reduce to -pi:pi range 

  dp = dp - 2 * pi * round(dp/(2*pi)); 

  % Save the column 

  c(:,ocol) = bmag .* exp(j*ph); 

  % Cumulate phase, ready for next frame 

  ph = ph + dphi' + dp; 

  ocol = ocol+1; 

end 

 

 

function MFCC_Feature_Vector = normalise(X) 

mindata = min(X); 

maxdata = max(X); 

MFCC_Feature_Vector = bsxfun(@rdivide, bsxfun(@minus, X, mindata), maxdata - 

mindata);  
 

 

function y=rdct(x,n,a,b) 

%RDCT     Discrete cosine transform of real data Y=(X,N,A,B) 

% Data is truncated/padded to length N. 

% 

% This routine is equivalent to multiplying by the matrix 

% 

%   rdct(eye(n)) = diag([sqrt(2)*B/A repmat(2/A,1,n-1)]) * cos((0:n-1)'*(0.5:n)*pi/n) 

% 

% Default values of the scaling factors are A=sqrt(2N) and B=1 which 

% results in an orthogonal matrix. Other common values are A=1 or N and/or B=1 or 

sqrt(2).  

% If b~=1 then the columns are no longer orthogonal. 
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% 

% see IRDCT for the inverse transform 

  

% BUG: in line 51 we should do chopping after transform and not before 

  
  
  

%      Copyright (C) Mike Brookes 1998 

%      Version: $Id: rdct.m,v 1.6 2007/05/04 07:01:39 dmb Exp $ 

% 

%   VOICEBOX is a MATLAB toolbox for speech processing. 

%   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   This program is free software; you can redistribute it and/or modify 

%   it under the terms of the GNU General Public License as published by 

%   the Free Software Foundation; either version 2 of the License, or 

%   (at your option) any later version. 

% 

%   This program is distributed in the hope that it will be useful, 

%   but WITHOUT ANY WARRANTY; without even the implied warranty of 

%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

%   GNU General Public License for more details. 

% 

%   You can obtain a copy of the GNU General Public License from 

%   http://www.gnu.org/copyleft/gpl.html or by writing to 

%   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

fl=size(x,1)==1; 

if fl x=x(:); end 

[m,k]=size(x); 

if nargin<2 n=m; 

end 

if nargin<4 b=1;   

    if nargin<3 a=sqrt(2*n); 

    end 

    end 

if n>m x=[x; zeros(n-m,k)]; 

elseif n<m x(n+1:m,:)=[]; 

end 
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x=[x(1:2:n,:); x(2*fix(n/2):-2:2,:)]; 

z=[sqrt(2) 2*exp((-0.5i*pi/n)*(1:n-1))].'; 

y=real(fft(x).*z(:,ones(1,k)))/a; 

y(1,:)=y(1,:)*b; 

if fl y=y.'; end 

 

function A = resize(B,R,C) 

% A = resize(B,R,C)   Crop or zero-pad B to have R rows and C columns. 

%   I'm sure this must already be provided, but how to know? 

% dpwe 1995jan21 

  

% Copyright (c) 1995 Dan Ellis <dpwe@ee.columbia.edu> 

% released under GPL - see file COPYRIGHT 

  

A = zeros(R,C); 

[r,c] = size(B); 
  

mr = min(r,R); 

mc = min(c,C); 
  

A(1:mr,1:mc) = B(1:mr, 1:mc); 
 

 

function y=rfft(x,n,d) 

%RFFT     Calculate the DFT of real data Y=(X,N,D) 

% Data is truncated/padded to length N if specified. 

%   N even: (N+2)/2 points are returned with 

%           the first and last being real 

%   N odd:  (N+1)/2 points are returned with the 

%           first being real 

% In all cases fix(1+N/2) points are returned 

% D is the dimension along which to do the DFT 

  
  
  

%      Copyright (C) Mike Brookes 1998 

%      Version: $Id: rfft.m,v 1.7 2009/06/03 11:57:52 dmb Exp $ 

% 

%   VOICEBOX is a MATLAB toolbox for speech processing. 

%   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%   This program is free software; you can redistribute it and/or modify 

%   it under the terms of the GNU General Public License as published by 

%   the Free Software Foundation; either version 2 of the License, or 

%   (at your option) any later version. 

% 

%   This program is distributed in the hope that it will be useful, 

%   but WITHOUT ANY WARRANTY; without even the implied warranty of 

%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

%   GNU General Public License for more details. 

% 

%   You can obtain a copy of the GNU General Public License from 

%   http://www.gnu.org/copyleft/gpl.html or by writing to 

%   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

s=size(x); 

if prod(s)==1 

    y=x; 

else 

    if nargin <3 || isempty(d) 

        d=find(s>1); 

        d=d(1); 

        if nargin<2 

            n=s(d); 

        end 

    end 

    if isempty(n)  

        n=s(d); 

    end 

    y=fft(x,n,d); 

    y=reshape(y,prod(s(1:d-1)),n,prod(s(d+1:end)));  

    s(d)=1+fix(n/2); 

    y(:,s(d)+1:end,:)=[]; 

    y=reshape(y,s); 

end 
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function M = simmx(A,B) 

% M = simmx(A,B) 

%    calculate a sim matrix between specgram-like feature matrices A and B. 

%    size(M) = [size(A,2) size(B,2)]; A and B have same #rows. 

% 2003-03-15 dpwe@ee.columbia.edu 

  

% Copyright (c) 2003 Dan Ellis <dpwe@ee.columbia.edu> 

% released under GPL - see file COPYRIGHT 

  

EA = sqrt(sum(A.^2)); 

EB = sqrt(sum(B.^2)); 
  

%ncA = size(A,2); 

%ncB = size(B,2); 

%M = zeros(ncA, ncB); 

%for i = 1:ncA 

%  for j = 1:ncB 

%    % normalized inner product i.e. cos(angle between vectors) 

%    M(i,j) = (A(:,i)'*B(:,j))/(EA(i)*EB(j)); 

%  end 

%end 

  

% this is 10x faster 

M = (A'*B)./(EA'*EB); 
 

 

classdef svm 

    methods (Static) 

        function Model=train(training, groupnames, varargin) 

            %SVMTRAIN Train a support vector machine classifier 

            %   SVMSTRUCT = SVMTRAIN(TRAINING, Y) trains a support vector 

machine (SVM) 

            %   classifier on data taken from two groups. TRAINING is a numeric matrix 

            %   of predictor data. Rows of TRAINING correspond to observations; columns 

            %   correspond to features. Y is a column vector that contains the known 

            %   class labels for TRAINING. Y is a grouping variable, i.e., it can be a 

            %   categorical, numeric, or logical vector; a cell vector of strings; or a 

            %   character matrix with each row representing a class label (see help for 

            %   groupingvariable). Each element of Y specifies the group the 

            %   corresponding row of TRAINING belongs to. TRAINING and Y must have 

the 

            %   same number of rows. SVMSTRUCT contains information about the trained 

            %   classifier, including the support vectors, that is used by SVMCLASSIFY 
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            %   for classification. SVMTRAIN treats NaNs, empty strings or 'undefined' 

            %   values as missing values and ignores the corresponding rows in 

            %   TRAINING and Y. 

            % 

            %   SVMSTRUCT = SVMTRAIN(TRAINING, Y, 'PARAM1',val1, 

'PARAM2',val2, ...) 

            %   specifies one or more of the following name/value pairs: 

            % 

            %      Name                Value 

            %      'kernel_function'  A string or a function handle specifying the 

            %                         kernel function used to represent the dot 

            %                         product in a new space. The value can be one of 

            %                         the following: 

            %                         'linear'     - Linear kernel or dot product 

            %                                        (default). In this case, SVMTRAIN 

            %                                        finds the optimal separating plane 

            %                                        in the original space. 

            %                         'quadratic'  - Quadratic kernel 

            %                         'polynomial' - Polynomial kernel with default 

            %                                        order 3. To specify another order, 

            %                                        use the 'polyorder' argument. 

            %                         'rbf'        - Gaussian Radial Basis Function 

            %                                        with default scaling factor 1. To 

            %                                        specify another scaling factor, 

            %                                        use the 'rbf_sigma' argument. 

            %                         'mlp'        - Multilayer Perceptron kernel (MLP) 

            %                                        with default weight 1 and default 

            %                                        bias -1. To specify another weight 

            %                                        or bias, use the 'mlp_params' 

            %                                        argument. 

            %                         function     - A kernel function specified using 

            %                                        @(for example @KFUN), or an 

            %                                        anonymous function. A kernel 

            %                                        function must be of the form 

            % 

            %                                        function K = KFUN(U, V) 

            % 

            %                                        The returned value, K, is a matrix 

            %                                        of size M-by-N, where M and N are 

            %                                        the number of rows in U and V 

            %                                        respectively. 

            % 

            %   'rbf_sigma'           A positive number specifying the scaling factor 
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            %                         in the Gaussian radial basis function kernel. 

            %                         Default is 1. 

            % 

            %   'polyorder'           A positive integer specifying the order of the 

            %                         polynomial kernel. Default is 3. 

            % 

            %   'mlp_params'          A vector [P1 P2] specifying the parameters of MLP 

            %                         kernel.  The MLP kernel takes the form: 

            %                         K = tanh(P1*U*V' + P2), 

            %                         where P1 > 0 and P2 < 0. Default is [1,-1]. 

            % 

            %   'method'              A string specifying the method used to find the 

            %                         separating hyperplane. Choices are: 

            %                         'SMO' - Sequential Minimal Optimization (SMO) 

            %                                 method (default). It implements the L1 

            %                                 soft-margin SVM classifier. 

            %                         'QP'  - Quadratic programming (requires an 

            %                                 Optimization Toolbox license). It 

            %                                 implements the L2 soft-margin SVM 

            %                                 classifier. Method 'QP' doesn't scale 

            %                                 well for TRAINING with large number of 

            %                                 observations. 

            %                         'LS'  - Least-squares method. It implements the 

            %                                 L2 soft-margin SVM classifier. 

            % 

            %   'options'             Options structure created using either STATSET or 

            %                         OPTIMSET. 

            %                         * When you set 'method' to 'SMO' (default), 

            %                           create the options structure using STATSET. 

            %                           Applicable options: 

            %                           'Display'  Level of display output.  Choices 

            %                                    are 'off' (the default), 'iter', and 

            %                                    'final'. Value 'iter' reports every 

            %                                    500 iterations. 

            %                           'MaxIter'  A positive integer specifying the 

            %                                    maximum number of iterations allowed. 

            %                                    Default is 15000 for method 'SMO'. 

            %                         * When you set method to 'QP', create the 

            %                           options structure using OPTIMSET. For details 

            %                           of applicable options choices, see QUADPROG 

            %                           options. SVM uses a convex quadratic program, 

            %                           so you can choose the 'interior-point-convex' 

            %                           algorithm in QUADPROG. 
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            % 

            %  'tolkkt'              A positive scalar that specifies the tolerance 

            %                        with which the Karush-Kuhn-Tucker (KKT) conditions 

            %                        are checked for method 'SMO'. Default is 

            %                        1.0000e-003. 

            % 

            %  'kktviolationlevel'   A scalar specifying the fraction of observations 

            %                        that are allowed to violate the KKT conditions for 

            %                        method 'SMO'. Setting this value to be positive 

            %                        helps the algorithm to converge faster if it is 

            %                        fluctuating near a good solution. Default is 0. 

            % 

            %  'kernelcachelimit'    A positive scalar S specifying the size of the 

            %                        kernel matrix cache for method 'SMO'. The 

            %                        algorithm keeps a matrix with up to S * S 

            %                        double-precision numbers in memory. Default is 

            %                        5000. When the number of points in TRAINING 

            %                        exceeds S, the SMO method slows down. It's 

            %                        recommended to set S as large as your system 

            %                        permits. 

            % 

            %  'boxconstraint'       The box constraint C for the soft margin. C can be 

            %                        a positive numeric scalar or a vector of positive 

            %                        numbers with the number of elements equal to the 

            %                        number of rows in TRAINING. 

            %                        Default is 1. 

            %                        * If C is a scalar, it is automatically rescaled 

            %                          by N/(2*N1) for the observations of group one, 

            %                          and by N/(2*N2) for the observations of group 

            %                          two, where N1 is the number of observations in 

            %                          group one, N2 is the number of observations in 

            %                          group two. The rescaling is done to take into 

            %                          account unbalanced groups, i.e., when N1 and N2 

            %                          are different. 

            %                        * If C is a vector, then each element of C 

            %                          specifies the box constraint for the 

            %                          corresponding observation. 

            % 

            %   'autoscale'          A logical value specifying whether or not to 

            %                        shift and scale the data points before training. 

            %                        When the value is true, the columns of TRAINING 

            %                        are shifted and scaled to have zero mean unit 

            %                        variance. Default is true. 
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            % 

            %   'showplot'           A logical value specifying whether or not to show 

            %                        a plot. When the value is true, SVMTRAIN creates a 

            %                        plot of the grouped data and the separating line 

            %                        for the classifier, when using data with 2 

            %                        features (columns). Default is false. 

            % 

            %   SVMSTRUCT is a structure having the following properties: 

            % 

            %   SupportVectors       Matrix of data points with each row corresponding 

            %                        to a support vector. 

            %                        Note: when 'autoscale' is false, this field 

            %                        contains original support vectors in TRAINING. 

            %                        When 'autoscale' is true, this field contains 

            %                        shifted and scaled vectors from TRAINING. 

            %   Alpha                Vector of Lagrange multipliers for the support 

            %                        vectors. The sign is positive for support vectors 

            %                        belonging to the first group and negative for 

            %                        support vectors belonging to the second group. 

            %   Bias                 Intercept of the hyperplane that separates 

            %                        the two groups. 

            %                        Note: when 'autoscale' is false, this field 

            %                        corresponds to the original data points in 

            %                        TRAINING. When 'autoscale' is true, this field 

            %                        corresponds to shifted and scaled data points. 

            %   KernelFunction       The function handle of kernel function used. 

            %   KernelFunctionArgs   Cell array containing the additional arguments 

            %                        for the kernel function. 

            %   GroupNames           A column vector that contains the known 

            %                        class labels for TRAINING. Y is a grouping 

            %                        variable (see help for groupingvariable). 

            %   SupportVectorIndices A column vector indicating the indices of support 

            %                        vectors. 

            %   ScaleData            This field contains information about auto-scale. 

            %                        When 'autoscale' is false, it is empty. When 

            %                        'autoscale' is set to true, it is a structure 

            %                        containing two fields: 

            %                        shift       - A row vector containing the negative 

            %                                      of the mean across all observations 

            %                                      in TRAINING. 

            %                        scaleFactor - A row vector whose value is 

            %                                      1./STD(TRAINING). 

            %   FigureHandles        A vector of figure handles created by SVMTRAIN 
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            %                        when 'showplot' argument is TRUE. 

            % 

            %   Example: 

            %       % Load the data and select features for classification 

            %       load fisheriris 

            %       X = [meas(:,1), meas(:,2)]; 

            %       % Extract the Setosa class 

            %       Y = nominal(ismember(species,'setosa')); 

            %       % Randomly partitions observations into a training set and a test 

            %       % set using stratified holdout 

            %       P = cvpartition(Y,'Holdout',0.20); 

            %       % Use a linear support vector machine classifier 

            %       svmStruct = msvmtrain(X(P.training,:),Y(P.training),'showplot',true); 

            %       C = msvmclassify(svmStruct,X(P.test,:),'showplot',true); 

            %       errRate = sum(Y(P.test)~= C)/P.TestSize  %mis-classification rate 

            %       conMat = confusionmat(Y(P.test),C) % the confusion matrix 

            % 

            %   See also SVMCLASSIFY, NAIVEBAYES, CLASSREGTREE, CLASSIFY, 

TREEBAGGER, 

            %            GROUPINGVARIABLE 

             

            %   Copyright 2004-2012 The MathWorks, Inc. 
             
             

            %   References: 

            % 

            %     [1] Cristianini, N., Shawe-Taylor, J An Introduction to Support 

            %         Vector Machines, Cambridge University Press, Cambridge, UK. 2000. 

            %         http://www.support-vector.net 

            %     [2] Kecman, V, Learning and Soft Computing, 

            %         MIT Press, Cambridge, MA. 2001. 

            %     [3] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., 

            %         Vandewalle, J., Least Squares Support Vector Machines, 

            %         World Scientific, Singapore, 2002. 

            %     [4] J.C. Platt: A Fast Algorithm for Training  Support Vector 

            %         Machines,  Advances in Kernel Methods - Support Vector Learning, 

            %         MIT Press, 1998. 

            %     [5] J.C. Platt: Fast Training of Support Vector Machines using 

            %         Sequential Minimal Optimization Microsoft Research Technical 

            %         Report MSR-TR-98-14, 1998. 

            %     [6] http://www.kernel-machines.org/papers/tr-30-1998.ps.gz 

            % 

            %   SVMTRAIN(...,'KFUNARGS',ARGS) allows you to pass additional 
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            %   arguments to kernel functions. 

            % 

            %     Code is modified for multuclass svm 

            %         by Er.Abbas Manthiri BE 

            %     Email abbasmanthiribe@gmail.com 

            %     Date:15-03-2017 

             

            classInstance=unique(groupnames); 

            svmValue=sum(classInstance); 

            nsample=length(classInstance); 

            if nsample>2 

                model=cell(1,nsample); 

                for i=1:nsample 

                    classx=groupnames; 

                    classx(classx==classInstance(i))=svmValue; 

                    classx(classx~=svmValue)=1; 

                    classx(classx==svmValue)=0; 

                    model{i}=svmtrain(training,classx,varargin{:}); 

                    fprintf('Multi Class SVM Model for Class Instance %d ---

>\n',classInstance(i)) 

                    disp(model{i}) 

                end 

            else 

                model=svmtrain(training,groupnames,varargin{:}); 

                fprintf('\nx Two class svm  Model--->\n') 

                disp(model) 

            end 

            Model.model=model; 

            Model.classInstance=classInstance; 

            fprintf('\nTrain Model Completed\n') 
             

        end 

         

        function [output,matrix]=predict(Model,sample,varargin) 

            %SVMCLASSIFY Classify data using a support vector machine 

            %   GROUP = SVMCLASSIFY(SVMSTRUCT, TEST) classifies each row in 

TEST using 

            %   the support vector machine classifier structure SVMSTRUCT created 

            %   using SVMTRAIN, and returns the predicted class level GROUP. TEST must 

            %   have the same number of columns as the data used to train the 

            %   classifier in SVMTRAIN. GROUP indicates the group to which each row of 

            %   TEST is assigned. 

            % 
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            %   GROUP = SVMCLASSIFY(...,'SHOWPLOT',true) plots the test data TEST 

on 

            %   the figure created using the SHOWPLOT option in SVMTRAIN. 

            % 

            %   Example: 

            %       % Load the data and select features for classification 

            %       load fisheriris 

            %       X = [meas(:,1), meas(:,2)]; 

            %       % Extract the Setosa class 

            %       Y = nominal(ismember(species,'setosa')); 

            %       % Randomly partitions observations into a training set and a test 

            %       % set using stratified holdout 

            %       P = cvpartition(Y,'Holdout',0.20); 

            %       % Use a linear support vector machine classifier 

            %       svmStruct = msvmtrain(X(P.training,:),Y(P.training),'showplot',true); 

            %       C = msvmclassify(svmStruct,X(P.test,:),'showplot',true); 

            %       err_rate = sum(Y(P.test)~= C)/P.TestSize % mis-classification rate 

            %       conMat = confusionmat(Y(P.test),C) % the confusion matrix 

            % 

            %   See also SVMTRAIN, NAIVEBAYES, CLASSREGTREE, CLASSIFY, 

TREEBAGGER 

             

            %   Copyright 2004-2012 The MathWorks, Inc. 
             
             

            %   References: 

            % 

            %     [1] Cristianini, N., Shawe-Taylor, J An Introduction to Support 

            %         Vector Machines, Cambridge University Press, Cambridge, UK. 2000. 

            %         http://www.support-vector.net 

            %     [2] Kecman, V, Learning and Soft Computing, 

            %         MIT Press, Cambridge, MA. 2001. 

            %     [3] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., 

            %         Vandewalle, J., Least Squares Support Vector Machines, 

            %         World Scientific, Singapore, 2002. 

            % 

            %     Code is modified for multuclass svm 

            %         by Er.Abbas Manthiri BE 

            %     Email abbasmanthiribe@gmail.com 

            %     Date:15-03-2017 

            model=Model.model; 

            classInstance=Model.classInstance; 

            nsample=length(classInstance); 
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            if nsample>2 

                numberOfSamples=size(sample,1); 

                classRange=zeros(numberOfSamples,length(classInstance)); 

                for i=1:nsample 

                    [~,threshold]=svm.svmclassify(model{i},sample,varargin{:}); 

                    classRange(:,i)=threshold; 

                    fprintf('\nMulti Class SVM classify values Claculated  for Class Instance %d 

',classInstance(i)) 

                end 

                [~,index]=max(transpose(classRange)); 

                output=classInstance(index); 

                matrix = classRange; 

            else 

                output=svm.svmclassify(model,sample,varargin{:}); 

            end 

            fprintf('\n SVM Classification is completed\n') 

        end 

         

        function [outclass,val] = svmclassify(svmStruct,sample, varargin) 
             

            % set defaults 

            plotflag = false; 
             

            % check inputs 

            narginchk(2, Inf); 
             

            % deal with struct input case 

            if ~isstruct(svmStruct) 

                error(message('stats:svmclassify:TwoInputsNoStruct')); 

            end 

             

            if ~isnumeric(sample) || ~ismatrix(sample) 

                error(message('stats:svmclassify:BadSample')); 

            end 

             

            if size(sample,2)~=size(svmStruct.SupportVectors,2) 

                error(message('stats:svmclassify:TestSizeMismatch')); 

            end 

             

            % deal with the various inputs 

            if nargin > 2 

                if rem(nargin,2) == 1 

                    error(message('stats:svmclassify:IncorrectNumberOfArguments')); 
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                end 

                okargs = {'showplot','-compilerhelper'}; 

                for j=1:2:nargin-2 

                    pname = varargin{j}; 

                    pval = varargin{j+1}; 

                    k = find(strncmpi(pname, okargs,numel(pname))); 

                    if isempty(k) 

                        error(message('stats:svmclassify:UnknownParameterName', pname)); 

                    elseif length(k)>1 

                        error(message('stats:svmclassify:AmbiguousParameterName', pname)); 

                    else 

                        switch(k) 

                            case 1 % plotflag ('SHOWPLOT') 

                                plotflag = opttf(pval,okargs{k}); 

                            case 2 % help the compiler find required function handles by including 

svmtrain 

                                svmtrain(eye(2),[1 0]); 

                        end 

                    end 

                end 

            end 

             

            groupnames = svmStruct.GroupNames; 
             

            % check group is a vector -- though char input is special... 

            if ~isvector(groupnames) && ~ischar(groupnames) 

                error(message('stats:svmclassify:GroupNotVector')); 

            end 

             

            % grp2idx sorts a numeric grouping var ascending, and a string grouping 

            % var by order of first occurrence 

            [~,groupString,glevels] = grp2idx(groupnames); 
             

            % do the classification 

            if ~isempty(sample) 

                % shift and scale the data if necessary: 

                sampleOrig = sample; 

                if ~isempty(svmStruct.ScaleData) 

                    for c = 1:size(sample, 2) 

                        sample(:,c) = svmStruct.ScaleData.scaleFactor(c) * ... 

                            (sample(:,c) +  svmStruct.ScaleData.shift(c)); 

                    end 

                end 
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                %     try 

                [outclass,val] = svm.svmdecision(sample,svmStruct); 

                %     catch ME 

                %         error(message('stats:svmclassify:ClassifyFailed', ME.message)); 

                %     end 

                if plotflag 

                     

                    if isempty(svmStruct.FigureHandles) 

                        warning(message('stats:svmclassify:NoTrainingFigure')); 
                         

                    else 

                        try 

                            hAxis = svmStruct.FigureHandles{1}; 

                            hLines = svmStruct.FigureHandles{2}; 

                            hSV = svmStruct.FigureHandles{3}; 

                            % unscale the data for plotting purposes 

                            [~,hClassLines] = svmplotdata(sampleOrig,outclass,hAxis); 

                            trainingString = strcat(cellstr(groupString),' (training)'); 

                            sampleString = strcat(cellstr(groupString),' (classified)'); 

                            legend([hLines(1),hClassLines(1),hLines(2),hClassLines(2),hSV],... 

                                {trainingString{1},sampleString{1},... 

                                trainingString{2},sampleString{2},'Support Vectors'}); 

                        catch ME 

                            warning(message('stats:svmclassify:DisplayFailed', ME.message)); 

                        end 

                    end 

                end 

                outclass(outclass == -1) = 2; 

                unClassified = isnan(outclass); 

                outclass = glevels(outclass(~unClassified),:); 

                if any(unClassified) 
                     

                    try 

                        outclass = statinsertnan(unClassified,outclass); 

                    catch ME 

                        if ~isequal(ME.identifier,'stats:statinsertnan:LogicalInput') 

                            rethrow(ME); 

                        else 

                            error(message('stats:svmclassify:logicalwithNaN')); 

                        end 

                    end 

                end 
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            else 

                outclass = []; 

            end 

             

        end 

        function [out,f] = svmdecision(Xnew,svm_struct) 

            %SVMDECISION Evaluates the SVM decision function 

             

            %   Copyright 2004-2012 The MathWorks, Inc. 
             
             

            sv = svm_struct.SupportVectors; 

            alphaHat = svm_struct.Alpha; 

            bias = svm_struct.Bias; 

            kfun = svm_struct.KernelFunction; 

            kfunargs = svm_struct.KernelFunctionArgs; 

            f = (feval(kfun,sv,Xnew,kfunargs{:})'*alphaHat(:)) + bias; 

            out = sign(f); 

            % points on the boundary are assigned to class 1 

            out(out==0) = 1; 

        end 

             
        

        function [Model,predicted] = classify(Sample,class,SampleTest) 

            Model=svm.train(Sample,class); 

            predicted=svm.predict(Model,SampleTest); 

        end 

    end 

end 

 

 

% buildDetector: build face parts detector object 

%  

% detector = buildDetector( thresholdFace, thresholdParts, stdsize ) 

% 

%Output parameter: 

% detector: built detector object 

% 

% 

%Input parameters: 

% thresholdFace (optional): MergeThreshold for face detector (Default: 1) 

% thresholdParts (optional): MergeThreshold for face parts detector (Default: 1) 

% stdsize (optional): size of normalized face (Default: 176) 
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% 

% 

%Example: 

% detector = buildDetector(); 

% img = imread('img.jpg'); 

% [bbbox bbimg] = detectFaceParts(detector,img); 

% 

% 

%Version: 20120529 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

% Face Parts Detection:                                    % 

%                                                          % 

% Copyright (C) 2012 Masayuki Tanaka. All rights reserved. % 

%                    mtanaka@ctrl.titech.ac.jp             % 

%                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

function detector = buildDetector( thresholdFace, thresholdParts, stdsize ) 
  

if( nargin < 1 ) 

 thresholdFace = 1; 

end 

  

if( nargin < 2 ) 

 thresholdParts = 1; 

end 

  

if( nargin < 3 ) 

 stdsize = 176; 

end 

  

nameDetector = {'LeftEye'; 'RightEye'; 'Mouth'; 'Nose'; }; 

mins = [[12 18]; [12 18]; [15 25]; [15 18]; ]; 
  

detector.stdsize = stdsize; 

detector.detector = cell(5,1); 

for k=1:4 

 minSize = int32([stdsize/5 stdsize/5]); 

 minSize = [max(minSize(1),mins(k,1)), max(minSize(2),mins(k,2))]; 

 detector.detector{k} = vision.CascadeObjectDetector(char(nameDetector(k)), 

'MergeThreshold', thresholdParts, 'MinSize', minSize); 
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end 

  

detector.detector{5} = vision.CascadeObjectDetector('FrontalFaceCART', 

'MergeThreshold', thresholdFace); 
 

 

% detectFaceParts: detect faces with parts 

% 

% [bbox,bbX,faces,bbfaces] = detectFaceParts(detector,X,thick) 

% 

%Output parameters: 

% bbox: bbox(:, 1: 4) is bounding box for face 

%       bbox(:, 5: 8) is bounding box for left eye 

%       bbox(:, 9:12) is bounding box for right eye 

%       bbox(:,13:16) is bounding box for mouth 

%       bbox(:,17:20) is bounding box for nose 

%       please see the documentation of the computer vision toolbox for details of the 

bounding box. 

% bbX: image with found faces which are shown as boxes 

% faces: found faces stored as cell array 

% bbfaces: found faces with boxes stored as cell array 

% 

% 

%Input parameters: 

% detector: the detection object built by buildDetector 

% X: image data which should be uint8 

% thick(optional): thickness of bounding box (default:1) 

% 

% 

%Example: 

% detector = buildDetector(); 

% img = imread('img.jpg'); 

% [bbbox bbimg] = detectFaceParts(detector,img); 

% 

% 

%Version: 20120529 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

% Face Parts Detection:                                    % 

%                                                          % 

% Copyright (C) 2012 Masayuki Tanaka. All rights reserved. % 

%                    mtanaka@ctrl.titech.ac.jp             % 
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%                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

function [bbox,bbX,faces,bbfaces] = detectFaceParts(detector,X,thick) 
  

if( nargin < 3 ) 

 thick = 1; 

end 

  

%%%%%%%%%%%%%%%%%%%%%%% detect face 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Detect faces 

bbox = step(detector.detector{5}, X); 
  

bbsize = size(bbox); 

partsNum = zeros(size(bbox,1),1); 
  

%%%%%%%%%%%%%%%%%%%%%%% detect parts 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

nameDetector = {'LeftEye'; 'RightEye'; 'Mouth'; 'Nose'; }; 

mins = [[12 18]; [12 18]; [15 25]; [15 18]; ]; 
  

stdsize = detector.stdsize; 
  

for k=1:4 

 if( k == 1 ) 

  region = [1,int32(stdsize*2/3); 1, int32(stdsize*2/3)]; 

 elseif( k == 2 ) 

  region = [int32(stdsize/3),stdsize; 1, int32(stdsize*2/3)]; 

 elseif( k == 3 ) 

  region = [1,stdsize; int32(stdsize/3), stdsize]; 

 elseif( k == 4 ) 

  region = [int32(stdsize/5),int32(stdsize*4/5); int32(stdsize/3),stdsize]; 

 else 

  region = [1,stdsize;1,stdsize]; 

 end 

  

 bb = zeros(bbsize); 

 for i=1:size(bbox,1) 

  XX = X(bbox(i,2):bbox(i,2)+bbox(i,4)-1,bbox(i,1):bbox(i,1)+bbox(i,3)-1,:); 

  XX = imresize(XX,[stdsize, stdsize]); 

  XX = XX(region(2,1):region(2,2),region(1,1):region(1,2),:); 
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  b = step(detector.detector{k},XX); 
   

  if( size(b,1) > 0 ) 

   partsNum(i) = partsNum(i) + 1; 
    

   if( k == 1 ) 

    b = sortrows(b,1); 

   elseif( k == 2 ) 

    b = flipud(sortrows(b,1)); 

   elseif( k == 3 ) 

    b = flipud(sortrows(b,2)); 

   elseif( k == 4 ) 

    b = flipud(sortrows(b,3)); 

   end 

    

   ratio = double(bbox(i,3)) / double(stdsize); 

   b(1,1) = int32( ( b(1,1)-1 + region(1,1)-1 ) * ratio + 0.5 ) + bbox(i,1); 

   b(1,2) = int32( ( b(1,2)-1 + region(2,1)-1 ) * ratio + 0.5 ) + bbox(i,2); 

   b(1,3) = int32( b(1,3) * ratio + 0.5 ); 

   b(1,4) = int32( b(1,4) * ratio + 0.5 ); 
    

   bb(i,:) = b(1,:); 

  end 

 end 

 bbox = [bbox,bb]; 
  

 p = ( sum(bb') == 0 ); 

 bb(p,:) = []; 

end 

  
  

%%%%%%%%%%%%%%%%%%%%%%% draw faces 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

bbox = [bbox,partsNum]; 

bbox(partsNum<=2,:)=[]; 
  

if( thick >= 0 ) 

 t = (thick-1)/2; 

 t0 = -int32(ceil(t)); 

 t1 = int32(floor(t)); 

else 

 t0 = 0; 

 t1 = 0; 
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end 

  

bbX = X; 

boxColor = [[0,255,0]; [255,0,255]; [255,0,255]; [0,255,255]; [255,255,0]; ]; 

for k=5:-1:1 

 shapeInserter = 

vision.ShapeInserter('BorderColor','Custom','CustomBorderColor',boxColor(k,:));  

 for i=t0:t1 

  bb = int32(bbox(:,(k-1)*4+1:k*4)); 

%   bb(:,1:2) = bb(:,1:2)-i; 

  bb(:,3:4) = bb(:,3:4)+i*2; 

  bbX = step(shapeInserter, bbX, bb); 

 end 

end 

  

%%%%%%%%%%%%%%%%%%%%%%% faces 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if( nargout > 2 ) 

 faces = cell(size(bbox,1),1); 

 boxfaces = cell(size(bbox,1),1); 

 for i=1:size(bbox,1) 

  faces{i,1} = X(bbox(i,2):bbox(i,2)+bbox(i,4)-1,bbox(i,1):bbox(i,1)+bbox(i,3)-1,:); 

  bbfaces{i,1} = bbX(bbox(i,2):bbox(i,2)+bbox(i,4)-1,bbox(i,1):bbox(i,1)+bbox(i,3)-1,:); 

 end 

end 
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Appendix B: 

Stand-alone Speech Recognition System results for combination 1 database: 

20 utterances were tested for each participant. The entries highlighted in Green indicate correct 

recognition. 

Participant 1 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 2 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
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Participant 2 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 3 

  6 6 

  7 7 

  8 8 

  9 9 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 8 

  7 7 

  8 8 

  9 9 

 

Participant 3 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 9 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
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Participant 4 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 0 

  1 1 

  2 8 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

 

Participant 5 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 0 

  1 9 

  2 2 

  3 5 

  4 5 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
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Participant 6 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 0 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

 

Participant 7 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 5 

  9 9 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 



152 
 

 

Participant 8 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 8 

  1 0 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

 

Participant 9 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 0 

  1 1 

  2 9 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
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Participant 10 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 9 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
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Stand-alone Lip Reading System results for combination 1 database: 

 

Participant Number 1 Digit Spoken Digit Recognized 

  0 8 

  1 1 

  2 1 

  3 3 

  4 8 

  5 5 

  6 6 

  7 0 

  8 8 

  9 0 

  0 8 

  1 1 

  2 8 

  3 3 

  4 4 

  5 8 

  6 6 

  7 8 

  8 7 

  9 9 
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Participant Number 2 Digit Spoken Digit Recognized 

  0 0 

  1 5 

  2 2 

  3 8 

  4 4 

  5 8 

  6 6 

  7 8 

  8 0 

  9 9 

  0 0 

  1 8 

  2 4 

  3 3 

  4 4 

  5 5 

  6 8 

  7 7 

  8 8 

  9 9 

 

Participant Number 3 Digit Spoken Digit Recognized 

  0 0 

  1 8 

  2 8 

  3 3 

  4 4 

  5 0 

  6 2 

  7 7 

  8 8 

  9 4 

  0 0 

  1 1 

  2 2 

  3 2 

  4 4 

  5 8 

  6 1 

  7 7 

  8 8 

  9 9 
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Participant Number 4 Digit Spoken Digit Recognized 

  0 2 

  1 1 

  2 8 

  3 8 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 2 

  0 0 

  1 8 

  2 8 

  3 3 

  4 8 

  5 5 

  6 8 

  7 7 

  8 6 

  9 3 

 

Participant Number 5 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 5 

  3 8 

  4 4 

  5 5 

  6 3 

  7 8 

  8 8 

  9 9 

  0 0 

  1 1 

  2 8 

  3 3 

  4 5 

  5 8 

  6 6 

  7 0 

  8 8 

  9 9 
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Participant Number 6 Digit Spoken Digit Recognized 

  0 0 

  1 7 

  2 2 

  3 8 

  4 8 

  5 5 

  6 8 

  7 8 

  8 8 

  9 8 

  0 8 

  1 1 

  2 5 

  3 3 

  4 8 

  5 8 

  6 6 

  7 7 

  8 8 

  9 8 

 

Participant Number 7 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 8 

  3 3 

  4 4 

  5 5 

  6 8 

  7 8 

  8 8 

  9 8 

  0 0 

  1 8 

  2 0 

  3 8 

  4 4 

  5 0 

  6 5 

  7 7 

  8 8 

  9 9 
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Participant Number 8 Digit Spoken Digit Recognized 

  0 0 

  1 5 

  2 2 

  3 7 

  4 8 

  5 5 

  6 6 

  7 8 

  8 8 

  9 1 

  0 0 

  1 8 

  2 8 

  3 1 

  4 4 

  5 5 

  6 7 

  7 5 

  8 8 

  9 1 

 

Participant Number 9 Digit Spoken Digit Recognized 

  0 4 

  1 1 

  2 6 

  3 3 

  4 4 

  5 5 

  6 1 

  7 7 

  8 1 

  9 9 

  0 0 

  1 1 

  2 8 

  3 1 

  4 4 

  5 3 

  6 8 

  7 7 

  8 1 

  9 9 
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Participant Number 10 Digit Spoken Digit Recognized 

  0 1 

  1 1 

  2 2 

  3 8 

  4 4 

  5 6 

  6 6 

  7 8 

  8 8 

  9 8 

  0 8 

  1 8 

  2 2 

  3 3 

  4 4 

  5 5 

  6 8 

  7 8 

  8 4 

  9 9 
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Fusion-based Audio-Visual Speech Recognition System results for combination 1 database:  

 

Participant 1 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 9 

  7 7 

  8 8 

  9 9 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
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Participant 2 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 1 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
 

Participant 3 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
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Participant 4 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 1 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

 

Participant 5 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 0 

  1 0 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
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Participant 6 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 9 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
 

Participant 7 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 0 
 



164 
 

Participant 8 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 9 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
 

Participant 9 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 8 

  8 8 

  9 9 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
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Participant 10 Digit Spoken Digit Recognized 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 

  0 0 

  1 1 

  2 2 

  3 3 

  4 4 

  5 5 

  6 6 

  7 7 

  8 8 

  9 9 
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