
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Masters Theses Graduate Research and Creative Practice

4-2018

Fusion of Audio and Visual Information for Implementing Fusion of Audio and Visual Information for Implementing

Improved Speech Recognition System Improved Speech Recognition System

Vikrant Satish Acharya
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/theses

 Part of the Electrical and Electronics Commons

ScholarWorks Citation ScholarWorks Citation
Acharya, Vikrant Satish, "Fusion of Audio and Visual Information for Implementing Improved Speech
Recognition System" (2018). Masters Theses. 884.
https://scholarworks.gvsu.edu/theses/884

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at
ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/theses
https://scholarworks.gvsu.edu/grcp
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.gvsu.edu%2Ftheses%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/884?utm_source=scholarworks.gvsu.edu%2Ftheses%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Fusion of Audio and Visual Information for Implementing Improved Speech Recognition

System

Vikrant Satish Acharya

A Thesis Submitted to the Graduate Faculty of

GRAND VALLEY STATE UNIVERSITY

In

Partial Fulfillment of the Requirements

For the Degree of

Master of Science in Engineering

Electrical Engineering

April 2018

3

Acknowledgement

The success of any project largely depends on the encouragement and guidance of many

people. I take this opportunity to express my gratitude to the people who have been instrumental

in the successful completion of this project.

Firstly, I would like to thank my school, Grand Valley State University and the school of

Engineering, for giving the opportunity and encouragement to do this project. It has given me

tremendous exposure to the field of Signal and Image Processing and a strong base to apply the

knowledge that I have gained through my coursework in a practical environment.

I would like to thank Dr. Nicholas Baine, my thesis advisor, for his support and help in

providing valuable inputs. I am also grateful to my committee members, Dr. Samhita Rhodes,

Associate Professor, Electrical and Biomedical Engineering, Dr. Robert Bossemeyer, Associate

Professor, Computer and Electrical Engineering for their constant support throughout the span of

this research. I am thankful to them for being patient with me and for taking out valuable time

from their busy schedule.

 I would also like to thank the department of Human Research Review Committee for

giving me the approval to carry out my project. I would like to show my appreciation to all the

Engineering students of Grand Valley State University for helping me in the collection of

database. Their help was vital for the completion of the project.

Last but not the least I would like to thank my family and friends for their constant

support throughout this project.

4

Abstract

Speech recognition is a very useful technology because of its potential to develop

applications, which are suitable for various needs of users. This research is an attempt to enhance

the performance of a speech recognition system by combining the visual features (lip movement)

with audio features. The results were calculated using utterances of numerals collected from

participants inclusive of both male and female genders. Discrete Cosine Transform (DCT)

coefficients were used for computing visual features and Mel Frequency Cepstral Coefficients

(MFCC) were used for computing audio features. The classification was then carried out using

Support Vector Machine (SVM). The results obtained from the combined/fused system were

compared with the recognition rates of two standalone systems (Audio only and visual only).

5

Table of Contents

Title Page………………………………………………………………………………………….1

Approval Page…………………………………………………………………………………….2

Acknowledgement………………………………………………………………………………...3

Abstract……………………………………………………………………………………………4

Table of Contents………………………………………………………………………………….5

List of Tables……………………………………………………………………………………...7

List of Figures……………………………………………………………………………………..8

Chapter 1 Introduction…………………………………………………………………………….9

Chapter 2 Literature Review……………………………………………………………………..11

 2.a. Review of algorithms for speech recognition systems………………………………13

 2.a.1 Silence Removal and End-Point Detection Algorithms……………………14

 2.a.2 Feature Extraction Algorithms……………………………………………..16

 2.b. Review of algorithms for Lip reading or Visual Speech Recognition………………22

 2.b.1 Face detection and lip localization techniques……………………………..23

 2.b.2 Feature Extraction Techniques…………………………………………….26

 2.c Pattern Matching Algorithms for lip-reading and speech recognition systems……...32

 2.d Applications of Speech Recognition Systems……………………………………….34

Chapter 3 Methodology………………………………………………………………………….35

6

 3.a. Audio Feature Extraction……………………………………………………………36

 3.a.1 Silence removal and end-point detection…………………………………..36

 3.a.2 Feature Extraction………………………………………………………….38

 3.a.3 Dynamic Time Warping……………………………………………………47

 3.b Visual Feature Extraction……………………………………………………………50

 3.b.1 Region of Interest(ROI) detection and lip localization…………………….50

3.b.2 Feature Extraction………………………………………………………….52

 3.c Fusion and Classification…………………………………………………………….54

 3.d. Testing……………………………………………………………………………….57

Chapter 4 Results………………………………………………………………………………...61

 4.a. Speech Recognition results………………………………………………………….61

 4.b. Lip Reading results………………………………………………………………….68

Chapter 5 Conclusion……………………………………………………………………………72

Appendix A………………………………………………………………………………………73

Appendix B……………………………………………………………………………………..148

References………………………………………………………………………………………166

7

List of Tables

1. Comparison of Feature Extraction Techniques for Lip-Reading……………………………...52

2. Confidence levels and corresponding values of 𝜒2…………………………………………...60

3. Results…………………………………………………………………………………………70

4. McNemar’s test Results……………………………………………………………………….71

8

List of Figures

1. Basic block diagram of Speech Recognition System ………………………………………...13

2. Flow chart of PLPCC algorithm ……………………………………………………………...19

3. Basic block diagram of Lip Reading System………………………………………………….22

4. Flow chart of KLT algorithm………………………………………………………………….24

5. Feature extraction Techniques for Lip-Reading Systems……………………………………..26

6. Block Diagram of proposed Audio-Visual Speech Recognition System……………………..35

7. Audio Feature Extraction using MFCC Technique…………………………………………...39

8. Magnitude response of pre-emphasis filter for different values of a………………………….40

9. Hamming window curves……………………………………………………………………..42

10. Mel Bank Filters……………………………………………………………………………..44

11. Magnitude spectrum of frame and MFCC features ……………………………...………….46

12. Speech signal waveform before silence removal and end-point detection…………………..61

13. Speech signal waveform after silence removal and end-point detection…………………….62

14. Effect of pre-emphasis……………………………………………………………………….63

15. Effect of windowing on FFT…………………………………………………………………64

16. MFCC coefficients for utterances zero and nine…………………………………………….65

17. Energy plots before and after DTW [digit ‘two’ Vs digit ‘two’] ……...…………………….66

18. Energy plots before and after DTW [digit ‘four’ Vs digit ‘two’] …………………………...66

19. Dynamic Time Warping path………………………………………………………………...67

20. ROI detection in 20th frame of a video from GVSU campus Database……………………...68

21. Resized extract of lip image from 20th frame of a video…………………………………….68

22. ROI detection in 24th frame of a video from vVISWA Database……………………………69

9

1. Introduction:

 Use of human biometric modalities such as face, speech, iris, lips, hand gestures, and

fingerprints can be utilized to interface with and act as a control signal for a variety of

applications. Of those, speech is one of the most natural/common forms of communication.

Many interface solutions have been developed, which are based on speech recognition systems,

which are implemented using a variety of techniques, ranging from the use of integral

microchips [1] to fuzzy logic algorithms used for noisy speech [2]. Even if it is a strong human

modality to be used, the systems utilizing it will have challenges in implementation due to poor

performance under non-ideal conditions (noisy environment). In such cases, it is beneficial to

include and fuse additional modalities such as lip-reading in the system. Two such human

modalities can be fused together, improving performance. This processed output can then be

used as a command signal to operate a control system.

For example, research has been done to make a wheelchair capable of operating based

only on speech recognition. However, in a noisy environment, a situation can occur in which the

wheelchair is not able to recognize the correct direction which is spoken by the disabled person.

Consequently, this may result in the wheelchair moving in the wrong direction. In such a case, if

another modality of lip-reading is fused with the speech recognition, it will be helpful for

improving the result of recognizing the correct command for the wheelchair.

Use of such natural modalities is not limited to control of a wheelchair. Other possible

applications include security systems or control of computer interfaces (like a mouse), which is

used for moving the pointer on screen. Many small operations that a driver of a vehicle must

carry out manually, such as changing the climate control and radio settings, can be carried out in

an automated way using speech.

10

This thesis proposal is arranged into six sections as follows: The first section consists of

the introduction as explained above; The second section is the background; The third section is

of literature review, which discusses many of the popular algorithms, which have been

implemented by the researchers so far in the same field of study; The fourth section is the

methodology section which explains the proposed audio-visual speech recognition system.

Followed by this methodology section, the results of the research and conclusion are discussed in

the fifth and sixth sections.

11

2. Literature Review:

Many speech recognition systems have been developed to make life easier for a human

being. Many such systems are not completely robust and can be improved. This research project

describes an approach for improving performance of speech recognition systems with the help of

fusion of signal processing and image processing algorithms. The purpose of this implementation

is to have an improved recognition system developed using the fusion of two human modalities,

human speech and human lips.

In the proposed study, three systems will be implemented. First will be a speech recognition

system, second will be a lip-reading system, and the third will be an audio-visual speech

recognition system. This third system will have the fusion of speech recognition and lip-reading

algorithms in it. The main aim of this study is to compare the performances of these three

systems and to prove that the feature level fusion-based system performs better than the two

stand-alone systems.

Basically, the speech recognition and lip-reading algorithms consist of three main stages

of operation. Those three stages are data collection, feature extraction, and feature matching. In

the first data collection stage, the speech samples and the face videos will be collected. In the

feature extraction stage, these speech samples and videos will be used for extracting important

features. A speech signal has a lot of information other than the linguistic message which is

required to be suppressed for recognition purpose. This unwanted information includes,

characteristics of environment, characteristics of the recording equipment. The task related to

emphasizing upon the important linguistic information in a speech signal and suppressing all the

other unwanted information is carried out in the stage of feature extraction. The features, which

are extracted, are then processed using algorithms selected for these implementations. All such

12

algorithms consist of some specific mathematical calculations, which can be carried out on

collected data using the development software MATLAB.

Prior to being used for speech recognition, the process must be performed on a training

set, where the samples are known. Features are extracted from each of the samples in the training

set and stored in a training database, which are later used for pattern matching and classification.

For speech samples that are unknown, they can have their features extracted and

compared to the training database using pattern recognition and are then classified. This

classification is desired to match the uttered word or phrase.

To test the system, multiple subjects (persons) are recruited and asked to speak a set of

words, which are then classified by the system. The classification from the system is then

compared with the true value in each instance. From this a percentage match is calculated to

determine the performance of the system.

13

2.a. Review of algorithms for speech recognition systems:

 Speech is one of the primary ways of communication for human beings. Just like that of a

fingerprint or iris, speech is also a characteristic that is unique for every individual. The unique

information, which can be extracted from every individual, can be used to implement systems

that can recognize the speech or voice. Such systems can be very useful for many applications

such as ensuring secure access to systems [3], gender recognition, recognition of age, emotion,

accent and speaker identity. Due to such a vast span of applications, researchers have always

been inspired by this phenomenon of speech recognition. The basic block diagram of a speech

recognition system is shown in Figure 1.

Figure 1: Basic block diagram of Speech Recognition System

As shown in the block diagram, the speech signal is recorded in a specific format based

on the application. The possible formats are .MP3, .WAV, .AIFF and .AU. The speech specific

attributes, which are required for efficient feature extraction, are mainly present in the voiced

part of signal [29]. After the signals are recorded, the next step is to remove the silence/unvoiced

Signal
Recording

Silence
Removal and

End-Point
Detection

Feature

Extraction

Speech
Recognition

Pattern
Matching or
Classification

14

part of the signal, using silence removal and end-point detection techniques. After that, the

necessary features are extracted from the speech signal [3]. These extracted features are then

used for pattern matching purposes. Many algorithms have been developed and implemented for

silence removal, feature extraction and pattern matching purposes. These algorithms are briefly

discussed in the following sections.

2.a.1 Silence Removal and End-Point Detection Algorithms:

 For carrying out efficient feature extraction in any speech or speaker recognition

application, preprocessing of silence removal and end-point detection is important.

Conventionally, a three-state representation is used for classifying the events in speech [29].

These states are, (i)silence, (ii)unvoiced and (iii)voiced. No speech is produced in the silence

state. The vocal cords are not vibrating in the unvoiced state whereas they are tensed and

periodically vibrating in the voiced state [29]. Silence (background noise) and unvoiced part are

distinguished together as silence/unvoiced from voiced part because, low energy content is

present in unvoiced part.

 The two widely used methods for silence removal are the Zeros Crossing Rate (ZCR)

method and the Short Time Energy (STE) method.

Zeros Crossing Rate (ZCR) Method:

The measure of number of times in a given time interval/frame, the amplitude of speech

signals passes through a value of zero is called the zero-crossing rate [30]. As mentioned in [30],

the definition of zero-crossing rate is:

15

𝑍𝑛 = ∑ |𝑠𝑔𝑛[𝑥(𝑚)] − 𝑠𝑔𝑛[𝑥(𝑚 − 1)]|𝑤(𝑛 − 𝑚)

∞

𝑚=−∞

-------(1)

Where, sgn[x(n)] = 1, x(n) ≥ 0

 = -1, x(n) < 0

and w(n) =
1

2𝑁
 for, 0 ≤ n ≤ N-1

 = 0, Otherwise

Here, x(m) represents data sequence, w(n-m) represents a limited time window sequence

and N is the window length. In a speech signal, the energy in the voiced part is concentrated at

lower frequencies and the energy in the unvoiced part is found at higher frequencies. Zero

crossing rate and energy distribution with frequency are strongly related. If the zero-crossing rate

is higher, the signal is unvoiced and if it is lower, then the signal is voiced [30].

Short Time Energy (STE) Method:

In Short-Time Energy algorithm, amplitude of signal is taken into consideration. For

unvoiced speech, the amplitude is lower and for the voiced speech, it is higher. These amplitude

variations can be represented using energy of speech signal [30]. The short time energy is

calculated as:

𝐸𝑛 = ∑ [𝑥(𝑚)𝑤(𝑛 −𝑚)]2
∞

𝑚=−∞

-------(2)

16

 In STE, it cannot be specified accurately that how much greater is the energy in unvoiced

part of a speech signal as it varies in every case [29]. ZCR has one rule, which specifies that, for

a clean speech of 10ms, if the ZCR of a portion exceeds 50 then that portion is labeled as

unvoiced and if it is about 12, then it is labeled as voiced [29][49].

2.a.2 Feature Extraction Algorithms:

During the process of feature extraction, analysis of the speech signal is carried out.

During this process, the required information from the speech signal is identified for producing a

meaningful representation of the signal [3]. This feature extraction step mainly includes,

measurement of important characteristics of the signal such as energy or frequency response. It

also includes parameterization of the signal in which these measurements are augmented with

perceptually meaningful derived measurements and then these numbers are conditioned to form

the feature vectors [3]. For some applications, it is also required to transform the original type of

signal to some other useful form of signal.

Linear Predictive Coding (LPC) Method:

In this method, the speech signal is passed through the speech analysis filter for removing

the redundancy in the signal [32]. While doing so, residual error is generated as an output. As

compared to original signal, this residual error can be quantized by smaller number of bits [32].

So, this residual error and speech parameters can be transferred instead of transferring the

complete signal. A technique in which least mean squared error theory is used for computing a

parametric model is called as Linear Prediction (LP). As mentioned in [32], the speech signal is

approximated as linear combination of its previous samples. Formants are described by the

obtained LPC coefficients and the resonant peak frequencies are called the formant frequencies.

17

Linear predictive coefficients and peaks in the spectrum of filter are calculated for finding the

locations of formants in a speech signal [32].

Linear Predictive Cepstral Coefficient (LPCC) Method:

The main assumption behind this method is that the nature of the sound being produced is

based on the shape of the vocal tract [6]. For this purpose, a digital all-pole filter is used for

modeling the vocal tract [7]. In this algorithm, one vocal tract transfer function is calculated

using a set of Linear Predictive Coefficients. The autocorrelation method used in this algorithm

consists of calculating filter gain and the autocorrelation of windowed speech signals [6].

As explained in [6], the vocal tract transfer function is calculated as.

𝑉(𝑧) =
𝐺

1 − ∑ 𝑎𝑘𝑧−𝑘
𝑝
𝑘=1

-------(3)

Where, 𝑉(𝑧) is the transfer function, G is the filter gain, 𝑎𝑘 is a set of Liner Prediction

Coefficients (LPC) and p is the order of all-pole filter. 𝑎𝑘 is the same as explained in the

previous section.

A matrix of simultaneous equations is calculated in the autocorrelation method involved

in this technique.

[

𝑅[0] 𝑅[1] ⋯ 𝑅[𝑝 − 1]

𝑅[1] 𝑅[2] ⋯ 𝑅[𝑝 − 2]
⋮ ⋮ ⋱ ⋮

𝑅[𝑝 − 1] 𝑅[𝑝 − 2] ⋯ 𝑅[0]

] [

𝑎1
𝑎2
⋮
𝑎𝑝

] = [

𝑅[1]
𝑅[2]
⋮

𝑅[𝑝]

]

 -------(4)

18

Where, R[n] is the autocorrelation function of signal. The gain G is calculated as,

𝐺 = √𝑅[0] − ∑ 𝑎𝑘𝑅[𝑘]
𝑝
𝑘=1

 -------(5)

 Furthermore, in this algorithm a cepstrum of speech sequence is evaluated, which is

referred to as cepstral analysis. The Inverse Discrete Fourier Transform (IDFT) of the log

magnitude of the DFT of a signal is called as cepstrum. It is calculated using Equation (6).

c[n] = 𝐹−1{𝑙𝑜𝑔|𝐹{𝑥[𝑛]}|}

-------(6)

 Where, 𝑥[𝑛] is the signal, 𝐹 is DFT and 𝐹−1 is IDFT. This Cepstrum is used for

estimation of dominant fundamental frequency in clean stationary speech signal.

The Linear Predictive Cepstral Coefficients are evaluated from LPCs using a recursive

method. This recursive procedure is calculated as:

𝑐[0] = 𝑖𝑛(𝐺)

𝑐[𝑛] = 𝑎𝑛 + ∑ (
𝑘

𝑛
)𝑛−1

𝑘=1 𝑐[𝑘]𝑎𝑛−𝑘 for 1≤ n ≤ p

𝑐[𝑛] = ∑ (
𝑛−𝑘

𝑛
)𝑛−1

𝑘=1 𝑐[𝑛 − 𝑘]𝑎𝑘 for n > p

-------(7)

Where, c is the LPCC coefficient and p is the total number of samples in the sequence and 𝑎𝑘 are

the predictor coefficients.

19

Perceptual Linear Predictive Cepstral Coefficient (PLPCC) Method:

In this algorithm, various concepts of psychophysics of hearing are used. The three

concepts of psychophysics which are used in this algorithm are, critical band spectral resolution,

equal loudness curve and intensity loudness power law [40]. These concepts are made useful for

finding the all-pole model of short-term spectrum of speech [8]. The short-term power spectrum

is computed using Fourier Transform, and then it is transformed to a Bark scale, which is a

frequency scale on which equal distances correspond with perceptually equal distances [31]. The

sensitivity of human hearing at different frequencies is approximated using a function relating

the intensity of a sound and its perceived loudness. As mentioned in [31], The auditory spectrum

is approximated using the all-pole model of LP and then the LP parameters are transformed to

cepstral coefficients. The flow chart of PLPCC [31] is as shown in Figure 2.

Figure 2: Flow chart of PLPCC algorithm

 As shown in the flow chart, frame blocking, and windowing is carried out on the speech

signal in the pre-processing stage. DFT and its squared magnitude is computed. The power

spectrum of signal is then integrated in the overlapping critical band filter responses. The

spectrum is then pre-emphasized to simulate the unequal sensitivity of human ear. The inverse

Speech

Signal
Pre-processing

Critical Band

Analysis

Equal Loudness

Pre-emphasis

LPC

Cepstrum Coefficients

Computation using

Recursive Relations

PLPPCC

20

Discrete Fourier Transform (IDFT) is performed and then cestrum coefficients are computed

using autoregressive model derived from regression analysis [33].

Mel Frequency Cepstral Coefficient (MFCC) Method:

This algorithm is based on hearing capabilities of human ears. Known variations of the

human ear’s critical bandwidth with frequency are considered while implementing MFCC

algorithm [9]. Steps such as framing, windowing, Discrete Fourier Transform (DFT) and

Discrete Cosine Transform (DCT) are included in the implementation of MFCC.

In this method, a set of triangular filters is used for computing a weighted sum of filter

spectral components [9]. The magnitude frequency response of every filter is triangular. Sum of

the filtered spectral components is calculated for getting each filter output. The MFCC algorithm

is discussed further in detail in the methodology section.

Principal Component Analysis (PCA) Method:

The principal component analysis has been used in many applications for feature

extraction. The method takes advantage of dimensional reduction. In PCA, the eigenvectors are

extracted from the feature vector. Eigenvalues and covariance matrices are calculated for

obtaining these eigenvectors. Only those eigenvectors with higher eigenvalues are selected to

carry out the dimensional reduction. This is done because the eigenvectors with higher

eigenvalues account for higher variability in the data.

In one of the previous algorithms, KL (Karhunen-Loeve) transformation was employed

instead of DCT (Discrete Cosine Transform) on the MF (Mel Frequency) output to carry out the

feature extraction. This transform used was based on PCA. It was used to reflect the statistics of

speech data more precisely than the DCT [4].

21

In another algorithm proposed, PCA was applied on FFT (Fast Fourier Transform) to

calculate the filter bank coefficients [5]. Kernel PCA based algorithm for feature extraction was

proposed to overcome the issue of additive noise. In this algorithm, again, PCA was used instead

of DCT, in which main speech element was projected onto low order features and noise element

was projected onto high order features [5].

22

2.b. Review of algorithms for Lip reading or Visual Speech Recognition [VSR]:

 The concept of lip reading or visual speech recognition [VSR] has attracted many

researchers and many algorithms have been proposed by the researchers for implementing

automated VSR systems.

 Lip reading is important for people who have hearing impairment and can only use the

visual signs to understand the speech. In many ways, such automated visual speech recognition is

useful for people without disabilities also. Lip reading systems are mainly useful for people

without disabilities when the acoustic speech is not understandable [13]. Especially in a noisy

environment, this visual component of speech is unconsciously used by everyone for carrying

out normal communication [13]. Such systems also have wide range of applications in the fields

of human-computer interface, video surveillance, security systems, defense systems and car

navigation systems.

`

Figure 3: Basic block diagram of Lip Reading System

 Figure 3 shows the steps involved in a lip-reading system. The first step of image

acquisition involves breaking the video into frames [14]. The number of frames, which are

Image

Acquisition

Face

Detection

Region of

Interest or

Lip

Localization

Feature

Extraction
Classification

Word

Recognition

23

formed from a video, depends upon the algorithms, which are selected for further steps involved

in the implementation. Many techniques and algorithms have been proposed and used for all

these steps, which are involved in a lip-reading system. The most popular techniques are taken

into consideration as a part of the following discussion.

2.b.1 Face detection and lip localization techniques:

 One of the most popular algorithms used for face detection is the Viola Jones algorithm.

This algorithm was proposed by Paul Viola and Michael Jones, and it is considered efficient for

detecting faces. It was shown that, while operating on 384 by 288 pixel images, this algorithm

could detect faces at the rate of 15 frames per second [15]. As explained in [15], this algorithm

was divided into three main contributions of object detection framework. The first of them was

integral image. Features resembling Haar basis functions were used within this algorithm, and

integral image representation was used for evaluating these features rapidly. Haar like features

use contrast variance in the adjacent rectangular groups of pixels in an image [26]. This contrast

variance is used for determining light and dark areas. Haar-like features are formed by two or

three adjacent groups with relative contrast variance [26]. In any image, the total number of

Haar-like features is very large. For carrying out fast classification, only the important features

are required to be selected. In the Viola-Jones algorithm, this selection of important features was

carried out using Adaboost and this was the second contribution of the paper. This Adaboost is a

process which was used for finding relevant and irrelevant features. In the third contribution of

this algorithm, more complex classifiers were combined in a cascade structure for increasing the

speed of the detector.

 Another algorithm which is widely used for face detection purpose is the Kanade-Lucas-

Tomasi (KLT) algorithm. In this algorithm, initially, feature points are detected and then

24

displacement of these points from one frame to another frame is calculated [16]. The movement

of the head is computed using this displacement and optical flow tracker. Figure 4 shows the

flow chart of KLT algorithm [16].

Figure 4: Flow chart of KLT algorithm

As explained in [16], two simple steps are used in KLT algorithm for tracking the face.

Firstly, traceable feature points from the first frame are found and then calculated displacement

is used to track those features in next frame. The traceable feature points used are Harris corners.

These Harris corner detectors are popularly used for detecting corners in the field of computer

Video

Capturing

Detection of

Feature Points

Calculation of

Displacement

Initialize the

Tracker

Present Frame

Tracking from

Preceding one

Result

25

vision. After detecting the corners, optical flow is computed for each translational motion and the

corners are detected accordingly in the successive frames by connecting the motion vectors [16].

 If (x,y) is considered as one of the corner point, then it is displaced by some variable

vector, (b1, b2, …, bn). The coordinates of the new point are then calculated using Equation (9),

𝑥2 = 𝑥 + 𝑏1

𝑦2 = 𝑦 + 𝑏2

-------(9)

 The displacement with respect to each coordinate is calculated using the wrap function as

follows:

𝑊(𝑥; 𝑝) = (𝑥 + 𝑏1; 𝑥 + 𝑏2)

-------(10)

Where, p is the displacement parameter.

The methods used for lip localization mainly consist of color space-based techniques.

Within these methods, color spaces like RGB (Red-Green-Blue), HSI (Hue-Saturation-Intensity),

and YCbCr (Luminance-Component blue- Component red) or L*a*b space are used [14]. As

explained in [17], the mouth region of human face contains more red, that is Cr component than

blue, that is Cb component. This factor of chrominance color ratio can be used in various ways

for lip localization. According to the results in [17], the saturation component of HSI color space

with Cr and Cb component gives good results for lip localization.

26

2.b.2 Feature Extraction Techniques:

 Out of all the steps involved in a lip-reading algorithm, feature extraction is the most

important and crucial part. In general, feature extraction techniques can be divided into two types

[14]. One type is Pixel-Based, and the other type is Lip Contour Based.

Figure 5: Feature extraction Techniques for Lip-Reading Systems

Pixel-Based or Image-Based Techniques:

 One of the most popular pixel-based feature extraction method is the use of Discrete

Cosine Transform (DCT). DCT is similar to Discrete Fourier Transform (DFT) as both these are

used for transforming an image from spatial domain to frequency domain. DCT is mainly used

for separating an image into spectral sub bands of different importance [27]. In [18], 2D-DCT

was used as one of the methods for the feature extraction purpose. In that attempt, the features

were extracted using Equation (11).

Feature Extraction
Techniques for Lip-

Reading System

Pixel-Based
Techniques

Discrete Cosine
Transform

Discrete Wavelet
Transform

Principal
Component

Analysis

Linear Discriminant
Analysis

Lip Contour Based
Techniques

Active Contour
Model

Active Shape Model

Active Apprearence
Model

27

𝐵𝑝𝑞 = 𝛼𝑝𝛼𝑞 ∑ ∑𝐴𝑚𝑛

𝑁−1

𝑛=0

𝑀−1

𝑚=0

𝑐𝑜𝑠
𝜋(2𝑚 + 1)

2𝑀
𝑐𝑜𝑠

𝜋(2𝑛 + 1)

2𝑁

-------(11)

Considering the image A of size M by N, Bpq is the DCT coefficient of image A at

location (p,q).

𝛼𝑝 =

{

1

√𝑀
, 𝑝 = 0

√
2

𝑚
, 1 ≤ 𝑝 ≤ 𝑀 − 1

}

𝛼𝑞 =

{

1

√𝑁
, 𝑞 = 0

√
2

𝑛
, 1 ≤ 𝑞 ≤ 𝑀 − 1

}

-------(12)

Another well-known transform used for feature extraction is Discrete Wavelet Transform

(DWT). As mentioned in [19], wavelet transform can be used as a multiscale differentiator as it

represents singularity of an image at multiple scales. This method is also useful in case the

images are captured with multiple orientations like horizontal, vertical, and diagonal. In wavelet

decomposition, each stage of filtering splits the image into four parts with the help of low-pass

and high-pass filters. Out of these parts, the image with a low-spatial frequency is selected for

the next decomposition level. After carrying out three such levels of decomposition, the resultant

matrix representing the lowest spatial frequency sub-image is extracted as the feature vector.

With the help of this methodology, only those coefficients, which play significant role in lip

motion, are selected [19].

28

 Often, these transforms described above are combined with one of the techniques, which

is useful for dimensional reduction [19]. Two of the most commonly used methods for

dimensional reduction are Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA).

 To implement a lip-reading system, PCA was combined with DCT [20]. In this

algorithm, 32 x 16 matrix was considered as 1D vector Xi, where i = {1, 2, 3…. S}, and S is the

number of training samples. Covariance matrix C and mean vector m were calculated for all

these Xi. Eventually eigenvectors and eigenvalues of all C were calculated. Only the K

eigenvectors with the largest eigenvalues were selected to generate the matrix PPCA. This PCA

method is used to reduce the mean square error [21]. This mean square error is defined as,

𝐸‖𝑥 − 𝑥̂‖2 = ∑𝐸(𝑥𝑖 − 𝑥𝑖̂)
2

𝑝

𝑖=1

-------(13)

 Where, x is the random vector such that xT = [x1, x2, …, xp] and 𝑥̂ is the projection of x

into subspace V.

 LDA method consists of two scatter matrices called within-class scatter matrix Sw and

between class scatter matrix Sb. These matrices are defined as follows:

𝑆𝑏 =
1

𝑁
 ∑𝑙𝑖𝑆𝑏𝑖

𝑐

𝑖=1

𝑆𝑏𝑖 = (𝜇𝑖 − 𝑥̅)(𝜇𝑖 − 𝑥̅)
𝑇

-------(14)

Where, 𝑙𝑖 is number of data points in class 𝑖 and ∑ 𝑙𝑖
𝑐
𝑖=1 = 𝑁. µ𝑖 is mean point of ith class, 𝑥̅ is

the mean of all data points and we have c known classes, L1, L2, …, Lc.

29

𝑆𝑤 =
1

𝑁
 ∑𝑆𝑤𝑖

𝑐

𝑖=1

𝑆𝑤𝑖 =∑(𝑥𝑗 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑖)
𝑇

𝑗𝜖𝐿𝑖

-------(15)

 In this algorithm, the data is projected to a lower dimension. Matrices in lower

dimension are then defined as:

𝑆𝑏
𝑊 = 𝑊𝑇𝑆𝑏𝑊

𝑆𝑤
𝑊 = 𝑊𝑇𝑆𝑤𝑊

 -------(16)

Next, a transformation matrix W is found such that Sb is minimized and Sw is maximized.

This results in the ratio of Sb and Sw being maximized. This function is calculated as,

𝐽(𝑊) =
|𝑊𝑇𝑆𝑏𝑊|

|𝑊𝑇𝑆𝑤𝑊|

-------(17)

 So, if J(W) is maximized, we can get the matrix W using,

(𝑆𝑏 − 𝜆𝑖𝑆𝑤)𝑊𝑖 = 0

-------(18)

A combination of DCT and LDA algorithms were used in [22] for extracting the features

for lip-reading. As mentioned in [22], the transformation matrix W and transformed features

were calculated to keep maximum distance between different classifications and minimum

distance within each classification.

30

Lip Contour or model-based techniques:

The Active Contour Model (ACM) technique which is also known as Snake was

introduced [23]. In this method, an energy minimizing spline was used. This spline was created

to concentrate upon features such as lines and edges. Image forces and external constraint forces

were used to attract these splines towards the features. As mentioned in [23], image forces are

responsible for pushing the snakes towards salient features like lines and edges whereas the

external forces push the snakes near a local minimum. It was described within the paper that

image energy responsible for pushing the snakes towards salient features is a combination of

three energy functionals which are Line Functional, Edge Functional and Terminal Functional.

Two additional well-known model-based methods used for feature extraction are the

Active Shape Model (ASM) and the Active Appearance Model (AAM).

 In ASM, a statistical shape model calculated using labeled training data is used for the

shape constraint [24]. Initially, a mean shape is calculated using aligned images and the PCA

technique. Landmark points are then used for calculating inner and outer contours. An

approximated shape of lips can then be defined by using Equation (19).

𝑥 = 𝑥̅ + 𝑃𝑏

-------(19)

 In this equation, 𝑥̅ is the mean shape, P is the matrix of first t important eigenvectors and

b is the vector of t weights [24]. In this way, the valid shape of lip images, x is obtained.

 AAM is an extension of ASM method as it uses combination of model described, using

shape variation and the statistical model of grey levels [24]. In AAM, intensity values from

normalized training images are sampled into a vector, g. Then the appearance model is obtained

using Equation (20).

31

𝑔 = 𝑔̅ + 𝑃𝑔𝑏𝑔

-------(20)

 In this equation, 𝑔̅ is the mean, Pg are the main modes of variation, and bg are the texture

parameters. After obtaining model g, the difference between the model and testing images can be

calculated by the model estimate onto the target image. The iterative Active Appearance Model

algorithm is used for this purpose.

Other than these image-based and model-based techniques, two of the most advanced

techniques used for lip reading are Neural Networks and Hidden Markov Model. The Neural

Networks technique was first introduced by Beala and Finaly [25] for lip-reading. Later on,

techniques like Back Propagation [BP], Time-Delay Neural Network [TDNN], Hidden Markov

Model (HMM) were introduced to improve the performance of neural network-based lip-reading

systems. Compared to image based and model-based techniques, Neural Networks and Hidden

Markov Model techniques are computationally expensive.

32

2.c Pattern Matching Algorithms for lip-reading and speech recognition systems:

After the feature extraction from audio or visual speech samples is done, pattern

matching is required. This block decides to which of the training word class the testing word

belongs. For that purpose, the task is to find out the difference between extracted feature vectors.

In that case, the distortion between speech samples can be referred as the distance between

feature vectors.

The most common method used for finding out the differences is Euclidean distance.

This Euclidean distance is referred as the local distance between the feature vectors. This method

of pattern matching has remained useful for many speech recognition algorithms, but it has

certain drawbacks. If the length of feature vectors is not the same, then this method of pattern

matching is not suitable for getting accurate recognition results. In that case, many other methods

of pattern matching can be used.

Dynamic Time Warping (DTW):

In Dynamic Time Warping, the entire processing is executed in small steps [10]. Local

distance measurement is carried out for all of these small steps. This approach allows for the

different durations of all the utterances of same word. Additionally, even if the words are of the

same length, the different parts of the word are spoken with different emphasis. Therefore, the

rates with which speech signals for different words are created are different. For overcoming

these problems, certain time alignment is performed using the DTW algorithm [10]. DTW is a

good algorithm for finding out the lowest distance path without a lot of computation.

33

Support Vector Machine (SVM):

Many of the speech recogntion applications implemented using SVM are developed in

combination with Hidden Markov Models (HMM) algorithm. In HMM, certain stochastic

models are generated and the probability of unknown utterances getting generated by each model

is compared [11]. In SVM algorithm, the distance between samples and the classification border

is maximised. Unseen patterns are generalised by maximizing this distance. This distance is

referred to as margin. Compared to Neural Network classifiers, SVMs are better performers

because they don’t have problems like convergence and stability.

One algorithm was implemented using pure SVM in which the Token Passing Model

algorithm was utilized [12]. This algorithm is an extension of the Viterbi algorithm. In this

approach, one probability matrix was built with one row per class and one column per frame.

Then, the Token Passing Model algorithm was used for obtaining the chain of recognised words

from this matrix.

When the performance of this algorithm was compared with the HMM algorithm, it was

observed that SVMs are better performers than HMMs. It was eventually concluded in the

approach that, for a small database, SVMs are able to improve recognition accuracy of HMMs

[12]. Similar results can be obtained with a huge database as well.

Other techniques such as Gaussian Mixture Model and Vector Quantization are also used

for pattern matching purpose.

34

2.d Applications of Speech Recognition Systems:

 Presently, there is a vast number of applications of speech recognition systems. One of

the main applications of it is present in the field of security systems. These systems are mainly

used for automatic speaker identification or speaker verification.

 Now these applications are divided into different categories such as isolated word

recognition systems, keyword recognition systems, and multiple word recognition systems. All

these applications are mainly used in the field of communication. There are present systems such

as automated operator services in which all the functions of an operator are handled

automatically by the speech recognition systems. These functions include billing and general

inquiries. Such a system was introduced by AT&T. Additionally, certain voice dialing systems

have been developed by AT&T and Bell Atlantic. In such systems, it is possible to complete the

call without pushing the buttons on the telephone. Other than telecommunication services like

AT&T, such automated speech recognition based customer service applications are also present

in banking systems and airports.

Some real world applications such as live subtitling on television, off-line notetaking

systems, speech to text conversion and dictation tools for various professions like the medical

field are also present. These systems are also used for applications like speech enhancement. The

applications related to noise reduction, processing of degraded speech, bandwidth reduction and

interference reduction come under this category. Other similar applications such as waveform

coding, distortion compensation and multiplexing are also present. Other command and control

applications include avionics, battle management, interface to computer systems, and database

management [3].

35

3. Methodology:

Figure 6 shows a block diagram of implemented Audio-Visual Speech Recognition

System.

Figure 6: Block Diagram of proposed Audio-Visual Speech Recognition System

As shown in the block diagram, audio and video parts of each utterance from the database

were separated before carrying out the feature extraction. The software called ‘Any Video

Converter’ was used for separating these audio and video parts. After separating the audio and

video components, the video stream was used for visual feature extraction, and the audio stream

was used for audio feature extraction.

Image frames

for Lip

Reading

Audio

Signal

Visual Feature

Extraction

using DCT

Audio Feature

Extraction

using MFCC

Audio Visual

Feature Fusion

Dynamic Time

Warping and

Normalization

Classification

Silence

Removal and

End-Point

Detection

Input Stream

Video

36

3.a. Audio Feature Extraction:

Before carrying out the feature extraction from the speech samples, a silence removal and

end-point detection step was implemented for better efficiency.

3.a.1 Silence removal and end-point detection:

 The method used in proposed algorithm mainly consisted of Probability Density Function

(PDF) of background noise and a Linear Pattern Classifier. The voiced part of sample was

classified from the silence/unvoiced part using this classifier. As mentioned in [29], the results

obtained from this algorithm are better than Zero Crossing Rate (ZCR) and Short Time Energy

(STE) methods. As explained in [29], this method consists of 5 steps as follows:

 In the first step, the mean and standard deviation of first 1600 samples of the audio were

calculated with a sampling rate of 16000 samples per second, using Equations (21) and (22).

𝜇 =
1

1600
 ∑ 𝑥(𝑖)

1600

𝑖=1

-------(21)

𝜎 = √
1

1600
∑(𝑥(𝑖) − 𝜇)2
1600

𝑖 =1

-------(22)

Where, 𝜇 is the mean and 𝜎 is the standard deviation. These two values are used to characterize

the background noise.

37

 In the second step, Mahalanobis distance was calculated for every sample using Equation

(23).

𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
|𝑥 − 𝜇|

𝜎

-------(23)

 The Gaussian Probability density is described using a bell-shaped curve and it is

calculated using mean 𝜇 and variance 𝜎2 [29]. This is usually written as, p(x) ~ N(𝜇 𝜎2) and it

is read as, 𝑥 distributed normally with mean 𝜇 and variance 𝜎2 [29]. In this curve, the peak

occurs at 𝑥 = 𝜇 and width is proportional to standard deviation, 𝜎. The probabilities follow the

Equation (24):

Pr[|x − 𝜇|] ≤ 𝜎 = 0.68

Pr[|x − 𝜇|] ≤ 2𝜎 = 0.95

Pr[|x − 𝜇|] ≤ 3𝜎 = 0.997

-------(24)

As shown in Equation (24), 99.7% of the Gaussian distribution is in the range of

 |𝜇| ≤ 3. Hence, the Mahalanobis distance was then checked whether it was greater than 3. If it

was greater than 3, the sample was treated as voiced sample, otherwise it was treated as

silence/unvoiced. This was done because the threshold of 3 rejects the samples up to 99.7%

according to Equation (24) and hence it accepts only the voiced samples [29].

 The audio was divided into 10ms non-overlapping windows. In each window, the

Mahalanobis distance was calculated for each sample.

38

 In the third step, all the voiced samples (as determined by Mahalanobis distance) were

marked as 1 and all the unvoiced samples were marked as 0. In step four, each window would

then be classified as voiced or unvoiced based on a majority of samples within that window. If

the majority of samples (>50%) were classified as voiced (Mahalanobis distance), then the

window is classified as voiced; otherwise, it was classified as unvoiced.

 In the fifth step, parts of the signal that include voiced speech were collected together for

further processing with unvoiced sections removed.

3.a.2 Feature Extraction:

Based on information in literature, Mel Frequency Cepstral Coefficient (MFCC) was

used in the proposed system. This technique was chosen to take advantage of the frequency

bands, which are positioned logarithmically on the Mel scale in MFCC. This approximates the

human auditory system’s response more closely than other techniques. Also, based on the

comparisons in made in [3], it was observed that, MFCC has better performance as compared to

other methods used for feature extraction. Figure 7 shows the block diagram for MFCC.

39

Figure 7: Audio Feature Extraction using MFCC Technique

Pre-emphasis:

 In the first stage of pre-emphasis, the amount of energy in the high frequencies is

boosted. Considering the spectrum for voiced segments like vowels, more energy is present at

lower frequencies than the higher frequencies. This energy drop across frequencies is due to the

nature of glottal pulse. If this high energy frequency is boosted, then these higher formants

become more available for feature extraction, which in turn improves the performance of the

system.

 A first order high-pass filter was used for carrying out this pre-emphasis. For the input

signal x[n], the filter equation is given as:

𝑦[𝑛] = 𝑥[𝑛] − 𝑎𝑥[𝑛 − 1]

-------(25)

Where, 0.9 ≤ 𝑎 ≤ 1.0. Its transfer function is given as:

Speech Signal

Frame Blocking Windowing FFT

Speech Signal
Mel Frequency

Spectrum
Cepstrum Mel-Cepstrum

Feature Set

Pre-emphasis

40

𝐻(𝑧) = 1 − 𝑎𝑧−1

-------(26)

Figure 8 shows the magnitude response of this high pass filter for different values of 𝑎. As

shown in the figure, for 𝑎 = 0.95, the gain is 6db/octave. A filter with this value, as shown in

Figure 8c, was used for the final implementation.

(a) (b)

 (c) (d)

Figure 8: Magnitude response of pre-emphasis filter for different values of a

(a) a = 0.5 (b) a = 0.75 (c) a = 0.95 (d) a = 1

41

Windowing:

 Since the spectrum of every speech signal changes quickly, the spectral features are not

extracted from the entire utterance. Speech is a non-stationary signal; hence, its statistical

properties are not constant across time. Because of this, speech is windowed to extract the

spectral features. For a small window, it can be assumed that the signal is stationary.

 The three important parameters of windowing are, wideness of the window in

milliseconds, the offset between successive windows, and the shape of the window. Every

window of the speech signal is called a frame and is paired with images. Frame size is the

number of milliseconds in the frame and frame shift is the number of milliseconds between left

edges of successive windows. In the proposed system, frame size of 25ms and frame shift of

15ms was used. The signal was extracted using Equation (27).

𝑦[𝑛] = 𝑤[𝑛]𝑠[𝑛]

-------(27)

Where, 𝑠[𝑛] is the value of signal at time sample 𝑛 and 𝑤[𝑛] is the value of window at time

sample 𝑛.

 Hamming window was used during the implementation. This window avoids the

discontinuities in the signal as it shrinks the values of signal towards zero at window boundaries.

Equation (28) gives the value of Hamming window.

𝑤[𝑛] = 0.54 − 0.46 𝑐𝑜𝑠(2𝜋𝑛/(𝐿 − 1), 𝑖𝑓 0 ≤ 𝑛 ≤ 𝐿 − 1

𝑤[𝑛] = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

-------(28)

42

Where, 𝐿 is the window length.

Figure 9 shows the curves of generalized hamming window for different values of α.

Figure 9: Hamming window curves

As explained by Equation 28, the value of α was chosen to be 0.46.

Discrete Fourier Transform:

 Discrete Fourier Transform (DFT) was used for extracting the spectral information from

the windowed signal. The windowed signal x[n] was input to the DFT. The output of DFT

represented the magnitude and phase of the frequency component in the original signal. Fast

Fourier Transform (FFT) is the commonly used algorithm for computing DFT. For this system,

a 512-point FFT was used with a frequency resolution of 31.25 Hz/bin.

43

Mel Filter Bank and log:

 FFT yields information about the amount of energy at each frequency band. Human

hearing is less sensitive at higher frequencies (above 1000 Hz) [28]. This property of human

hearing was used for feature extraction. The frequency output of DFT was warped onto the mel

scale in this MFCC feature extraction. Mel is the unit of pitch. It is defined that any pair of

sounds which are perceptually equidistant in speech are separated by an equal number of mels.

The mel frequency is calculated from the raw acoustic frequency using Equation (29).

𝑚𝑒𝑙(𝑓) = 1127 𝑙𝑛(1 + (𝑓/700))

-------(29)

A bank of filters for collecting the energy from each frequency band was created during

MFCC computation. Total 26 filters were used to calculate the filter bank. Figure 10 shows this

mel bank of triangular filters.

44

Figure 10: Mel Bank Filters

In this filter bank, 10 filters were spaced linearly below 1000 Hz and other filters were

spaced logarithmically above 1000 Hz. This was done because, the mapping between frequency

in Hertz and the mel scale is linear below 1000 Hz, and it is logarithmic above 1000 Hz [37].

Then, the log of all mel spectrum values was calculated as feature estimates. The result is less

sensitivity to input variations.

The Cepstrum:

 When a glottal source waveform of a specific fundamental frequency is passed through

the vocal tract, a speech waveform is created. All the characteristics of this glottal pulse are not

important for speech recognition. The exact position of the vocal tract is the most important

45

information. Cepstrum is a tool that can be used to accomplish this. Cepstrum is defined as the

inverse DFT of the log magnitude of the DFT of a signal.

 In the proposed system, 26 mel bank filters were used for calculating 13 coefficients. Mel

Frequency Cepstral Coefficients (MFCC) were calculated using Equation (30).

𝐶𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝑑𝑐𝑡 [𝑙𝑜𝑔 (𝑎𝑏𝑠(𝑋(𝑘)))]

-------(30)

Here, DCT was used instead of IFFT for computational efficiency. The MFCCs were

computed by integrating spectral coefficients in each triangular frequency. The 26 values

correspond to 26 filters accordingly. As observed in [43] [48], the recognition performance

obtained after using first 10 to 13 coefficients was better than any other sub-band frequency

range. Also, use of DCT decorrelates the features [46] and most of the information contained in

the signal is accumulated in DCT at lower order coefficients [46]. The excitation information or

the periodicity in the audio waveform is represented by higher order DCT coefficients, whereas,

in this experiment, vocal tract shape or smooth spectral shape were more important [47].

Consequently, for MFCC extraction in this system, only the first 13 values were used [44] [45].

Figure 11 shows the plot of magnitude spectrum of a frame data and magnitude spectrum of

MFCC coefficients calculated for the same frame.

46

Figure 11: Magnitude spectrum of frame and MFCC features

From these 13 values of MFCC coefficients, delta and delta-delta coefficients were calculated

using Equation (31).

𝑑𝑡 =
∑ 𝑛(𝐶𝑡+𝑛 − 𝐶𝑡−𝑛)
𝑁
𝑛 =1

2∑ 𝑛2𝑁
𝑛 =1

-------(31)

Here, 𝑑𝑡 is the delta coefficient, t is the frame, 𝐶𝑡+𝑛 and 𝐶𝑡−𝑛 are the static coefficients.

Value of N was selected as 2. Delta-delta coefficients were calculated using the same formula but

by applying it on delta coefficients. In this way, for every frame of every speech sample, 39

coefficients (13 MFCC + 13 Delta + 13 Delta-delta) were calculated.

47

3.a.3 Dynamic Time Warping:

 Dynamic Time Warping is a distance algorithm which is used for locally stretching or

shrinking the time series before applying the classification technique [38].

 There are two-time series, Q and C. Where, Q = q1, q2, …, qi, …, qn = Query sequence.

And, C = c1, c2, …, cj, …, cm = Candidate sequence. Here, n and m are the number of frames in Q

and C respectively. All the frames in both the sequences contain equal number of features in it.

 To align these sequences, a matrix of size n by m is constructed such that ith and jth

element of matrix contains the distance d(qi, cj) between the two points, qi and cj. This distance is

calculated using Equation (32).

d(𝑞𝑖, 𝑐𝑗) = (𝑞𝑖 − 𝑐𝑗)

-------(32)

 The distance matrix is calculated using Equation (33):

𝐷(i, j) = 𝑑(i, j) + min{ 𝐷(i, j − 1) , 𝐷(i − 1, j) , 𝐷(i − 1, j − 1) }

𝑑(i, j) = Euclidean Distance = |query(i) − reference(j)| = Local Distance

𝐷(i, j) = Global Distance = Total Summation of all the local distances

-------(33)

 Here, each matrix element, (i,j) belongs to alignment between the points qi and cj.

Warping Path:

 The set of matrix elements that defines the mapping between Q and C is called as the

warping path, W. The kth element of W is defined as, Wk = (i, j) [38]. So, we have,

48

W = w1, w2, …, wk…, wK max(m,n) ≤ K < m+n-1

 After finding this warping matrix, the optimal warping path is searched. This warping

path is related to following constraints [38]:

1. Boundary conditions: w1 = (1,1) and wk = (m,n), the warping path should start and finish

in the diagonally opposite corner cells of the matrix.

2. Continuity: If, wk = (a,b) then, Wk-1 = (a’,b’). Here, a-a’ ≤ 1 and b-b’ ≥ 0. The allowable

steps in the warping path are restricted to adjacent cells because of this constraint.

3. Monotonicity: If, wk = (a,b) then, Wk-1 = (a’,b’). Here, a-a’ ≥ 0 and b-b’ ≥ 0. The points in

W are forced to be monotonically spaced in time using this constraint.

These conditions are satisfied by many warping paths but the path which minimizes the

warping cost is calculated. This cost is calculated using Equation (34):

DTW(q, C) = min {
√∑ 𝑤𝑘

𝑘
𝑘=1

𝑘
⁄

-------(34)

 In the implemented system, this dynamic time warping was carried out after calculating

the MFCC features of audio samples in the training dataset. The number of frames extracted after

silence removal and end-point detection were different for all the audio samples. Hence, the

number of MFCC features calculated for every audio sample were also different. A cell matrix

was formed with all the number of frames related to audio samples with utterance ‘zero’. Then,

the median of these number of frames was calculated. The audio sample which was having the

number of frames equal to this median, was selected as the reference sample. All the other audio

49

samples with utterance ‘zero’ were warped against this reference sample. Same procedure was

carried out on all the other digits from ‘one’ to ‘nine’. In this way, in total ten (one matrix for

each digit) training feature matrices were formed.

50

3.b Visual Feature Extraction:

 The frame rate of all the videos collected was 25 frames per second. Given that each

video has a duration of 2 seconds, each video was comprised of 50 frames.

3.b.1 Region of Interest(ROI) detection and lip localization:

For Region of Interest(ROI) detection and lip localization, the Viola-Jones algorithm was

used. As explained previously, this algorithm works very efficiently for detecting faces and face

components based on Haar-like features. These features are comprised of two edge features

which are line features and rectangle features [15]. In this algorithm, the images are classified

using simple features instead of pixels directly because, such systems are faster than pixel-based

systems [15]. As explained in [15], there are three types of features used, two-rectangle features,

three-rectangle features, and four-rectangle features. The value of the two-rectangle features is

computed by taking the difference between the sum of pixels within two rectangles. The value of

three rectangle features is calculated by taking difference between the sum of two outside

rectangles and sum in the center rectangle. The value of four-rectangle feature is calculated by

taking difference between diagonal pairs of rectangles.

 These rectangle features are calculated using integral image. Equation (35) is used for

calculating integral image at location (x,y):

𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥′, 𝑦′)

𝑥′≤𝑥,𝑦′≤𝑦

-------(35)

Where, ii(x,y) is the integral image and i(x, y) is the original image. Equations (36) and (37) are

used for calculating the integral image with one pass of original image.

51

𝑠(𝑥, 𝑦) = 𝑠(𝑥, 𝑦 − 1) + 𝑖(𝑥, 𝑦)

-------(36)

𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(𝑥 − 1, 𝑦) + 𝑠(𝑥, 𝑦)

-------(37)

Here, s(x,y) is the cumulative row sum, s(x,-1) = 0 and ii(-1,y) = 0.

After these rectangle features are calculated, the AdaBoost learning algorithm is used for

classification. This was used for boosting the performance of simple learning algorithm (also

called weak learning algorithm) [15]. Out of many rectangle features calculated from an image,

very small number of features should be combined to get an efficient classification. Weak

learning algorithm is good for completing this task [15]. The equation for weak classifier is as

follows:

ℎ𝑗(𝑥) = {
1 𝑖𝑓 𝑝𝑗𝑓𝑗(𝑥) < 𝑝𝑗𝜃𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

-------(38)

Where, ℎ𝑗(𝑥) is the weak classifier, 𝑓𝑗 is the feature, 𝑝𝑗 is the parity indicating direction of

inequality sign, and 𝜃𝑗 is the threshold. The optimal threshold classification function is

determined by the weak learner. In this way, a single rectangle feature is selected by this

algorithm, which is best for separating positive and negative examples.

 This ROI detection and lip localization technique was applied on all the 50 frames

formed. All the 50 lip images extracted from every video were resized to 64 x 64. Feature

extraction was then carried out on all these images.

52

3.b.2 Feature Extraction:

 Many popular algorithms used for visual feature extraction have been discussed in the

previous sections. The performance of all these algorithms was compared in [34] and [14].

Experimental results found that the image transform based visual features work significantly

better than lip contour-based features [34]. This is because most of the speech-reading

information is present in the oral cavity which cannot be captured by lip contours. When the

image transform based algorithms were compared together, it was found that the DCT based

technique works better than other techniques. Table 1 shows the overall summery [14]. As

mentioned in the table, model based, or lip contour-based techniques are mainly useful when

translational, rotational or scaling invariance is present within the database. Still their

performance is low as compared to image pixel-based techniques. Considering all these things,

the DCT based technique was used for visual feature extraction purpose in the proposed system.

Model Example Distortion Lip

Extraction

Performance Limitation

Image-

Based

DCT, DWT,

PCA

Real

Environment

Visual only High

 DCT is

better than

others

Restricted to

illumination,

mouth rotation,

dimensionality

Model-

Based

ACM

(snakes),

ASM, AAM

Deformable

templates

Noise and

channel

Acoustic and

visual

Low but

robust,

invariant to

translation,

rotation,

scaling and

illumination

Inner outer lip

contours, color

of skin and lip

matched,

computationally

expensive

Table 1: Comparison of Feature Extraction Techniques for Lip-Reading [14].

The ROI image of size 64x64 was divided into 16 non-overlapping blocks of 16x16 and

then DCT was applied to each of these blocks. Sixteen transform coefficients were calculated

using Equation (39), where S is a size n x m image, u = 0, 1, 2, 3…, n and v = 0, 1, 2, 3…., m.

53

𝑆(𝑢, 𝑣) =
2

√𝑛𝑚
𝐶(𝑢)𝐶(𝑣) ∑ ∑𝑆(𝑥, 𝑦)

𝑛−1

𝑥=0

𝑐𝑜𝑠
2(𝑥 + 1)𝑢𝜋

2𝑛
𝑐𝑜𝑠

2(𝑦 + 1)𝑢𝜋

2𝑚

𝑚−1

𝑦=0

-------(39)

 And, C(u) = 2-1/2 for u = 0

 = 1 otherwise.

Then energy coefficient E(i) for each block is computed using Equation (40).

𝐸(𝑖) = ∑∑ 𝑆(𝑗, 𝑘)

16

𝑘 =1

16

𝑗 =1

-------(40)

Where, i = 1, 2, 3, 4…, 16 and S is the transform coefficient. In this way, 800 coefficients

(16*50) were calculated from every video. All these energy coefficients were stored in one

vector, which was the targeted vector of visual features.

54

3.c Fusion and Classification:

 The feature vector created from the videos consisted of 800 coefficients, and the feature

vector created form audio samples consisted of 39 coefficients per frame of audio every sample.

These feature vectors were concatenated to form a vector of features for every video in the

database.

 The Support Vector Machine (SVM) was used for classification purpose. This method

was chosen due to its mathematical simplicity, and it avoids over-fitting [41]. As mentioned in

[41], SVM is also well suited to classifying the MFCC features. In case of binary SVM, the

optimal hyperplane is found such that it divides the two classes [36]. The distance between the

data points and the hyperplane, which is refered to as the margin, is calculated. After hyperplane

and margins are calculated, the class is chosen such that, it classifies the test datum with

maximum margin [36].

 Consider, training vector, xi ϵ Rd , i = 1,…l, and the label vector, y ϵ {1,-1}l

Then, this SVM technique requires to find an optimum solution for Equation (41):

𝑚𝑖𝑛
𝑤𝜖𝐻, 𝑏𝜖𝑅, 𝜉𝑖𝜖𝑅

1

2
𝑤𝑇𝑤 + 𝐶∑𝜉𝑖

𝑙

𝑖=1

subject to 𝑦𝑖(𝑤
𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖

 𝜉𝑖 ≥ 0, i = 1, . . . , i

-------(41)

55

 Here, w is the weight vector, C is the regularization constant and 𝜑 is the mapping

function used for projecting the training data onto a suitable feature space H. This optimization

problem is solved using equation (42):

𝑚𝑖𝑛
𝛼𝜖𝑅

1

2
𝛼𝑇(𝑲 • (𝒚𝒚𝑇)) 𝛼 − 𝒆𝑇𝛼

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝟎 ≤ α ≤ 𝐶𝒆, 𝑦
𝑇𝛼 = 0

-------(42)

 Here e is a vector of all 1s, K is the kernel matrix and • is called as the Hadamard-Schur

product [36].

 To apply this binary SVM classifier on multiple classes, an approach called One-Versus-

Rest was used in the implemented system. In this approach, SVM constructs, K separate

classifiers for k-class classification. Accordingly, in SVMs, the jth classifier yields the decision

function expressed by Equation (43):

𝑓𝑗(x) = 𝑤𝑗
𝑇𝜑(𝑥) + 𝑏𝑗

-------(43)

 Here, Wj and bj are hyperplane parameters calculated during jth classifier, and 𝑓𝑗(x) is the

distance between x and margin of classifier j. During multiclass classification, observation is

assigned to that class j* which produces largest value in all the M classifiers [39]. Equation (44)

is expressed for explaining this concept:

56

j ∗ = arg
𝑚𝑎𝑥

𝑗 = 1. . . 𝑀 𝑓𝑗(x) = arg
𝑚𝑎𝑥

𝑗 = 1. . . 𝑀 𝑤𝑗
𝑇𝜑(𝑥) + 𝑏𝑗

-------(44)

 While carrying out the classification, every test sample was first time warped against all

ten (0 to 9) the reference samples one by one. Then these ten-time warped versions of the test

sample were classified against all the ten-training feature (0 to 9) matrices. After carrying out

these ten classifications, in total ten values of j* were calculated based on all individual digit (0-

9) classifications. The maximum of these ten j* values was used to determine the best match.

57

3.d. Testing:

As discussed in the introduction, the aim of this research is to compare the results of two

standalone systems (A Lip Reading System and a Speech Recognition System) with a feature-

level fusion-based system (An Audio-Visual Speech Recognition System). The database, which

was used for this comparison is called ‘vVISWa’ (Visual Vocabulary of Independent Standard

Words) [35] database. Another database which was used for the comparison was collected in the

Grand Valley State University’s campus. Both these databases are comprised of frontal profile

utterances of numerals/digits. The duration of all the videos collected was approximately 2

seconds.

The experiments were carried out using three combinations of these two databases. In the

first combination, five male participants and five female participants were included from the

‘vVISWa’ database. Four utterances were recorded from these ten participants for each digit. Out

of these four utterances, two utterances per person per digit were included in the training dataset,

and the other two utterances were included in the testing dataset. In this way, both training and

testing datasets consisted of two hundred videos (10*2*10) each.

In the second combination, videos collected from three male participants and two female

participants were included in the training dataset. The testing dataset comprised of the videos

collected from two male participants and three female participants. These participants in the

testing dataset were different than that of the training dataset, but all of them belonged to the

‘vVISWa’ database. Just like that of combination one, two utterances per digit per person were

included in combination two database. In this way, both training and testing datasets consisted of

hundred videos (10*2*5) each.

58

In the third combination, the same training dataset of two hundred videos from the

combination one was used. The videos collected from the Grand Valley State University’s

campus were included in the testing dataset. The participants included in this testing dataset were

belonging to different nationalities and different ethnicities. The algorithm was tested against this

diversified dataset to check the robustness of the system. This testing dataset consisted of five

male participants and five female participants. One utterance per person per digit was recorded

from these university campus participants. In this way, the testing dataset of combination three

consisted of hundred videos (10*1*10).

To compare the performances of the stand-alone speech recognition system and the

fusion based Audio-visual speech recognition system, a statistical analysis method called

McNemar’s test is used [42]. It is performed in Microsoft Excel using the results data obtained.

For performing this test, four values were calculated using Equation (45) based on data

obtained from the results.

𝑒00 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑏𝑜𝑡ℎ 𝑠𝑦𝑠𝑡𝑒𝑚 1 𝑎𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 2

𝑒01 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 1 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 2

𝑒10 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 2 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 1

𝑒11 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑏𝑜𝑡ℎ 𝑠𝑦𝑠𝑡𝑚 1 𝑎𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 2

-------(45)

For this experiment, system 1 is the stand-alone speech recognition system, and system 2

is the fusion based audio-visual speech recognition system. After computing these four values,

the value of the 𝜒2 test statistic is calculated using equation (46).

59

𝜒2 =
(|𝑒01 − 𝑒10| − 1)

2

𝑒01 + 𝑒10

-------(46)

 The value of the 𝜒2 test statistic is then compared with a 𝜒2 distribution with 1 degree of

freedom. Based on this comparison, the null hypothesis is either rejected or accepted. In

equations (47) and (48), µ0 and µ1 denote theoretical outcomes of the two classification

systems. The null hypothesis, as shown in equation (47), is that both classifiers are the same. To

accept this null hypothesis, the test statistic calculated in equation (46) would need to be greater

than that of the distribution for the corresponding confidence level. Table 2 shows values

calculated from a 𝜒2 distribution with 1 degree of freedom, which are used for comparison with

the test statistic.

𝐻0 : µ0 = µ1

-------(47)

𝐻1 : µ0 ≠ µ1

-------(48)

 For example, if the value of the test statistic calculated with equation (46) was 3.40, then

the null hypothesis could be rejected with a confidence of 93%. This is because 3.40 is greater

than 𝜒2(𝛼, 𝑑𝑜𝑓) = 𝜒2(0.07,1) = 3.283, where 𝛼 = 1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙.

60

Confidence
Level Alpha

Value of

𝜒2 Distribution

80% 0.20 1.6424

81% 0.19 1.7176

82% 0.18 1.7976

83% 0.17 1.8829

84% 0.16 1.9742

85% 0.15 2.0723

86% 0.14 2.1780

87% 0.13 2.2925

88% 0.12 2.4173

89% 0.11 2.5542

90% 0.10 2.7055

91% 0.09 2.8744

92% 0.08 3.0649

93% 0.07 3.2830

94% 0.06 3.5374

95% 0.05 3.8415

96% 0.04 4.2179

97% 0.03 4.7093

98% 0.02 5.4119

99% 0.01 6.6349

Table 2: Confidence levels and corresponding values of 𝜒2 Distribution.

61

4. Results:

4.a. Speech Recognition results:

As discussed in the methodology section, before carrying out the feature extraction on the

audio samples, silence removal and end-point detection algorithm was implemented on every

sample. Figure 12 shows the speech signal waveform before silence removal and end-point

detection, and Figure 13 shows the speech signal waveform after silence removal and end-point

detection.

Figure 12: Speech signal waveform before silence removal and end-point detection

62

Figure 13: Speech signal waveform after silence removal and end-point detection

 After implementing the silence removal and end-point detection algorithm, feature

extraction was carried out on the signals. As explained in the methodology section, first step in

the MFCC feature extraction was pre-emphasis. Figure 14 shows the waveform obtained after

implementing the pre-emphasis step on the silence removed and end-point detected audio signal.

63

Figure 14: Effect of pre-emphasis

When the audio sample after pre-emphasis step was heard, it was observed that, it

sounded sharper with a lower volume.

After pre-emphasis, steps of frame-blocking and windowing were implemented. For

keeping the continuity in the first and last points in the frame, all the frames of signal were

multiplied with a hamming window.

After windowing, FFT of the audio sample was calculated for extracting the spectral

information from the windowed signal. When FFT is performed on a frame of signal, it is

assumed that the signal within the frame is periodic and continuous. However, if the signal

within the frame is not periodic and continuous, it can introduce some undesirable effects in the

64

frequency response. Hence, each frame was multiplied by hamming window before

implementing the FFT step. Figure 15 shows this effect of windowing on FFT.

Figure 15: Effect of windowing on FFT

As shown in Figure 15, the peak in the frequency response of windowed signal was

sharper and more distinct. It can also be seen that, the amplitude of side lobes in case of FFT of

windowed signal was much lesser than that of original signal.

After this step, the frequency output of FFT was warped onto the mel scale for MFCC

feature extraction.

Figure 16 shows the plot of MFCC coefficients for the audio sample of digits zero and

one collected from one of the participants. Here the X-axis of every image indicates the different

65

frame number and Y-axis denotes the MFCC coefficient number. The intensity of a pixel located

at a point (x, y) indicates the value of MFCC coefficient number ‘y’ for a frame ‘x’.

Figure 16: MFCC coefficients for utterance zero and one

As discussed in the methodology, Dynamic Time Warping was used after MFCC feature

extraction for time alignment of signals. Figure 17 shows the result of an audio sample related to

digit ‘two’ time warped against the reference signal related to digit ‘two.’ Figure 18 shows the

result of an audio sample related to digit ‘four’ time warped against the same reference signal

related to digit ‘two.’ For displaying these results, energies in the frequency domain for all the

frames in both the signals were plotted against corresponding frame number. These energies of

signals were plotted before and after implementing DTW.

66

Figure 17: Energy plots before and after DTW [test signal of digit ‘two’, reference signal of digit ‘two’]

Figure 18: Energy plots before and after DTW [test signal of digit ‘four’, reference signal of digit ‘two’]

67

As shown in Figure 17 and Figure 18, the number of frames in both test signal and

reference signal are different than each other. Both these signals were aligned together using

Dynamic Time Warping technique such that the Euclidean distance between their points is the

smallest. It can be observed in the plots obtained after DTW, that the number of frames in both

the signals after are equal. Figure 19 shows the Dynamic Time Warping path plotted on the local

similarity matrix for these two signals.

Figure 19: Dynamic Time Warping path

68

4.b. Lip Reading results:

Figure 20 and Figure 21 show the results obtained after applying the Viola-Jones

technique for region of interest detection on the videos. The image shown in figure 19 is the 20th

frame of a video. This video belongs to the database collected in the Grand Valley State

University campus. As displayed in the image, face, eyes, nose and lips were detected as the

regions of interest. Out of these regions, the lips area was taken out for further processing. Figure

20 shows the resized image of a lip from the same 20th frame of video.

Figure 20: ROI detection in 20th frame of a video from GVSU campus Database

Figure 21: Resized extract of lip image from 20th frame of a video

69

Figure 22 shows the result obtained after applying the Viola-Jones technique for region

of interest detection on the video belonging to the vVISWA database. As seen the Figure 21, all

the videos belonging to vVISWA database were collected by keeping black background,

whereas, the videos collected in the university campus had some other objects in the background

along with the background of a white board. Irrespective of variable background, the Viola-Jones

technique was able to detect the region of interest very efficiently on all the videos. It was also

able to overcome the occlusions of facial hair and glasses on faces of some participants. The

participants in the videos collected in the university campus are more diverse, hence face colors

of participants in this database were different. The algorithm was still able to detect the ROIs

correctly.

Figure 22: ROI detection in 24th frame of a video from vVISWA Database

70

The results obtained from all these three combinations of databases are as shown in Table 3:

Combination Database Visual only

Recognition

using DCT

Features

Audio only

Recognition

using MFCC

Features

Audio-Visual

Speech

Recognition

1. vVISWA Dataset of

5 Males and 5

Females

53% 93% 96%

2. vVISWA Dataset

with different people

in Training (3 Males,

2 Females) and

Testing (2 Males and

3 Females) dataset

41% 87% 92%

3. Training with

vVISWA dataset of

10 people and testing

with database

collected in GVSU

campus (10 people)

36% 78% 86%

Table 3: Results

 As shown in Table 3, the results obtained from research work indicate significant

improvement in the recognition rates due to fusion of audio and visual features. The results

obtained from the algorithm using database combinations 1 and 2 are better than that of

combination 3. Irrespective of the fact that ROI detection worked efficiently on the combination

3 participants with different races and face colors, recognition rates of the system were less than

the other two combinations. The recognition rate of audio only stand-alone system was also less

in combination 3. This is mainly because participants had different accents due to their different

nationality or ethnicity. The lip movement done by these participants was also very different than

the participants in combination 1 and 2.

71

 e00 e01 e10 e11 Chi-Square value

Database Combination 1 2 12 6 178 1.9444

Database Combination 2 5 8 3 79 2.1818

Database Combination 3 5 17 9 64 2.4231

Total of three combinations 12 37 18 321 6.5455

Table 4: McNemar’s Test Results

 The performance of the two different classification systems were compared using the

McNemar’s Test as described in the testing section of methodology, the results of which are

shown in Table 4. From these results, it can be concluded that the performance of the stand-alone

speech recognition system and the fusion based audio-visual speech recognition system were

significantly different with a 98% confidence level. As a total, the fusion based audio-visual

speech system correctly classified 37 utterances that were incorrectly characterized by the audio-

only system. This is more than double the 18 utterances that were incorrectly characterized by

the fusion system but correctly characterized by the audio only. Based on these values of 𝑒01and

𝑒10, it can be concluded that, the performance of fusion based audio-visual speech recognition

system was better than standalone speech recognition system. The two different systems can also

be analyzed based on performance on the three different databases (all with different

characteristics that make them more or less challenging to characterize). For these subsets of

results, it is more difficult to show that the two systems are different with at most 88%

confidence and as little as 83% confidence. This is due to the limited number of outcomes that

varied between the two classifiers.

72

5. Conclusion:

In this thesis, an audio-visual speech recognition system was implemented and tested

using the videos of numeral digits. The videos were collected from participants belonging to

different ethnicities to test the robustness of the system. The performance of the system was

compared with two stand-alone systems (audio only and visual only recognition systems). The

MFCC features were extracted from the audio samples and the DCT features were extracted

from the lip movements in videos for classification purpose.

From the details discussed in the results section, it can be concluded that the implemented

system was able to deliver a better recognition rate with the fusion of audio and video features as

compared to the two stand-alone systems. If the performances of two stand-alone systems are

compared together in all the three database combinations, the recognition rate of audio only

speech recognition system was better than visual only recognition system.

In future work the performance in noisy environments may by combining other human

modalities such as iris movements and hand gestures. A Support Vector Machine was used for

classification. It was observed that, most of the execution time taken by MATLAB was mainly

for carrying out the classification step. This execution time and overall performance of the

system could be further tested using other computationally complex classification methods such

as Neural Network based Hidden Markov Model or Random Forest Classifier.

This system was built and tested to recognize the numeral digits. This work can be further

extended for applications such as voice-activated computers or voice-controlled driver’s assistant

systems in which more commands are required in the vocabulary. The database would then be

required to be increased from digits to words or full sentences/phrases for that purpose.

73

Appendix A:

%-------Vikrant Satish Acharya---

%-------EGR 696: Master’s Thesis: Fusion of audio and visual information for

implementing improved speech recognition system.-----------

%-------fusion.m---

clear all;

close all;

clc;

%------------------------------Speech-Training------------------------------------

Testing_Words = {'Zero','One','Two','Three','Four','Five','Six','Seven','Eight','Nine'};

%Sample Frequency

fs=16000;

Thresh=0.3;

TR_row=0;

for TR_p=1:200

 %for TR_q=1:5

 TR_row = TR_row + 1;

 TR_filename='E:\VIKRANT\GVSU\Thesis(EGR 695)\codes\Speech

Recognition\Demo2\Train\';

 %TR_filename='E:\VIKRANT\GVSU\Thesis(EGR 695)\codes\Speech

Recognition\Code Pieces\';

 [TR_x,Fs]=audioread(strcat(TR_filename,num2str(TR_p),'.wav'));

 TR_samplePerFrame=floor(fs/100);

TR_bgSampleCount=floor(fs/5); %according to formula, 1600 sample needed for 8 khz

%calculation of mean and std

TR_bgSample=[];

for i=1:1:TR_bgSampleCount

 TR_bgSample=[TR_bgSample TR_x(i)];

end

TR_meanvalue=mean(TR_bgSample);

TR_std_dev=std(TR_bgSample);

%identify voiced or not for each value

for i=1:1:length(TR_x)

 if(abs(TR_x(i)-TR_meanvalue)/TR_std_dev > Thresh)

 TR_voiced(i)=1;

 else

 TR_voiced(i)=0;

 end

end

74

%identify voiced or not for each frame

%discard insufficient samples of last frame

TR_useful_samples=length(TR_x)-mod(length(TR_x),TR_samplePerFrame);

TR_frameCount=TR_useful_samples/TR_samplePerFrame;

TR_voiced_frameCount=0;

for i=1:1:TR_frameCount

 TR_cVoiced=0;

 TR_cUnVoiced=0;

 for j=i*TR_samplePerFrame-TR_samplePerFrame+1:1:(i*TR_samplePerFrame)

 if(TR_voiced(j)==1)

 TR_cVoiced=(TR_cVoiced+1);

 else

 TR_cUnVoiced=TR_cUnVoiced+1;

 end

 end

%mark frame for voiced/unvoiced

 if(TR_cVoiced>TR_cUnVoiced)

 TR_voiced_frameCount=TR_voiced_frameCount+1;

 TR_voicedUnvoiced(i)=1;

 else

 TR_voicedUnvoiced(i)=0;

 end

end

TR_reqd_signal=[];

for i=1:1:TR_frameCount

 if(TR_voicedUnvoiced(i)==1)

 for j=i*TR_samplePerFrame-TR_samplePerFrame+1:1:(i*TR_samplePerFrame)

 TR_reqd_signal= [TR_reqd_signal TR_x(j)];

 end

 end

end

 TR_data{TR_row} = TR_reqd_signal;

TR_signals={};

TR_iter = 0;

TR_signals=TR_data';

TR_Data = mfcc1(TR_signals,Testing_Words,16000);

%end

zero = TR_Data(1:10:191);

zero_x1 = zero(14);

zero_x2 = cell2mat(zero_x1);

zero_ref = (zero_x2)'; %ref

for rw = 1:3

 zero1 = zero(rw);

75

 zero2 = cell2mat(zero1);

 zero_test = (zero2)';

 SM = simmx(abs(zero_ref),abs(zero_test));

 [p,q,C] = dp(1-SM);

 C(size(C,1),size(C,2));

 zero_testi1 = zeros(1, size(zero_ref,2));

 for i = 1:length(zero_testi1); zero_testi1(i) = q(min(find(p >= i))); end

 zero_testx = pvsample(zero_test, zero_testi1-1, 128);

 zero4 = zero_testx(:);

 zero5 = (zero4)';

 zero_Feature_Vector(rw,:) = zero5(:);

end

one = TR_Data(2:10:192);

one_x1 = one(7);

one_x2 = cell2mat(one_x1);

one_ref = (one_x2)'; %ref

for rw = 1:3

 one1 = one(rw);

 one2 = cell2mat(one1);

 one_test = (one2)';

 SM = simmx(abs(one_ref),abs(one_test));

 [p,q,C] = dp(1-SM);

 C(size(C,1),size(C,2));

 one_testi1 = zeros(1, size(one_ref,2));

 for i = 1:length(one_testi1); one_testi1(i) = q(min(find(p >= i))); end

 one_testx = pvsample(one_test, one_testi1-1, 128);

 one4 = one_testx(:);

 one5 = (one4)';

 one_Feature_Vector(rw,:) = one5(:);

end

two = TR_Data(3:10:193);

two_x1 = two(9);

two_x2 = cell2mat(two_x1);

two_ref = (two_x2)'; %ref

for rw = 1:3

 two1 = two(rw);

 two2 = cell2mat(two1);

 two_test = (two2)';

 SM = simmx(abs(two_ref),abs(two_test));

 [p,q,C] = dp(1-SM);

 C(size(C,1),size(C,2));

 two_testi1 = zeros(1, size(two_ref,2));

 for i = 1:length(two_testi1); two_testi1(i) = q(min(find(p >= i))); end

76

 two_testx = pvsample(two_test, two_testi1-1, 128);

 two4 = two_testx(:);

 two5 = (two4)';

 two_Feature_Vector(rw,:) = two5(:);

end

three = TR_Data(4:10:194);

three_x1 = three(11);

three_x2 = cell2mat(three_x1);

three_ref = (three_x2)'; %ref

for rw = 1:3

 three1 = three(rw);

 three2 = cell2mat(three1);

 three_test = (three2)';

 SM = simmx(abs(three_ref),abs(three_test));

 [p,q,C] = dp(1-SM);

 C(size(C,1),size(C,2));

 three_testi1 = zeros(1, size(three_ref,2));

 for i = 1:length(three_testi1); three_testi1(i) = q(min(find(p >= i))); end

 three_testx = pvsample(three_test, three_testi1-1, 128);

 three4 = three_testx(:);

 three5 = (three4)';

 three_Feature_Vector(rw,:) = three5(:);

end

four = TR_Data(5:10:195);

four_x1 = four(12);

four_x2 = cell2mat(four_x1);

four_ref = (four_x2)'; %ref

for rw = 1:3

 four1 = four(rw);

 four2 = cell2mat(four1);

 four_test = (four2)';

 SM = simmx(abs(four_ref),abs(four_test));

 [p,q,C] = dp(1-SM);

 C(size(C,1),size(C,2));

 four_testi1 = zeros(1, size(four_ref,2));

 for i = 1:length(four_testi1); four_testi1(i) = q(min(find(p >= i))); end

 four_testx = pvsample(four_test, four_testi1-1, 128);

 four4 = four_testx(:);

 four5 = (four4)';

 four_Feature_Vector(rw,:) = four5(:);

end

five = TR_Data(6:10:196);

five_x1 = five(8);

77

five_x2 = cell2mat(five_x1);

five_ref = (five_x2)'; %ref

for rw = 1:3

 five1 = five(rw);

 five2 = cell2mat(five1);

 five_test = (five2)';

 SM = simmx(abs(five_ref),abs(five_test));

 [p,q,C] = dp(1-SM);

 C(size(C,1),size(C,2));

 five_testi1 = zeros(1, size(five_ref,2));

 for i = 1:length(five_testi1); five_testi1(i) = q(min(find(p >= i))); end

 five_testx = pvsample(five_test, five_testi1-1, 128);

 five4 = five_testx(:);

 five5 = (five4)';

 five_Feature_Vector(rw,:) = five5(:);

end

six = TR_Data(7:10:197);

six_x1 = six(5);

six_x2 = cell2mat(six_x1);

six_ref = (six_x2)'; %ref

for rw = 1:3

 six1 = six(rw);

 six2 = cell2mat(six1);

 six_test = (six2)';

 SM = simmx(abs(six_ref),abs(six_test));

 [p,q,C] = dp(1-SM);

 C(size(C,1),size(C,2));

 six_testi1 = zeros(1, size(six_ref,2));

 for i = 1:length(six_testi1); six_testi1(i) = q(min(find(p >= i))); end

 six_testx = pvsample(six_test, six_testi1-1, 128);

 six4 = six_testx(:);

 six5 = (six4)';

 six_Feature_Vector(rw,:) = six5(:);

end

seven = TR_Data(8:10:198);

seven_x1 = seven(12);

seven_x2 = cell2mat(seven_x1);

seven_ref = (seven_x2)'; %ref

for rw = 1:3

 seven1 = seven(rw);

 seven2 = cell2mat(seven1);

 seven_test = (seven2)';

 SM = simmx(abs(seven_ref),abs(seven_test));

78

 [p,q,C] = dp(1-SM);

 C(size(C,1),size(C,2));

 seven_testi1 = zeros(1, size(seven_ref,2));

 for i = 1:length(seven_testi1); seven_testi1(i) = q(min(find(p >= i))); end

 seven_testx = pvsample(seven_test, seven_testi1-1, 128);

 seven4 = seven_testx(:);

 seven5 = (seven4)';

 seven_Feature_Vector(rw,:) = seven5(:);

end

eight = TR_Data(9:10:199);

eight_x1 = eight(10);

eight_x2 = cell2mat(eight_x1);

eight_ref = (eight_x2)'; %ref

for rw = 1:3

 eight1 = eight(rw);

 eight2 = cell2mat(eight1);

 eight_test = (eight2)';

 SM = simmx(abs(eight_ref),abs(eight_test));

 [p,q,C] = dp(1-SM);

 C(size(C,1),size(C,2));

 eight_testi1 = zeros(1, size(eight_ref,2));

 for i = 1:length(eight_testi1); eight_testi1(i) = q(min(find(p >= i))); end

 eight_testx = pvsample(eight_test, eight_testi1-1, 128);

 eight4 = eight_testx(:);

 eight5 = (eight4)';

 eight_Feature_Vector(rw,:) = eight5(:);

end

nine = TR_Data(10:10:200);

nine_x1 = nine(17);

nine_x2 = cell2mat(nine_x1);

nine_ref = (nine_x2)'; %ref

for rw = 1:3

 nine1 = nine(rw);

 nine2 = cell2mat(nine1);

 nine_test = (nine2)';

 SM = simmx(abs(nine_ref),abs(nine_test));

 [p,q,C] = dp(1-SM);

 C(size(C,1),size(C,2));

 nine_testi1 = zeros(1, size(nine_ref,2));

 for i = 1:length(nine_testi1); nine_testi1(i) = q(min(find(p >= i))); end

 nine_testx = pvsample(nine_test, nine_testi1-1, 128);

 nine4 = nine_testx(:);

 nine5 = (nine4)';

79

 nine_Feature_Vector(rw,:) = nine5(:);

end

%---------------------------------Lip-Training---------------------------------

TRLP_subject=0;

TRLP_digit=0;

for TRLP_subject = 1:200

 %for TRLP_digit = 1:3

TRLP_Video = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\Training\',num2str(TRLP_subject),'.avi');

%Create a VideoFileReader Object

TRLP_videoFReader = vision.VideoFileReader(TRLP_Video);

%Create a VideoPlayer Object

TRLP_videoPlayer = vision.VideoPlayer;

%Define size of VideoPlayer and Create Object to Display Multiple Video At a time

TRLP_WindowSize = [600 500];

TRLP_originalVideo = vision.VideoPlayer('Name', 'TRLP_Original');

TRLP_originalVideo.Position = [20 TRLP_originalVideo.Position(2)

TRLP_WindowSize];

TRLP_detectorVideo = vision.VideoPlayer('Name','TRLP_Detection');

TRLP_detectorVideo.Position = [200 TRLP_detectorVideo.Position(2)

TRLP_WindowSize];

TRLP_extractVideo = vision.VideoPlayer('Name','MouthExtract');

TRLP_extractVideo.Position = [400 TRLP_extractVideo.Position(2)

TRLP_WindowSize];

% noOfFrame = videoFReader.NumberOfFrames;

% disp(noOfFrame);

%Define Counter as 0 for Giving Image Name

TRLP_fcnt=0;

mkdir('Frames');

%Read Only First 40 Frame From Video

while ~isDone(TRLP_videoFReader)

 %counter Increment

 TRLP_fcnt =TRLP_fcnt+1;

80

 %Create A path of the Image to Write

 TRLP_filename = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TR_Detected\Frames\',num2str(TRLP_subject),'_',num2str(TRLP_dig

it),'_',num2str(TRLP_fcnt),'.jpg');

 %Read Frame from Video

 TRLP_videoFrame=step(TRLP_videoFReader);

 %videoFrame = imresize(videoFrame,[420 380]);

 %write a Frame into the Images/Frame Folder

 imwrite(TRLP_videoFrame,TRLP_filename,'jpg');

end

%initialize counter is 0

TRLP_cnt=0;

%Call the Function buildDetector

TRLP_detector = buildDetector();

TRLP_aa=[];

%Read the Frame from Given Path and Perform Some Operation On It.

for i=1:TRLP_fcnt

 %increment the Counter

 TRLP_cnt = TRLP_cnt + 1;

 %Set the Path of Frame to Get

 TRLP_getFrame = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TR_Detected\Frames\',num2str(TRLP_subject),'_',num2str(TRLP_dig

it),'_',num2str(i),'.jpg');

 %Read the Frames from Given path

 TRLP_frame = imread(TRLP_getFrame);

 TRLP_Rframe=step(TRLP_videoFReader);

 %frame = imresize(frame,[480 720]);

 %Call the Function detectFaceParts send paramert (detector,Image,width

 %of Boundry Box)

 [TRLP_bbox TRLP_bbimg TRLP_faces TRLP_bbfaces] =

detectFaceParts(TRLP_detector,TRLP_frame,2);

% bbox = detectSideFaceParts(detector,frame,2);

 %Playing a Original Video

 step(TRLP_originalVideo,TRLP_frame);

 %-----------------------------End Original Video ---------------------

81

 %Create a Path to Store a Result Image into the Folder Name as

 %DetectedFrame

 TRLP_filename1 = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TR_Detected\Detected

Frames\',num2str(TRLP_subject),'_',num2str(TRLP_digit),'_',num2str(TRLP_cnt),'.jpg');

 %write a Frame into the Images/DetectedFrame Folder

 imwrite(TRLP_bbimg,TRLP_filename1,'jpg');

 %Playing a Result Video

 step(TRLP_detectorVideo,TRLP_bbimg);

 %--------------End Facial Feature Detected Video ------------------

 TRLP_aa = [TRLP_aa ; TRLP_bbox(:,13:16)];

 %mouth Feature Extration

 TRLP_featurePoint = TRLP_bbox(:,13:16);

 %disp(featurePoint);

 if TRLP_featurePoint(1,1)==0

 TRLP_featurePoint = TRLP_aa(1,:);

 end

 %Insrease the size of Bbox

 TRLP_featurePoint = [TRLP_featurePoint(1,1) TRLP_featurePoint(1,2)-5

TRLP_featurePoint(1,3) TRLP_featurePoint(1,4)+3];

 disp(TRLP_featurePoint);

 %Crop specific Area of Mouth using Crop function

 TRLP_extractFrame = imcrop(TRLP_frame,TRLP_featurePoint);

 TRLP_filename3 = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TR_Detected\Extract\',num2str(TRLP_subject),'_',num2str(TRLP_dig

it),'_',num2str(TRLP_cnt),'.jpg');

 %Write all the Images into the folder

 imwrite(TRLP_extractFrame,TRLP_filename3,'jpg');

 %Make Same Width and Height of all crop Images

 TRLP_resizeFrame = imresize(TRLP_extractFrame,[64 64]);

 %Create a Path to Store the Mouth Images

82

 TRLP_filename2 = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TR_Detected\Resize

Extract\MouthExtract',num2str(TRLP_subject),'_',num2str(TRLP_digit),'_',num2str(TRL

P_cnt),'.jpg');

 %Write all the Images into the folder

 imwrite(TRLP_resizeFrame,TRLP_filename2,'jpg');

 %Play Mouth Extract Frame into Video

 %step(extractVideo,resizeFrame);

 %------------------End Mouth Extracted Video -----------------------

end

end

rmdir('Frames','s');

%Realease all the VideoFile and VideoPlayer Object

release(TRLP_originalVideo);

release(TRLP_detectorVideo);

release(TRLP_videoFReader);

%-------------------------------DCT--

%---Calculation of 800 DCT coeffients for all 50 frames of the input videos

%---using 16*16 block--

TRLP_iter = 0;

 for TRLP_subject = 1:200

 %for TRLP_digit = 0:9

 for fr = 1:50

 TRLP_iter = TRLP_iter+1;

 TRLP_resize_extract = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TR_Detected\Resize

Extract\MouthExtract',num2str(TRLP_subject),'_',num2str(fr),'.jpg');

 TRLP_f = imread(TRLP_resize_extract);

 TRLP_f = rgb2gray(TRLP_f);

 TRLP_f = im2double(TRLP_f);

 TRLP_T = dctmtx(16);

 TRLP_dct = @(block_struct) TRLP_T * block_struct.data * TRLP_T';

 TRLP_B1 = blockproc(TRLP_f,[16 16],TRLP_dct);

 TRLP_fun = @(block_struct) sum(block_struct.data(:));

 TRLP_B2 = blockproc(TRLP_B1,[16 16],TRLP_fun);

 TRLP_DCT_Feature = cell(1,160000);

 TRLP_D{TRLP_iter} = TRLP_B2(:)';

 TRLP_DCT_Feature = cat(2,TRLP_D{:});

 end

83

 %end

 end

TRLP_DCT_Feature = reshape(TRLP_DCT_Feature,[],200);

TRLP_DCT_Feature = TRLP_DCT_Feature';

%--

%-------------------------Normalisation------------------------------------

TRLP_DCT_Feature_Vector = normalise(TRLP_DCT_Feature);

%--

%---------------------------Fusion---

%--------------Fusion of MFCC and DCT Training feature vectors-------------

TRFusion_Feature_Vector = horzcat(TRSP_MFCC_Feature,TRLP_DCT_Feature);

%--

%------------------------------Speech-Testing------------------------------------

Testing_Words = {'Zero','One','Two','Three','Four','Five','Six','Seven','Eight','Nine'};

%Sample Frequency

fs=16000;

Thresh=0.3;

TE_row=0;

for TE_p=1:200

 %for TE_q=0:9

 TE_row = TE_row + 1;

 TE_filename='E:\VIKRANT\GVSU\Thesis(EGR 695)\codes\Speech

Recognition\Demo2\Test\';

 [TE_x,TE_fs]=audioread(strcat(TE_filename,num2str(TE_p),'.wav'));

 TE_samplePerFrame=floor(TE_fs/100);

TE_bgSampleCount=floor(TE_fs/5); %according to formula, 1600 sample needed for 8

khz

%calculation of mean and std

TE_bgSample=[];

for i=1:1:TE_bgSampleCount

 TE_bgSample=[TE_bgSample TE_x(i)];

end

TE_meanvalue=mean(TE_bgSample);

TE_std_dev=std(TE_bgSample);

%identify voiced or not for each value

for i=1:1:length(TE_x)

84

 if(abs(TE_x(i)-TE_meanvalue)/TE_std_dev > Thresh)

 TE_voiced(i)=1;

 else

 TE_voiced(i)=0;

 end

end

%identify voiced or not for each frame

%discard insufficient samples of last frame

TE_useful_samples=length(TE_x)-mod(length(TE_x),TE_samplePerFrame);

TE_frameCount=TE_useful_samples/TE_samplePerFrame;

TE_voiced_frameCount=0;

for i=1:1:TE_frameCount

 TE_cVoiced=0;

 TE_cUnVoiced=0;

 for j=i*TE_samplePerFrame-TE_samplePerFrame+1:1:(i*TE_samplePerFrame)

 if(TE_voiced(j)==1)

 TE_cVoiced=(TE_cVoiced+1);

 else

 TE_cUnVoiced=TE_cUnVoiced+1;

 end

 end

%mark frame for voiced/unvoiced

 if(TE_cVoiced>TE_cUnVoiced)

 TE_voiced_frameCount=TE_voiced_frameCount+1;

 TE_voicedUnvoiced(i)=1;

 else

 TE_voicedUnvoiced(i)=0;

 end

end

TE_reqd_signal=[];

for i=1:1:TE_frameCount

 if(TE_voicedUnvoiced(i)==1)

 for j=i*TE_samplePerFrame-TE_samplePerFrame+1:1:(i*TE_samplePerFrame)

 TE_reqd_signal= [TE_reqd_signal TE_x(j)];

 end

 end

end

t1 = (0:length(TE_x)-1)/fs;

 t1 = (0:length(TE_x)-1)/fs;

 figure(); plot(t1,TE_x)

 title('original signal');

 xlabel('time[sec]')

 ylabel('Audio Signal Amplitude')

85

 t2 = (0:length(TE_reqd_signal)-1)/fs;

 figure(); plot(t2, TE_reqd_signal);

 title('Signal after silence removal');

 xlabel('time[sec]')

 ylabel('Audio Signal Amplitude')

 fs = 16000;

n=512;

t=(1:n)'/fs;

startIndex=500;

endIndex=startIndex+n-1;

original=TE_x(startIndex:endIndex);

windowed=original.*hamming(n);

[mag1, phase1, freq1]=fftTwoSide(original, fs);

[mag2, phase2, freq2]=fftTwoSide(windowed, fs);

figure();

subplot(3,2,1); plot(original); grid on; axis([-inf inf -1 1]); title('Original

signal');xlabel('Sample Number');ylabel('Amplitude');

subplot(3,2,2); plot(windowed); grid on; axis([-inf inf -1 1]); title('Windowed

signal');xlabel('Sample Number');ylabel('Amplitude');

subplot(3,2,3); plot(freq1, mag1); grid on; title('Energy spectrum (linear

scale)');xlabel('Frequency[Hz]');ylabel('Amplitude');

subplot(3,2,4); plot(freq2, mag2); grid on; title('Energy spectrum (linear

scale)');xlabel('Frequency[Hz]');ylabel('Amplitude');

subplot(3,2,5); plot(freq1, 20*log(mag1)); grid on; axis([-inf inf -80 120]); title('Energy

spectrum (db)');xlabel('Frequency[Hz]');ylabel('Amplitude');

subplot(3,2,6); plot(freq2, 20*log(mag2)); grid on; axis([-inf inf -80 120]); title('Energy

spectrum (db)');xlabel('Frequency[Hz]');ylabel('Amplitude');

TE_data{TE_row} = TE_reqd_signal;

TE_signals={};

TE_signals=TE_data';

TE_Data = mfcc1(TE_signals,Testing_Words,16000);

end

for rw = 1:1

 TE_Data1_0 = TE_Data(rw);

 TE_Data2_0 = cell2mat(TE_Data1_0);

 TE_Data3_0 = (TE_Data2_0)';

 SM = simmx(abs(zero_ref),abs(TE_Data3_0));

 figure(),subplot(121)

 imagesc(SM)

 colormap(1-gray)

 [p,q,C] = dp(1-SM);

 hold on; plot(q,p,'r'); hold off

 subplot(122)

86

 imagesc(C)

 hold on; plot(q,p,'r'); hold off

 C(size(C,1),size(C,2));

 TE_Data3_0i1 = zeros(1, size(zero_ref,2));

 for i = 1:length(TE_Data3_0i1); TE_Data3_0i1(i) = q(min(find(p >= i))); end

 TE_Data3_0x = pvsample(TE_Data3_0, TE_Data3_0i1-1, 128);

 TE_Feature_Vector_0(rw,:) = TE_Data3_0x(:);

 energy1 = [];

 coeff = TE_Data3_0(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy1(col) = Total_ene;

 end

 energy2 = [];

 coeff = zero_ref(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy2(col) = Total_ene;

 end

 energy3 = [];

 coeff = TE_Data3_0x(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy3(col) = Total_ene;

 end

figure(), plot(energy1);

title('Plot before DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

figure(), plot(energy3);

title('Plot after DTW');

xlabel('Frames');ylabel('Energy');

87

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

end

for rw = 1:1

 TE_Data1_1 = TE_Data(rw);

 TE_Data2_1 = cell2mat(TE_Data1_1);

 TE_Data3_1 = (TE_Data2_1)';

 SM = simmx(abs(one_ref),abs(TE_Data3_1));

 figure(),subplot(121)

 imagesc(SM)

 colormap(1-gray)

 [p,q,C] = dp(1-SM);

 hold on; plot(q,p,'r'); hold off

 subplot(122)

 imagesc(C)

 hold on; plot(q,p,'r'); hold off

 C(size(C,1),size(C,2));

 TE_Data3_1i1 = zeros(1, size(one_ref,2));

 for i = 1:length(TE_Data3_1i1); TE_Data3_1i1(i) = q(min(find(p >= i))); end

 TE_Data3_1x = pvsample(TE_Data3_1, TE_Data3_1i1-1, 128);

 TE_Feature_Vector_1(rw,:) = TE_Data3_1x(:);

 energy1 = [];

 coeff = TE_Data3_1(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy1(col) = Total_ene;

 end

 energy2 = [];

 coeff = one_ref(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy2(col) = Total_ene;

 end

 energy3 = [];

 coeff = TE_Data3_1x(1:13,:);

88

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy3(col) = Total_ene;

 end

figure(), plot(energy1);

title('Plot before DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

figure(), plot(energy3);

title('Plot after DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

end

for rw = 1:1

 TE_Data1_2 = TE_Data(rw);

 TE_Data2_2 = cell2mat(TE_Data1_2);

 TE_Data3_2 = (TE_Data2_2)';

 SM = simmx(abs(two_ref),abs(TE_Data3_2));

 figure(),subplot(121)

 imagesc(SM)

 colormap(1-gray)

 [p,q,C] = dp(1-SM);

 hold on; plot(q,p,'r'); hold off

 subplot(122)

 imagesc(C)

 hold on; plot(q,p,'r'); hold off

 C(size(C,1),size(C,2));

 TE_Data3_2i1 = zeros(1, size(two_ref,2));

 for i = 1:length(TE_Data3_2i1); TE_Data3_2i1(i) = q(min(find(p >= i))); end

 TE_Data3_2x = pvsample(TE_Data3_2, TE_Data3_2i1-1, 128);

 TE_Feature_Vector_2(rw,:) = TE_Data3_2x(:);

 energy1 = [];

89

 coeff = TE_Data3_2(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy1(col) = Total_ene;

 end

 energy2 = [];

 coeff = two_ref(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy2(col) = Total_ene;

 end

 energy3 = [];

 coeff = TE_Data3_2x(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy3(col) = Total_ene;

 end

figure(), plot(energy1);

title('Plot before DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

figure(), plot(energy3);

title('Plot after DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

end

for rw = 1:1

 TE_Data1_3 = TE_Data(rw);

 TE_Data2_3 = cell2mat(TE_Data1_3);

90

 TE_Data3_3 = (TE_Data2_3)';

 SM = simmx(abs(three_ref),abs(TE_Data3_3));

 figure(),subplot(121)

 imagesc(SM)

 colormap(1-gray)

 [p,q,C] = dp(1-SM);

 hold on; plot(q,p,'r'); hold off

 subplot(122)

 imagesc(C)

 hold on; plot(q,p,'r'); hold off

 C(size(C,1),size(C,2));

 TE_Data3_3i1 = zeros(1, size(three_ref,2));

 for i = 1:length(TE_Data3_3i1); TE_Data3_3i1(i) = q(min(find(p >= i))); end

 TE_Data3_3x = pvsample(TE_Data3_3, TE_Data3_3i1-1, 128);

 TE_Feature_Vector_3(rw,:) = TE_Data3_3x(:);

 energy1 = [];

 coeff = TE_Data3_3(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy1(col) = Total_ene;

 end

 energy2 = [];

 coeff = three_ref(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy2(col) = Total_ene;

 end

 energy3 = [];

 coeff = TE_Data3_3x(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy3(col) = Total_ene;

 end

figure(), plot(energy1);

title('Plot before DTW');

xlabel('Frames');ylabel('Energy');

91

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

figure(), plot(energy3);

title('Plot after DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

end

for rw = 1:1

 TE_Data1_4 = TE_Data(rw);

 TE_Data2_4 = cell2mat(TE_Data1_4);

 TE_Data3_4 = (TE_Data2_4)';

 SM = simmx(abs(four_ref),abs(TE_Data3_4));

 figure()%subplot(121)

 imagesc(SM)

 colormap(1-gray)

 [p,q,C] = dp(1-SM);

 hold on; plot(q,p,'r'); hold off

% title('DTW Path on the local similarity matrix');

% xlabel('Test signal frames');ylabel('Reference signal frames');

 subplot(122)

 imagesc(C)

 hold on; plot(q,p,'r'); hold off

 C(size(C,1),size(C,2));

 TE_Data3_4i1 = zeros(1, size(four_ref,2));

 for i = 1:length(TE_Data3_4i1); TE_Data3_4i1(i) = q(min(find(p >= i))); end

 TE_Data3_4x = pvsample(TE_Data3_4, TE_Data3_4i1-1, 128);

 TE_Feature_Vector_4(rw,:) = TE_Data3_4x(:);

 energy1 = [];

 coeff = TE_Data3_4(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy1(col) = Total_ene;

 end

92

 energy2 = [];

 coeff = four_ref(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy2(col) = Total_ene;

 end

 energy3 = [];

 coeff = TE_Data3_4x(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy3(col) = Total_ene;

 end

figure(), plot(energy1);

title('Plot before DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

figure(), plot(energy3);

title('Plot after DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

end

for rw = 1:1

 TE_Data1_5 = TE_Data(rw);

 TE_Data2_5 = cell2mat(TE_Data1_5);

 TE_Data3_5 = (TE_Data2_5)';

 SM = simmx(abs(five_ref),abs(TE_Data3_5));

 figure(),subplot(121)

 imagesc(SM)

 colormap(1-gray)

 [p,q,C] = dp(1-SM);

 hold on; plot(q,p,'r'); hold off

93

 subplot(122)

 imagesc(C)

 hold on; plot(q,p,'r'); hold off

 C(size(C,1),size(C,2));

 TE_Data3_5i1 = zeros(1, size(five_ref,2));

 for i = 1:length(TE_Data3_5i1); TE_Data3_5i1(i) = q(min(find(p >= i))); end

 TE_Data3_5x = pvsample(TE_Data3_5, TE_Data3_5i1-1, 128);

 TE_Feature_Vector_5(rw,:) = TE_Data3_5x(:);

 energy1 = [];

 coeff = TE_Data3_5(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy1(col) = Total_ene;

 end

 energy2 = [];

 coeff = five_ref(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy2(col) = Total_ene;

 end

 energy3 = [];

 coeff = TE_Data3_5x(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy3(col) = Total_ene;

 end

figure(), plot(energy1);

title('Plot before DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

figure(), plot(energy3);

title('Plot after DTW');

94

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

end

for rw = 1:1

 TE_Data1_6 = TE_Data(rw);

 TE_Data2_6 = cell2mat(TE_Data1_6);

 TE_Data3_6 = (TE_Data2_6)';

 SM = simmx(abs(six_ref),abs(TE_Data3_6));

 figure(),subplot(121)

 imagesc(SM)

 colormap(1-gray)

 [p,q,C] = dp(1-SM);

 hold on; plot(q,p,'r'); hold off

 subplot(122)

 imagesc(C)

 hold on; plot(q,p,'r'); hold off

 C(size(C,1),size(C,2));

 TE_Data3_6i1 = zeros(1, size(six_ref,2));

 for i = 1:length(TE_Data3_6i1); TE_Data3_6i1(i) = q(min(find(p >= i))); end

 TE_Data3_6x = pvsample(TE_Data3_6, TE_Data3_6i1-1, 128);

 TE_Feature_Vector_6(rw,:) = TE_Data3_6x(:);

 energy1 = [];

 coeff = TE_Data3_6(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy1(col) = Total_ene;

 end

 energy2 = [];

 coeff = six_ref(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy2(col) = Total_ene;

 end

 energy3 = [];

95

 coeff = TE_Data3_6x(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy3(col) = Total_ene;

 end

figure(), plot(energy1);

title('Plot before DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

figure(), plot(energy3);

title('Plot after DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

end

for rw = 1:1

 TE_Data1_7 = TE_Data(rw);

 TE_Data2_7 = cell2mat(TE_Data1_7);

 TE_Data3_7 = (TE_Data2_7)';

 SM = simmx(abs(seven_ref),abs(TE_Data3_7));

 figure(),subplot(121)

 imagesc(SM)

 colormap(1-gray)

 [p,q,C] = dp(1-SM);

 hold on; plot(q,p,'r'); hold off

 subplot(122)

 imagesc(C)

 hold on; plot(q,p,'r'); hold off

 C(size(C,1),size(C,2));

 TE_Data3_7i1 = zeros(1, size(seven_ref,2));

 for i = 1:length(TE_Data3_7i1); TE_Data3_7i1(i) = q(min(find(p >= i))); end

 TE_Data3_7x = pvsample(TE_Data3_7, TE_Data3_7i1-1, 128);

 TE_Feature_Vector_7(rw,:) = TE_Data3_7x(:);

96

 energy1 = [];

 coeff = TE_Data3_7(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy1(col) = Total_ene;

 end

 energy2 = [];

 coeff = seven_ref(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy2(col) = Total_ene;

 end

 energy3 = [];

 coeff = TE_Data3_7x(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy3(col) = Total_ene;

 end

figure(), plot(energy1);

title('Plot before DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

figure(), plot(energy3);

title('Plot after DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

end

for rw = 1:1

 TE_Data1_8 = TE_Data(rw);

97

 TE_Data2_8 = cell2mat(TE_Data1_8);

 TE_Data3_8 = (TE_Data2_8)';

 SM = simmx(abs(eight_ref),abs(TE_Data3_8));

 figure(),subplot(121)

 imagesc(SM)

 colormap(1-gray)

 [p,q,C] = dp(1-SM);

 hold on; plot(q,p,'r'); hold off

 subplot(122)

 imagesc(C)

 hold on; plot(q,p,'r'); hold off

 C(size(C,1),size(C,2));

 TE_Data3_8i1 = zeros(1, size(eight_ref,2));

 for i = 1:length(TE_Data3_8i1); TE_Data3_8i1(i) = q(min(find(p >= i))); end

 TE_Data3_8x = pvsample(TE_Data3_8, TE_Data3_8i1-1, 128);

 TE_Feature_Vector_8(rw,:) = TE_Data3_8x(:);

 energy1 = [];

 coeff = TE_Data3_8(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy1(col) = Total_ene;

 end

 energy2 = [];

 coeff = eight_ref(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy2(col) = Total_ene;

 end

 energy3 = [];

 coeff = TE_Data3_8x(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy3(col) = Total_ene;

 end

figure(), plot(energy1);

title('Plot before DTW');

98

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

figure(), plot(energy3);

title('Plot after DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

end

for rw = 1:1

 TE_Data1_9 = TE_Data(rw);

 TE_Data2_9 = cell2mat(TE_Data1_9);

 TE_Data3_9 = (TE_Data2_9)';

 SM = simmx(abs(nine_ref),abs(TE_Data3_9));

 figure(),subplot(121)

 imagesc(SM)

 colormap(1-gray)

 [p,q,C] = dp(1-SM);

 hold on; plot(q,p,'r'); hold off

 subplot(122)

 imagesc(C)

 hold on; plot(q,p,'r'); hold off

 C(size(C,1),size(C,2));

 TE_Data3_9i1 = zeros(1, size(nine_ref,2));

 for i = 1:length(TE_Data3_9i1); TE_Data3_9i1(i) = q(min(find(p >= i))); end

 TE_Data3_9x = pvsample(TE_Data3_9, TE_Data3_9i1-1, 128);

 TE_Feature_Vector_9(rw,:) = TE_Data3_9x(:);

 energy1 = [];

 coeff = TE_Data3_9(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy1(col) = Total_ene;

 end

 energy2 = [];

99

 coeff = nine_ref(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy2(col) = Total_ene;

 end

 energy3 = [];

 coeff = TE_Data3_9x(1:13,:);

 for col = 1:size(coeff,2)

 Fourier = fft(coeff(:,col));

 ene = Fourier.*conj(Fourier);

 Total_ene = sum(ene);

 energy3(col) = Total_ene;

 end

figure(), plot(energy1);

title('Plot before DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

figure(), plot(energy3);

title('Plot after DTW');

xlabel('Frames');ylabel('Energy');

hold on

plot(energy2);

xlabel('Frames');ylabel('Energy');

legend('Test Signal','Reference Signal')

hold off

end

%---------------------------------Lip-Testing------------------------------

TELP_subject=0;

TELP_digit=0;

for TELP_subject = 1:200

 %for TELP_digit = 1:3

TELP_Video = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\Testing\',num2str(TELP_subject),'.avi');

100

%Create a VideoFileReader Object

TELP_videoFReader = vision.VideoFileReader(TELP_Video);

%Create a VideoPlayer Object

TELP_videoPlayer = vision.VideoPlayer;

%Define size of VideoPlayer and Create Object to Display Multiple Video At a time

TELP_WindowSize = [600 500];

TELP_originalVideo = vision.VideoPlayer('Name', 'TELP_Original');

TELP_originalVideo.Position = [20 TELP_originalVideo.Position(2)

TELP_WindowSize];

TELP_detectorVideo = vision.VideoPlayer('Name','TELP_Detection');

TELP_detectorVideo.Position = [200 TELP_detectorVideo.Position(2)

TELP_WindowSize];

TELP_extractVideo = vision.VideoPlayer('Name','MouthExtract');

TELP_extractVideo.Position = [400 TELP_extractVideo.Position(2)

TELP_WindowSize];

% noOfFrame = videoFReader.NumberOfFrames;

% disp(noOfFrame);

%Define Counter as 0 for Giving Image Name

TELP_fcnt=0;

mkdir('Frames');

%Read Only First 40 Frame From Video

while ~isDone(TELP_videoFReader)

 %counter Increment

 TELP_fcnt =TELP_fcnt+1;

 %Create A path of the Image to Write

 TELP_filename = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TE_Detected\Frames\',num2str(TELP_subject),'_',num2str(TELP_digi

t),'_',num2str(TELP_fcnt),'.jpg');

 %Read Frame from Video

 TELP_videoFrame=step(TELP_videoFReader);

 %videoFrame = imresize(videoFrame,[420 380]);

 %write a Frame into the Images/Frame Folder

 imwrite(TELP_videoFrame,TELP_filename,'jpg');

end

101

%initialize counter is 0

TELP_cnt=0;

%Call the Function buildDetector

TELP_detector = buildDetector();

TELP_aa=[];

%Read the Frame from Given Path and Perform Some Operation On It.

for i=1:TELP_fcnt

 %increment the Counter

 TELP_cnt = TELP_cnt + 1;

 %Set the Path of Frame to Get

 TELP_getFrame = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TE_Detected\Frames\',num2str(TELP_subject),'_',num2str(TELP_digi

t),'_',num2str(i),'.jpg');

 %Read the Frames from Given path

 TELP_frame = imread(TELP_getFrame);

 TELP_Rframe=step(TELP_videoFReader);

 %frame = imresize(frame,[480 720]);

 %Call the Function detectFaceParts send paramert (detector,Image,width

 %of Boundry Box)

 [TELP_bbox TELP_bbimg TELP_faces TELP_bbfaces] =

detectFaceParts(TELP_detector,TELP_frame,2);

% bbox = detectSideFaceParts(detector,frame,2);

 %Playing a Original Video

 step(TELP_originalVideo,TELP_frame);

 %-----------------------------End Original Video ---------------------

 %Create a Path to Store a Result Image into the Folder Name as

 %DetectedFrame

 TELP_filename1 = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TE_Detected\Detected

Frames\',num2str(TELP_subject),'_',num2str(TELP_digit),'_',num2str(TELP_cnt),'.jpg');

 %write a Frame into the Images/DetectedFrame Folder

 imwrite(TELP_bbimg,TELP_filename1,'jpg');

 %Playing a Result Video

 step(TELP_detectorVideo,TELP_bbimg);

102

 %--------------End Facial Feature Detected Video ------------------

 TELP_aa = [TELP_aa ; TELP_bbox(:,13:16)];

 %mouth Feature Extration

 TELP_featurePoint = TELP_bbox(:,13:16);

 %disp(featurePoint);

 if TELP_featurePoint(1,1)==0

 TELP_featurePoint = TELP_aa(1,:);

 end

 %Insrease the size of Bbox

 TELP_featurePoint = [TELP_featurePoint(1,1) TELP_featurePoint(1,2)-5

TELP_featurePoint(1,3) TELP_featurePoint(1,4)+3];

 disp(TELP_featurePoint);

 %Crop specific Area of Mouth using Crop function

 TELP_extractFrame = imcrop(TELP_frame,TELP_featurePoint);

 TELP_filename3 = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TE_Detected\Extract\',num2str(TELP_subject),'_',num2str(TELP_digi

t),'_',num2str(TELP_cnt),'.jpg');

 %Write all the Images into the folder

 imwrite(TELP_extractFrame,TELP_filename3,'jpg');

 %Make Same Width and Height of all crop Images

 TELP_resizeFrame = imresize(TELP_extractFrame,[64 64]);

 %Create a Path to Store the Mouth Images

 TELP_filename2 = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TE_Detected\Resize

Extract\MouthExtract',num2str(TELP_subject),'_',num2str(TELP_digit),'_',num2str(TEL

P_cnt),'.jpg');

 %Write all the Images into the folder

 imwrite(TELP_resizeFrame,TELP_filename2,'jpg');

 %Play Mouth Extract Frame into Video

 %step(extractVideo,resizeFrame);

 %------------------End Mouth Extracted Video -----------------------

end

end

103

rmdir('Frames','s');

%Realease all the VideoFile and VideoPlayer Object

release(TELP_originalVideo);

release(TELP_detectorVideo);

release(TELP_videoFReader);

%-------------------------------DCT--

TELP_iter = 0;

 for TELP_subject = 1:200

 %for TELP_digit = 0:9

 for fr = 1:50

 TELP_iter = TELP_iter+1;

 TELP_resize_extract = strcat('E:\VIKRANT\GVSU\Thesis(EGR

695)\codes\Fusion\TE_Detected\Resize

Extract\MouthExtract',num2str(TELP_subject),'_',num2str(fr),'.jpg');

 TELP_f = imread(TELP_resize_extract);

 TELP_f = rgb2gray(TELP_f);

 TELP_f = im2double(TELP_f);

 TELP_T = dctmtx(16);

 TELP_dct = @(block_struct) TELP_T * block_struct.data * TELP_T';

 TELP_B1 = blockproc(TELP_f,[16 16],TELP_dct);

 TELP_fun = @(block_struct) sum(block_struct.data(:));

 TELP_B2 = blockproc(TELP_B1,[16 16],TELP_fun);

 TELP_DCT_Feature = cell(1,160000);

 TELP_D{TELP_iter} = TELP_B2(:)';

 TELP_DCT_Feature = cat(2,TELP_D{:});

 end

 %end

 end

TELP_DCT_Feature = reshape(TELP_DCT_Feature,[],200);

TELP_DCT_Feature = TELP_DCT_Feature';

%--

%-------------------------Normalisation------------------------------------

TELP_DCT_Feature_Vector = normalise(TELP_DCT_Feature);

%--

%---------------------------Fusion---

%--------------Fusion of MFCC and DCT Training feature vectors-------------

TEFusion_Feature_Vector = horzcat(TESP_MFCC_Feature,TELP_DCT_Feature);

%--

104

%-------------------------------Label of Class-----------------------------

%Formation of Labels Matrix for Training Feature Vector from 0 to 9--------

labels=[];

val=0;

%cnt = 0;

for i=1:size(TRFusion_Feature_Vector,1)

%cnt=cnt+1;

 labels(1,i)=val;

 val=val+1;

 if val>9

 val=0;

 end

end

class = (labels)';

%--

%[index] = multisvm(Zero_Feature_Vector,class,TE_Feature_Vector_0)

Model_0=svm.train(abs(zero_Feature_Vector),class);

[predict_0,matrix_0]=svm.predict(Model_0,abs(TE_Feature_Vector_0));

maximum(1,:) = max(matrix_0);

Model_1=svm.train(abs(one_Feature_Vector),class);

[predict_1,matrix_1]=svm.predict(Model_1,abs(TE_Feature_Vector_1));

maximum(2,:) = max(matrix_1);

Model_2=svm.train(abs(two_Feature_Vector),class);

[predict_2,matrix_2]=svm.predict(Model_2,abs(TE_Feature_Vector_2));

maximum(3,:) = max(matrix_2);

Model_3=svm.train(abs(three_Feature_Vector),class);

[predict_3,matrix_3]=svm.predict(Model_3,abs(TE_Feature_Vector_3));

maximum(4,:) = max(matrix_3);

Model_4=svm.train(abs(four_Feature_Vector),class);

[predict_4,matrix_4]=svm.predict(Model_4,abs(TE_Feature_Vector_4));

maximum(5,:) = max(matrix_4);

Model_5=svm.train(abs(five_Feature_Vector),class);

[predict_5,matrix_5]=svm.predict(Model_5,abs(TE_Feature_Vector_5));

maximum(6,:) = max(matrix_5);

105

Model_6=svm.train(abs(six_Feature_Vector),class);

[predict_6,matrix_6]=svm.predict(Model_6,abs(TE_Feature_Vector_6));

maximum(7,:) = max(matrix_6);

Model_7=svm.train(abs(seven_Feature_Vector),class);

[predict_7,matrix_7]=svm.predict(Model_7,abs(TE_Feature_Vector_7));

maximum(8,:) = max(matrix_7);

Model_8=svm.train(abs(eight_Feature_Vector),class);

[predict_8,matrix_8]=svm.predict(Model_8,abs(TE_Feature_Vector_8));

maximum(9,:) = max(matrix_8);

Model_9=svm.train(abs(nine_Feature_Vector),class);

[predict_9,matrix_9]=svm.predict(Model_9,abs(TE_Feature_Vector_9));

maximum(10,:) = max(matrix_9);

%scores(TE_row,:) = maximum;

[digit_score,Digit] = max(maximum);

%clear maximum;

%maximum

Recognized_Digit(TE_row,:) = Digit-1;

%Recognized_Digit = Digit-1

end

function [p,q,D] = dp(M)

% [p,q] = dp(M)

% Use dynamic programming to find a min-cost path through matrix M.

% Return state sequence in p,q

% 2003-03-15 dpwe@ee.columbia.edu

% Copyright (c) 2003 Dan Ellis <dpwe@ee.columbia.edu>

% released under GPL - see file COPYRIGHT

[r,c] = size(M);

% costs

D = zeros(r+1, c+1);

D(1,:) = NaN;

D(:,1) = NaN;

D(1,1) = 0;

D(2:(r+1), 2:(c+1)) = M;

106

% traceback

phi = zeros(r,c);

for i = 1:r;

 for j = 1:c;

 [dmax, tb] = min([D(i, j), D(i, j+1), D(i+1, j)]);

 D(i+1,j+1) = D(i+1,j+1)+dmax;

 phi(i,j) = tb;

 end

end

% Traceback from top left

i = r;

j = c;

p = i;

q = j;

while i > 1 & j > 1

 tb = phi(i,j);

 if (tb == 1)

 i = i-1;

 j = j-1;

 elseif (tb == 2)

 i = i-1;

 elseif (tb == 3)

 j = j-1;

 else

 error;

 end

 p = [i,p];

 q = [j,q];

end

% Strip off the edges of the D matrix before returning

D = D(2:(r+1),2:(c+1));

function [f,t]=enframe(x,win,inc)

%ENFRAME split signal up into (overlapping) frames: one per row.

[F,T]=(X,WIN,INC)

%

% F = ENFRAME(X,LEN) splits the vector X(:) up into

% frames. Each frame is of length LEN and occupies

107

% one row of the output matrix. The last few frames of X

% will be ignored if its length is not divisible by LEN.

% It is an error if X is shorter than LEN.

%

% F = ENFRAME(X,LEN,INC) has frames beginning at increments of INC

% The centre of frame I is X((I-1)*INC+(LEN+1)/2) for I=1,2,...

% The number of frames is fix((length(X)-LEN+INC)/INC)

%

% F = ENFRAME(X,WINDOW) or ENFRAME(X,WINDOW,INC) multiplies

% each frame by WINDOW(:)

%

% The second output argument, T, gives the time in samples at the centre

% of each frame. T=i corresponds to the time of sample X(i).

%

% Example of frame-based processing:

% INC=20 % set frame increment

% NW=INC*2 % oversample by a factor of 2 (4

is also often used)

% S=cos((0:NW*7)*6*pi/NW); % example input signal

% W=sqrt(hamming(NW+1)); W(end)=[]; % sqrt hamming window of period

NW

% F=enframe(S,W,INC); % split into frames

% ... process frames ...

% X=overlapadd(F,W,INC); % reconstitute the time waveform (omit

"X=" to plot waveform)

% Copyright (C) Mike Brookes 1997

% Version: $Id: enframe.m,v 1.7 2009/11/01 21:08:21 dmb Exp $

%

% VOICEBOX is a MATLAB toolbox for speech processing.

% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

108

%

% You can obtain a copy of the GNU General Public License from

% http://www.gnu.org/copyleft/gpl.html or by writing to

% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nx=length(x(:));

nwin=length(win);

if (nwin == 1)

 len = win;

else

 len = nwin;

end

if (nargin < 3)

 inc = len;

end

nf = fix((nx-len+inc)/inc);

f=zeros(nf,len);

indf= inc*(0:(nf-1)).';

inds = (1:len);

f(:) = x(indf(:,ones(1,len))+inds(ones(nf,1),:));

if (nwin > 1)

 w = win(:)';

 f = f .* w(ones(nf,1),:);

end

if nargout>1

 t=(1+len)/2+indf;

end

function [mag, phase, freq, powerDb]=fftTwoSide(signal, fs, plotOpt)

% fftTwoSide: Two-sided FFT for real/complex signals

% Usage: [mag, phase, freq, powerDb]=fftTwoSide(signal, fs)

% Roger Jang, 20060411

if nargin<1, selfdemo; return; end

if nargin<2, fs=1; end

if nargin<3, plotOpt=0; end

N = length(signal); % ??

freqStep = fs/N; % ?????????

109

time = (0:N-1)/fs; % ???????

z = fft(signal); % Spectrum

freq = freqStep*(-N/2:N/2-1); % ???????

z = fftshift(z); % ?????????

mag=abs(z); % Magnitude

phase=unwrap(angle(z)); % Phase

powerDb=20*log(mag+eps); % Power in db

if plotOpt

 % ====== Plot time-domain signals

 subplot(3,1,1);

 plot(time, signal, '.-');

 title(sprintf('Input signals (fs=%d)', fs));

 xlabel('Time (seconds)'); ylabel('Amplitude'); axis tight

 % ====== Plot spectral power

 subplot(3,1,2);

 plot(freq, powerDb, '.-'); grid on

 title('Power spectrum');

 xlabel('Frequency (Hz)'); ylabel('Power (db)'); axis tight

 % ====== Plot phase

 subplot(3,1,3);

 plot(freq, phase, '.-'); grid on

 title('Phase');

 xlabel('Frequency (Hz)'); ylabel('Phase (Radian)'); axis tight

end

function mel = frq2mel(frq)

%FRQ2ERB Convert Hertz to Mel frequency scale MEL=(FRQ)

% mel = frq2mel(frq) converts a vector of frequencies (in Hz)

% to the corresponding values on the Mel scale which corresponds

% to the perceived pitch of a tone

% The relationship between mel and frq is given by:

%

% m = ln(1 + f/700) * 1000 / ln(1+1000/700)

%

% This means that m(1000) = 1000

%

% References:

%

% [1] S. S. Stevens & J. Volkman "The relation of pitch to

% frequency", American J of Psychology, V 53, p329 1940

110

% [2] C. G. M. Fant, "Acoustic description & classification

% of phonetic units", Ericsson Tchnics, No 1 1959

% (reprinted in "Speech Sounds & Features", MIT Press 1973)

% [3] S. B. Davis & P. Mermelstein, "Comparison of parametric

% representations for monosyllabic word recognition in

% continuously spoken sentences", IEEE ASSP, V 28,

% pp 357-366 Aug 1980

% [4] J. R. Deller Jr, J. G. Proakis, J. H. L. Hansen,

% "Discrete-Time Processing of Speech Signals", p380,

% Macmillan 1993

% [5] HTK Reference Manual p73

%

% Copyright (C) Mike Brookes 1998

% Version: $Id: frq2mel.m,v 1.5 2009/12/30 10:30:05 dmb Exp $

%

% VOICEBOX is a MATLAB toolbox for speech processing.

% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You can obtain a copy of the GNU General Public License from

% http://www.gnu.org/copyleft/gpl.html or by writing to

% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mel = sign(frq).*log(1+abs(frq)/700)*1127.01048;

if ~nargout

 plot(frq,mel,'-x');

 xlabel(['Frequency (' xticksi 'Hz)']);

111

 ylabel(['Frequency (' yticksi 'Mel)']);

end

function x = istft(d, ftsize, w, h)

% X = istft(D, F, W, H) Inverse short-time Fourier transform.

% Performs overlap-add resynthesis from the short-time Fourier transform

% data in D. Each column of D is taken as the result of an F-point

% fft; each successive frame was offset by H points (default

% W/2, or F/2 if W==0). Data is hann-windowed at W pts, or

% W = 0 gives a rectangular window (default);

% W as a vector uses that as window.

% This version scales the output so the loop gain is 1.0 for

% either hann-win an-syn with 25% overlap, or hann-win on

% analysis and rect-win (W=0) on synthesis with 50% overlap.

% dpwe 1994may24. Uses built-in 'ifft' etc.

% $Header: /home/empire6/dpwe/public_html/resources/matlab/pvoc/RCS/istft.m,v 1.5

2010/08/12 20:39:42 dpwe Exp $

if nargin < 2; ftsize = 2*(size(d,1)-1); end

if nargin < 3; w = 0; end

if nargin < 4; h = 0; end % will become winlen/2 later

s = size(d);

if s(1) ~= (ftsize/2)+1

 error('number of rows should be fftsize/2+1')

end

cols = s(2);

if length(w) == 1

 if w == 0

 % special case: rectangular window

 win = ones(1,ftsize);

 else

 if rem(w, 2) == 0 % force window to be odd-len

 w = w + 1;

 end

 halflen = (w-1)/2;

 halff = ftsize/2;

 halfwin = 0.5 * (1 + cos(pi * (0:halflen)/halflen));

 win = zeros(1, ftsize);

 acthalflen = min(halff, halflen);

 win((halff+1):(halff+acthalflen)) = halfwin(1:acthalflen);

112

 win((halff+1):-1:(halff-acthalflen+2)) = halfwin(1:acthalflen);

 % 2009-01-06: Make stft-istft loop be identity for 25% hop

 win = 2/3*win;

 end

else

 win = w;

end

w = length(win);

% now can set default hop

if h == 0

 h = floor(w/2);

end

xlen = ftsize + (cols-1)*h;

x = zeros(1,xlen);

for b = 0:h:(h*(cols-1))

 ft = d(:,1+b/h)';

 ft = [ft, conj(ft([((ftsize/2)):-1:2]))];

 px = real(ifft(ft));

 x((b+1):(b+ftsize)) = x((b+1):(b+ftsize))+px.*win;

end;

function frq = mel2frq(mel)

%MEL2FRQ Convert Mel frequency scale to Hertz FRQ=(MEL)

% frq = mel2frq(mel) converts a vector of Mel frequencies

% to the corresponding real frequencies.

% The Mel scale corresponds to the perceived pitch of a tone

% The relationship between mel and frq is given by:

%

% m = ln(1 + f/700) * 1000 / ln(1+1000/700)

%

% This means that m(1000) = 1000

%

% References:

%

% [1] S. S. Stevens & J. Volkman "The relation of pitch to

% frequency", American J of Psychology, V 53, p329 1940

% [2] C. G. M. Fant, "Acoustic description & classification

% of phonetic units", Ericsson Tchnics, No 1 1959

113

% (reprinted in "Speech Sounds & Features", MIT Press 1973)

% [3] S. B. Davis & P. Mermelstein, "Comparison of parametric

% representations for monosyllabic word recognition in

% continuously spoken sentences", IEEE ASSP, V 28,

% pp 357-366 Aug 1980

% [4] J. R. Deller Jr, J. G. Proakis, J. H. L. Hansen,

% "Discrete-Time Processing of Speech Signals", p380,

% Macmillan 1993

% [5] HTK Reference Manual p73

%

% Copyright (C) Mike Brookes 1998

% Version: $Id: mel2frq.m,v 1.5 2009/12/30 10:30:25 dmb Exp $

%

% VOICEBOX is a MATLAB toolbox for speech processing.

% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You can obtain a copy of the GNU General Public License from

% http://www.gnu.org/copyleft/gpl.html or by writing to

% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

frq=700*sign(mel).*(exp(abs(mel)/1127.01048)-1);

if ~nargout

 plot(mel,frq,'-x');

 xlabel(['Frequency (' xticksi 'Mel)']);

 ylabel(['Frequency (' yticksi 'Hz)']);

end

114

function [x,mc,mn,mx]=melbankm(p,n,fs,fl,fh,w)

%MELBANKM determine matrix for a mel/erb/bark-spaced filterbank

[X,MN,MX]=(P,N,FS,FL,FH,W)

%

% Inputs:

% p number of filters in filterbank or the filter spacing in k-mel/bark/erb

[ceil(4.6*log10(fs))]

% n length of fft

% fs sample rate in Hz

% fl low end of the lowest filter as a fraction of fs [default = 0]

% fh high end of highest filter as a fraction of fs [default = 0.5]

% w any sensible combination of the following:

% 'b' = bark scale instead of mel

% 'e' = erb-rate scale

% 'l' = log10 Hz frequency scale

% 'f' = linear frequency scale

%

% 'c' = fl/fh specify centre of low and high filters

% 'h' = fl/fh are in Hz instead of fractions of fs

% 'H' = fl/fh are in mel/erb/bark/log10

%

% 't' = triangular shaped filters in mel/erb/bark domain (default)

% 'n' = hanning shaped filters in mel/erb/bark domain

% 'm' = hamming shaped filters in mel/erb/bark domain

%

% 'z' = highest and lowest filters taper down to zero [default]

% 'y' = lowest filter remains at 1 down to 0 frequency and

% highest filter remains at 1 up to nyquist freqency

%

% 'u' = scale filters to sum to unity

%

% 's' = single-sided: do not double filters to account for negative frequencies

%

% 'g' = plot idealized filters [default if no output arguments present]

%

% Note that the filter shape (triangular, hamming etc) is defined in the mel (or erb etc)

domain.

% Some people instead define an asymmetric triangular filter in the frequency domain.

%

% If 'ty' or 'ny' is specified, the total power in the fft is preserved.

%

115

% Outputs: x a sparse matrix containing the filterbank amplitudes

% If the mn and mx outputs are given then size(x)=[p,mx-mn+1]

% otherwise size(x)=[p,1+floor(n/2)]

% Note that the peak filter values equal 2 to account for the power

% in the negative FFT frequencies.

% mc the filterbank centre frequencies in mel/erb/bark

% mn the lowest fft bin with a non-zero coefficient

% mx the highest fft bin with a non-zero coefficient

% Note: you must specify both or neither of mn and mx.

%

% Examples of use:

%

% (a) Calcuate the Mel-frequency Cepstral Coefficients

%

% f=rfft(s); % rfft() returns only 1+floor(n/2) coefficients

% x=melbankm(p,n,fs); % n is the fft length, p is the number of filters wanted

% z=log(x*abs(f).^2); % multiply x by the power spectrum

% c=dct(z); % take the DCT

%

% (b) Calcuate the Mel-frequency Cepstral Coefficients efficiently

%

% f=fft(s); % n is the fft length, p is the number of filters wanted

% [x,mc,na,nb]=melbankm(p,n,fs); % na:nb gives the fft bins that are needed

% z=log(x*(f(na:nb)).*conj(f(na:nb)));

%

% (c) Plot the calculated filterbanks

%

% plot((0:floor(n/2))*fs/n,melbankm(p,n,fs)') % fs=sample frequency

%

% (d) Plot the idealized filterbanks (without output sampling)

%

% melbankm(p,n,fs);

%

% References:

%

% [1] S. S. Stevens, J. Volkman, and E. B. Newman. A scale for the measurement

% of the psychological magnitude of pitch. J. Acoust Soc Amer, 8: 185–19, 1937.

% [2] S. Davis and P. Mermelstein. Comparison of parametric representations for

% monosyllabic word recognition in continuously spoken sentences.

% IEEE Trans Acoustics Speech and Signal Processing, 28 (4): 357–366, Aug. 1980.

% Copyright (C) Mike Brookes 1997-2009

116

% Version: $Id: melbankm.m,v 1.11 2010/01/02 20:02:22 dmb Exp $

%

% VOICEBOX is a MATLAB toolbox for speech processing.

% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You can obtain a copy of the GNU General Public License from

% http://www.gnu.org/copyleft/gpl.html or by writing to

% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Note "FFT bin_0" assumes DC = bin 0 whereas "FFT bin_1" means DC = bin 1

if nargin < 6

 w='tz'; % default options

 if nargin < 5

 fh=0.5; % max freq is the nyquist

 if nargin < 4

 fl=0; % min freq is DC

 end

 end

end

sfact=2-any(w=='s'); % 1 if single sided else 2

wr=' '; % default warping is mel

for i=1:length(w)

 if any(w(i)=='lebf');

 wr=w(i);

 end

end

if any(w=='h') || any(w=='H')

 mflh=[fl fh];

117

else

 mflh=[fl fh]*fs;

end

if ~any(w=='H')

 switch wr

 case 'f' % no transformation

 case 'l'

 if fl<=0

 error('Low frequency limit must be >0 for l option');

 end

 mflh=log10(mflh); % convert frequency limits into log10 Hz

 case 'e'

 mflh=frq2erb(mflh); % convert frequency limits into erb-rate

 case 'b'

 mflh=frq2bark(mflh); % convert frequency limits into bark

 otherwise

 mflh=frq2mel(mflh); % convert frequency limits into mel

 end

end

melrng=mflh*(-1:2:1)'; % mel range

fn2=floor(n/2); % bin index of highest positive frequency (Nyquist if n is even)

if isempty(p)

 p=ceil(4.6*log10(fs)); % default number of filters

end

if any(w=='c') % c option: specify fiter centres not edges

if p<1

 p=round(melrng/(p*1000))+1;

end

melinc=melrng/(p-1);

mflh=mflh+(-1:2:1)*melinc;

else

 if p<1

 p=round(melrng/(p*1000))-1;

end

melinc=melrng/(p+1);

end

%

% Calculate the FFT bins corresponding to [filter#1-low filter#1-mid filter#p-mid

filter#p-high]

%

switch wr

 case 'f'

118

 blim=(mflh(1)+[0 1 p p+1]*melinc)*n/fs;

 case 'l'

 blim=10.^(mflh(1)+[0 1 p p+1]*melinc)*n/fs;

 case 'e'

 blim=erb2frq(mflh(1)+[0 1 p p+1]*melinc)*n/fs;

 case 'b'

 blim=bark2frq(mflh(1)+[0 1 p p+1]*melinc)*n/fs;

 otherwise

 blim=mel2frq(mflh(1)+[0 1 p p+1]*melinc)*n/fs;

end

mc=mflh(1)+(1:p)*melinc; % mel centre frequencies

b1=floor(blim(1))+1; % lowest FFT bin_0 required might be negative)

b4=min(fn2,ceil(blim(4))-1); % highest FFT bin_0 required

%

% now map all the useful FFT bins_0 to filter1 centres

%

switch wr

 case 'f'

 pf=((b1:b4)*fs/n-mflh(1))/melinc;

 case 'l'

 pf=(log10((b1:b4)*fs/n)-mflh(1))/melinc;

 case 'e'

 pf=(frq2erb((b1:b4)*fs/n)-mflh(1))/melinc;

 case 'b'

 pf=(frq2bark((b1:b4)*fs/n)-mflh(1))/melinc;

 otherwise

 pf=(frq2mel((b1:b4)*fs/n)-mflh(1))/melinc;

end

%

% remove any incorrect entries in pf due to rounding errors

%

if pf(1)<0

 pf(1)=[];

 b1=b1+1;

end

if pf(end)>=p+1

 pf(end)=[];

 b4=b4-1;

end

fp=floor(pf); % FFT bin_0 i contributes to filters_1 fp(1+i-b1)+[0 1]

pm=pf-fp; % multiplier for upper filter

k2=find(fp>0,1); % FFT bin_1 k2+b1 is the first to contribute to both upper and lower

filters

119

k3=find(fp<p,1,'last'); % FFT bin_1 k3+b1 is the last to contribute to both upper and

lower filters

k4=numel(fp); % FFT bin_1 k4+b1 is the last to contribute to any filters

if isempty(k2)

 k2=k4+1;

end

if isempty(k3)

 k3=0;

end

if any(w=='y') % preserve power in FFT

 mn=1; % lowest fft bin required (1 = DC)

 mx=fn2+1; % highest fft bin required (1 = DC)

 r=[ones(1,k2+b1-1) 1+fp(k2:k3) fp(k2:k3) repmat(p,1,fn2-k3-b1+1)]; % filter

number_1

 c=[1:k2+b1-1 k2+b1:k3+b1 k2+b1:k3+b1 k3+b1+1:fn2+1]; % FFT bin1

 v=[ones(1,k2+b1-1) pm(k2:k3) 1-pm(k2:k3) ones(1,fn2-k3-b1+1)];

else

 r=[1+fp(1:k3) fp(k2:k4)]; % filter number_1

 c=[1:k3 k2:k4]; % FFT bin_1 - b1

 v=[pm(1:k3) 1-pm(k2:k4)];

 mn=b1+1; % lowest fft bin_1

 mx=b4+1; % highest fft bin_1

end

if b1<0

 c=abs(c+b1-1)-b1+1; % convert negative frequencies into positive

end

% end

if any(w=='n')

 v=0.5-0.5*cos(v*pi); % convert triangles to Hanning

elseif any(w=='m')

 v=0.5-0.46/1.08*cos(v*pi); % convert triangles to Hamming

end

if sfact==2 % double all except the DC and Nyquist (if any) terms

 msk=(c+mn>2) & (c+mn<n-fn2+2); % there is no Nyquist term if n is odd

 v(msk)=2*v(msk);

end

%

% sort out the output argument options

%

if nargout > 2

 x=sparse(r,c,v);

 if nargout == 3 % if exactly three output arguments, then

 mc=mn; % delete mc output for legacy code compatibility

120

 mn=mx;

 end

else

 x=sparse(r,c+mn-1,v,p,1+fn2);

end

if any(w=='u')

 sx=sum(x,2);

 x=x./repmat(sx+(sx==0),1,size(x,2));

end

%

% plot results if no output arguments or g option given

%

if ~nargout || any(w=='g') % plot idealized filters

 ng=201; % 201 points

 me=mflh(1)+(0:p+1)'*melinc;

 switch wr

 case 'f'

 fe=me; % defining frequencies

 xg=repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng);

 case 'l'

 fe=10.^me; % defining frequencies

 xg=10.^(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng));

 case 'e'

 fe=erb2frq(me); % defining frequencies

 xg=erb2frq(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng));

 case 'b'

 fe=bark2frq(me); % defining frequencies

 xg=bark2frq(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng));

 otherwise

 fe=mel2frq(me); % defining frequencies

 xg=mel2frq(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng));

 end

 v=1-abs(linspace(-1,1,ng));

 if any(w=='n')

 v=0.5-0.5*cos(v*pi); % convert triangles to Hanning

 elseif any(w=='m')

 v=0.5-0.46/1.08*cos(v*pi); % convert triangles to Hamming

121

 end

 v=v*sfact; % multiply by 2 if double sided

 v=repmat(v,p,1);

 if any(w=='y') % extend first and last filters

 v(1,xg(1,:)<fe(2))=sfact;

 v(end,xg(end,:)>fe(p+1))=sfact;

 end

 if any(w=='u') % scale to unity sum

 dx=(xg(:,3:end)-xg(:,1:end-2))/2;

 dx=dx(:,[1 1:ng-2 ng-2]);

 vs=sum(v.*dx,2);

 v=v./repmat(vs+(vs==0),1,ng)*fs/n;

 end

 plot(xg',v','b');

 set(gca,'xlim',[fe(1) fe(end)]);

% xlabel(['Frequency ('xticksi 'Hz)']);

end

function c=melcepst(s,fs,w,nc,p,n,inc,fl,fh)

%MELCEPST Calculate the mel cepstrum of a signal C=(S,FS,W,NC,P,N,INC,FL,FH)

%

%

% Simple use: c=melcepst(s,fs) % calculate mel cepstrum with 12 coefs, 256 sample

frames

% c=melcepst(s,fs,'e0dD') % include log energy, 0th cepstral coef, delta and

delta-delta coefs

%

% Inputs:

% s speech signal

% fs sample rate in Hz (default 11025)

% nc number of cepstral coefficients excluding 0'th coefficient (default 12)

% n length of frame in samples (default power of 2 < (0.03*fs))

% p number of filters in filterbank (default: floor(3*log(fs)) = approx 2.1 per ocatave)

% inc frame increment (default n/2)

% fl low end of the lowest filter as a fraction of fs (default = 0)

% fh high end of highest filter as a fraction of fs (default = 0.5)

%

% w any sensible combination of the following:

%

% 'R' rectangular window in time domain

% 'N' Hanning window in time domain

% 'M' Hamming window in time domain (default)

%

122

% 't' triangular shaped filters in mel domain (default)

% 'n' hanning shaped filters in mel domain

% 'm' hamming shaped filters in mel domain

%

% 'p' filters act in the power domain

% 'a' filters act in the absolute magnitude domain (default)

%

% '0' include 0'th order cepstral coefficient

% 'e' include log energy

% 'd' include delta coefficients (dc/dt)

% 'D' include delta-delta coefficients (d^2c/dt^2)

%

% 'z' highest and lowest filters taper down to zero (default)

% 'y' lowest filter remains at 1 down to 0 frequency and

% highest filter remains at 1 up to nyquist freqency

%

% If 'ty' or 'ny' is specified, the total power in the fft is preserved.

%

% Outputs: c mel cepstrum output: one frame per row. Log energy, if requested, is the

% first element of each row followed by the delta and then the delta-delta

% coefficients.

%

% BUGS: (1) should have power limit as 1e-16 rather than 1e-6 (or possibly a better way

of choosing this)

% and put into VOICEBOX

% (2) get rdct to change the data length (properly) instead of doing it explicitly

(wrongly)

% Copyright (C) Mike Brookes 1997

% Version: $Id: melcepst.m,v 1.7 2009/10/19 10:20:32 dmb Exp $

%

% VOICEBOX is a MATLAB toolbox for speech processing.

% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

123

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You can obtain a copy of the GNU General Public License from

% http://www.gnu.org/copyleft/gpl.html or by writing to

% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin<2 fs=11025; end

if nargin<3 w='M'; end

if nargin<4 nc=13; end

if nargin<5 p=floor(3*log(fs)); end

if nargin<6 n=256; end %pow2(floor(log2(0.03*fs))); end

if nargin<9

 fh=0.5;

 if nargin<8

 fl=0;

 if nargin<7

 inc=floor(n/2);

 end

 end

end

if length(w)==0

 w='M';

end

if any(w=='R')

 z=enframe(s,n,inc);

elseif any (w=='N')

 z=enframe(s,hanning(n),inc);

else

 z=enframe(s,hamming(n),inc);

end

f=rfft(z.');

% pl = (0:length(f)-1)*50/length(f);

% figure, plot(pl,abs(f));

% title('magnitude');

[m,a,b]=melbankm(p,n,fs,fl,fh,w);

%figure,plot((0:floor(n/2))*fs/n,melbankm(p,n,fs)');

%xlabel('Frequency[Hz]');ylabel('Amplitude');

pw=f(a:b,:).*conj(f(a:b,:));

124

pth=max(pw(:))*1E-20;

if any(w=='p')

 y=log(max(m*pw,pth));

else

 ath=sqrt(pth);

 y=log(max(m*abs(f(a:b,:)),ath));

end

c=rdct(y).';

nf=size(c,1);

nc=nc+1;

if p>nc

 c(:,nc+1:end)=[];

elseif p<nc

 c=[c zeros(nf,nc-p)];

end

if ~any(w=='0')

 c(:,1)=[];

 nc=nc-1;

end

if any(w=='e')

 c=[log(sum(pw)).' c];

 nc=nc+1;

end

% calculate derivative

if any(w=='D')

 vf=(4:-1:-4)/60;

 af=(1:-1:-1)/2;

 ww=ones(5,1);

 cx=[c(ww,:); c; c(nf*ww,:)];

 vx=reshape(filter(vf,1,cx(:)),nf+10,nc);

 vx(1:8,:)=[];

 ax=reshape(filter(af,1,vx(:)),nf+2,nc);

 ax(1:2,:)=[];

 vx([1 nf+2],:)=[];

 if any(w=='d')

 c=[c vx ax];

 else

 c=[c ax];

 end

elseif any(w=='d')

 vf=(4:-1:-4)/60;

125

 ww=ones(4,1);

 cx=[c(ww,:); c; c(nf*ww,:)];

 vx=reshape(filter(vf,1,cx(:)),nf+8,nc);

 vx(1:8,:)=[];

 c=[c vx];

end

if nargout<1

 [nf,nc]=size(c);

 t=((0:nf-1)*inc+(n-1)/2)/fs;

 ci=(1:nc)-any(w=='0')-any(w=='e');

 imh = imagesc(t,ci,c.');

 axis('xy');

 xlabel('Time (s)');

 ylabel('Mel-cepstrum coefficient');

 map = (0:63)'/63;

 colormap([map map map]);

 colorbar;

end

function [cepstral] = mfcc1(x,y,fs)

% Calculate mfcc's with a frequency(fs) and store in ceptral cell. Display

% y at a time when x is calculated

cepstral = cell(size(x,1),1);

for i = 1:size(x,1)

% disp(y(i,:))

nc = 13;

p = 26;

n = 400;

inc = 240;

cepstral{i} = melcepst(x{i},fs,'E0dD',nc,p,n,inc);

end

%MELCEPST Calculate the mel cepstrum of a signal C=(S,FS,W,NC,P,N,INC,FL,FH)

%s speech signal

% fs sample rate in Hz (default 11025)

% nc number of cepstral coefficients excluding 0'th coefficient (default 12)

% n length of frame in samples (default power of 2 < (0.03*fs))

% p number of filters in filterbank (default: floor(3*log(fs)) = approx 2.1 per ocatave)

% inc frame increment (default n/2)

% fl low end of the lowest filter as a fraction of fs (default = 0)

126

% fh high end of highest filter as a fraction of fs (default = 0.5)

function c = pvsample(b, t, hop)

% c = pvsample(b, t, hop) Interpolate an STFT array according to the 'phase vocoder'

% b is an STFT array, of the form generated by 'specgram'.

% t is a vector of (real) time-samples, which specifies a path through

% the time-base defined by the columns of b. For each value of t,

% the spectral magnitudes in the columns of b are interpolated, and

% the phase difference between the successive columns of b is

% calculated; a new column is created in the output array c that

% preserves this per-step phase advance in each bin.

% hop is the STFT hop size, defaults to N/2, where N is the FFT size

% and b has N/2+1 rows. hop is needed to calculate the 'null' phase

% advance expected in each bin.

% Note: t is defined relative to a zero origin, so 0.1 is 90% of

% the first column of b, plus 10% of the second.

% 2000-12-05 dpwe@ee.columbia.edu

% $Header: /homes/dpwe/public_html/resources/matlab/dtw/../RCS/pvsample.m,v 1.3

2003/04/09 03:17:10 dpwe Exp $

if nargin < 3

 hop = 0;

end

[rows,cols] = size(b);

N = 2*(rows-1);

if hop == 0

 % default value

 hop = N/2;

end

% Empty output array

c = zeros(rows, length(t));

% Expected phase advance in each bin

dphi = zeros(1,N/2+1);

dphi(2:(1 + N/2)) = (2*pi*hop)./(N./(1:(N/2)));

% Phase accumulator

% Preset to phase of first frame for perfect reconstruction

% in case of 1:1 time scaling

127

ph = angle(b(:,1));

% Append a 'safety' column on to the end of b to avoid problems

% taking *exactly* the last frame (i.e. 1*b(:,cols)+0*b(:,cols+1))

b = [b,zeros(rows,1)];

ocol = 1;

for tt = t

 % Grab the two columns of b

 bcols = b(:,floor(tt)+[1 2]);

 tf = tt - floor(tt);

 bmag = (1-tf)*abs(bcols(:,1)) + tf*(abs(bcols(:,2)));

 % calculate phase advance

 dp = angle(bcols(:,2)) - angle(bcols(:,1)) - dphi';

 % Reduce to -pi:pi range

 dp = dp - 2 * pi * round(dp/(2*pi));

 % Save the column

 c(:,ocol) = bmag .* exp(j*ph);

 % Cumulate phase, ready for next frame

 ph = ph + dphi' + dp;

 ocol = ocol+1;

end

function MFCC_Feature_Vector = normalise(X)

mindata = min(X);

maxdata = max(X);

MFCC_Feature_Vector = bsxfun(@rdivide, bsxfun(@minus, X, mindata), maxdata -

mindata);

function y=rdct(x,n,a,b)

%RDCT Discrete cosine transform of real data Y=(X,N,A,B)

% Data is truncated/padded to length N.

%

% This routine is equivalent to multiplying by the matrix

%

% rdct(eye(n)) = diag([sqrt(2)*B/A repmat(2/A,1,n-1)]) * cos((0:n-1)'*(0.5:n)*pi/n)

%

% Default values of the scaling factors are A=sqrt(2N) and B=1 which

% results in an orthogonal matrix. Other common values are A=1 or N and/or B=1 or

sqrt(2).

% If b~=1 then the columns are no longer orthogonal.

128

%

% see IRDCT for the inverse transform

% BUG: in line 51 we should do chopping after transform and not before

% Copyright (C) Mike Brookes 1998

% Version: $Id: rdct.m,v 1.6 2007/05/04 07:01:39 dmb Exp $

%

% VOICEBOX is a MATLAB toolbox for speech processing.

% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You can obtain a copy of the GNU General Public License from

% http://www.gnu.org/copyleft/gpl.html or by writing to

% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fl=size(x,1)==1;

if fl x=x(:); end

[m,k]=size(x);

if nargin<2 n=m;

end

if nargin<4 b=1;

 if nargin<3 a=sqrt(2*n);

 end

 end

if n>m x=[x; zeros(n-m,k)];

elseif n<m x(n+1:m,:)=[];

end

129

x=[x(1:2:n,:); x(2*fix(n/2):-2:2,:)];

z=[sqrt(2) 2*exp((-0.5i*pi/n)*(1:n-1))].';

y=real(fft(x).*z(:,ones(1,k)))/a;

y(1,:)=y(1,:)*b;

if fl y=y.'; end

function A = resize(B,R,C)

% A = resize(B,R,C) Crop or zero-pad B to have R rows and C columns.

% I'm sure this must already be provided, but how to know?

% dpwe 1995jan21

% Copyright (c) 1995 Dan Ellis <dpwe@ee.columbia.edu>

% released under GPL - see file COPYRIGHT

A = zeros(R,C);

[r,c] = size(B);

mr = min(r,R);

mc = min(c,C);

A(1:mr,1:mc) = B(1:mr, 1:mc);

function y=rfft(x,n,d)

%RFFT Calculate the DFT of real data Y=(X,N,D)

% Data is truncated/padded to length N if specified.

% N even: (N+2)/2 points are returned with

% the first and last being real

% N odd: (N+1)/2 points are returned with the

% first being real

% In all cases fix(1+N/2) points are returned

% D is the dimension along which to do the DFT

% Copyright (C) Mike Brookes 1998

% Version: $Id: rfft.m,v 1.7 2009/06/03 11:57:52 dmb Exp $

%

% VOICEBOX is a MATLAB toolbox for speech processing.

% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

130

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You can obtain a copy of the GNU General Public License from

% http://www.gnu.org/copyleft/gpl.html or by writing to

% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s=size(x);

if prod(s)==1

 y=x;

else

 if nargin <3 || isempty(d)

 d=find(s>1);

 d=d(1);

 if nargin<2

 n=s(d);

 end

 end

 if isempty(n)

 n=s(d);

 end

 y=fft(x,n,d);

 y=reshape(y,prod(s(1:d-1)),n,prod(s(d+1:end)));

 s(d)=1+fix(n/2);

 y(:,s(d)+1:end,:)=[];

 y=reshape(y,s);

end

131

function M = simmx(A,B)

% M = simmx(A,B)

% calculate a sim matrix between specgram-like feature matrices A and B.

% size(M) = [size(A,2) size(B,2)]; A and B have same #rows.

% 2003-03-15 dpwe@ee.columbia.edu

% Copyright (c) 2003 Dan Ellis <dpwe@ee.columbia.edu>

% released under GPL - see file COPYRIGHT

EA = sqrt(sum(A.^2));

EB = sqrt(sum(B.^2));

%ncA = size(A,2);

%ncB = size(B,2);

%M = zeros(ncA, ncB);

%for i = 1:ncA

% for j = 1:ncB

% % normalized inner product i.e. cos(angle between vectors)

% M(i,j) = (A(:,i)'*B(:,j))/(EA(i)*EB(j));

% end

%end

% this is 10x faster

M = (A'*B)./(EA'*EB);

classdef svm

 methods (Static)

 function Model=train(training, groupnames, varargin)

 %SVMTRAIN Train a support vector machine classifier

 % SVMSTRUCT = SVMTRAIN(TRAINING, Y) trains a support vector

machine (SVM)

 % classifier on data taken from two groups. TRAINING is a numeric matrix

 % of predictor data. Rows of TRAINING correspond to observations; columns

 % correspond to features. Y is a column vector that contains the known

 % class labels for TRAINING. Y is a grouping variable, i.e., it can be a

 % categorical, numeric, or logical vector; a cell vector of strings; or a

 % character matrix with each row representing a class label (see help for

 % groupingvariable). Each element of Y specifies the group the

 % corresponding row of TRAINING belongs to. TRAINING and Y must have

the

 % same number of rows. SVMSTRUCT contains information about the trained

 % classifier, including the support vectors, that is used by SVMCLASSIFY

132

 % for classification. SVMTRAIN treats NaNs, empty strings or 'undefined'

 % values as missing values and ignores the corresponding rows in

 % TRAINING and Y.

 %

 % SVMSTRUCT = SVMTRAIN(TRAINING, Y, 'PARAM1',val1,

'PARAM2',val2, ...)

 % specifies one or more of the following name/value pairs:

 %

 % Name Value

 % 'kernel_function' A string or a function handle specifying the

 % kernel function used to represent the dot

 % product in a new space. The value can be one of

 % the following:

 % 'linear' - Linear kernel or dot product

 % (default). In this case, SVMTRAIN

 % finds the optimal separating plane

 % in the original space.

 % 'quadratic' - Quadratic kernel

 % 'polynomial' - Polynomial kernel with default

 % order 3. To specify another order,

 % use the 'polyorder' argument.

 % 'rbf' - Gaussian Radial Basis Function

 % with default scaling factor 1. To

 % specify another scaling factor,

 % use the 'rbf_sigma' argument.

 % 'mlp' - Multilayer Perceptron kernel (MLP)

 % with default weight 1 and default

 % bias -1. To specify another weight

 % or bias, use the 'mlp_params'

 % argument.

 % function - A kernel function specified using

 % @(for example @KFUN), or an

 % anonymous function. A kernel

 % function must be of the form

 %

 % function K = KFUN(U, V)

 %

 % The returned value, K, is a matrix

 % of size M-by-N, where M and N are

 % the number of rows in U and V

 % respectively.

 %

 % 'rbf_sigma' A positive number specifying the scaling factor

133

 % in the Gaussian radial basis function kernel.

 % Default is 1.

 %

 % 'polyorder' A positive integer specifying the order of the

 % polynomial kernel. Default is 3.

 %

 % 'mlp_params' A vector [P1 P2] specifying the parameters of MLP

 % kernel. The MLP kernel takes the form:

 % K = tanh(P1*U*V' + P2),

 % where P1 > 0 and P2 < 0. Default is [1,-1].

 %

 % 'method' A string specifying the method used to find the

 % separating hyperplane. Choices are:

 % 'SMO' - Sequential Minimal Optimization (SMO)

 % method (default). It implements the L1

 % soft-margin SVM classifier.

 % 'QP' - Quadratic programming (requires an

 % Optimization Toolbox license). It

 % implements the L2 soft-margin SVM

 % classifier. Method 'QP' doesn't scale

 % well for TRAINING with large number of

 % observations.

 % 'LS' - Least-squares method. It implements the

 % L2 soft-margin SVM classifier.

 %

 % 'options' Options structure created using either STATSET or

 % OPTIMSET.

 % * When you set 'method' to 'SMO' (default),

 % create the options structure using STATSET.

 % Applicable options:

 % 'Display' Level of display output. Choices

 % are 'off' (the default), 'iter', and

 % 'final'. Value 'iter' reports every

 % 500 iterations.

 % 'MaxIter' A positive integer specifying the

 % maximum number of iterations allowed.

 % Default is 15000 for method 'SMO'.

 % * When you set method to 'QP', create the

 % options structure using OPTIMSET. For details

 % of applicable options choices, see QUADPROG

 % options. SVM uses a convex quadratic program,

 % so you can choose the 'interior-point-convex'

 % algorithm in QUADPROG.

134

 %

 % 'tolkkt' A positive scalar that specifies the tolerance

 % with which the Karush-Kuhn-Tucker (KKT) conditions

 % are checked for method 'SMO'. Default is

 % 1.0000e-003.

 %

 % 'kktviolationlevel' A scalar specifying the fraction of observations

 % that are allowed to violate the KKT conditions for

 % method 'SMO'. Setting this value to be positive

 % helps the algorithm to converge faster if it is

 % fluctuating near a good solution. Default is 0.

 %

 % 'kernelcachelimit' A positive scalar S specifying the size of the

 % kernel matrix cache for method 'SMO'. The

 % algorithm keeps a matrix with up to S * S

 % double-precision numbers in memory. Default is

 % 5000. When the number of points in TRAINING

 % exceeds S, the SMO method slows down. It's

 % recommended to set S as large as your system

 % permits.

 %

 % 'boxconstraint' The box constraint C for the soft margin. C can be

 % a positive numeric scalar or a vector of positive

 % numbers with the number of elements equal to the

 % number of rows in TRAINING.

 % Default is 1.

 % * If C is a scalar, it is automatically rescaled

 % by N/(2*N1) for the observations of group one,

 % and by N/(2*N2) for the observations of group

 % two, where N1 is the number of observations in

 % group one, N2 is the number of observations in

 % group two. The rescaling is done to take into

 % account unbalanced groups, i.e., when N1 and N2

 % are different.

 % * If C is a vector, then each element of C

 % specifies the box constraint for the

 % corresponding observation.

 %

 % 'autoscale' A logical value specifying whether or not to

 % shift and scale the data points before training.

 % When the value is true, the columns of TRAINING

 % are shifted and scaled to have zero mean unit

 % variance. Default is true.

135

 %

 % 'showplot' A logical value specifying whether or not to show

 % a plot. When the value is true, SVMTRAIN creates a

 % plot of the grouped data and the separating line

 % for the classifier, when using data with 2

 % features (columns). Default is false.

 %

 % SVMSTRUCT is a structure having the following properties:

 %

 % SupportVectors Matrix of data points with each row corresponding

 % to a support vector.

 % Note: when 'autoscale' is false, this field

 % contains original support vectors in TRAINING.

 % When 'autoscale' is true, this field contains

 % shifted and scaled vectors from TRAINING.

 % Alpha Vector of Lagrange multipliers for the support

 % vectors. The sign is positive for support vectors

 % belonging to the first group and negative for

 % support vectors belonging to the second group.

 % Bias Intercept of the hyperplane that separates

 % the two groups.

 % Note: when 'autoscale' is false, this field

 % corresponds to the original data points in

 % TRAINING. When 'autoscale' is true, this field

 % corresponds to shifted and scaled data points.

 % KernelFunction The function handle of kernel function used.

 % KernelFunctionArgs Cell array containing the additional arguments

 % for the kernel function.

 % GroupNames A column vector that contains the known

 % class labels for TRAINING. Y is a grouping

 % variable (see help for groupingvariable).

 % SupportVectorIndices A column vector indicating the indices of support

 % vectors.

 % ScaleData This field contains information about auto-scale.

 % When 'autoscale' is false, it is empty. When

 % 'autoscale' is set to true, it is a structure

 % containing two fields:

 % shift - A row vector containing the negative

 % of the mean across all observations

 % in TRAINING.

 % scaleFactor - A row vector whose value is

 % 1./STD(TRAINING).

 % FigureHandles A vector of figure handles created by SVMTRAIN

136

 % when 'showplot' argument is TRUE.

 %

 % Example:

 % % Load the data and select features for classification

 % load fisheriris

 % X = [meas(:,1), meas(:,2)];

 % % Extract the Setosa class

 % Y = nominal(ismember(species,'setosa'));

 % % Randomly partitions observations into a training set and a test

 % % set using stratified holdout

 % P = cvpartition(Y,'Holdout',0.20);

 % % Use a linear support vector machine classifier

 % svmStruct = msvmtrain(X(P.training,:),Y(P.training),'showplot',true);

 % C = msvmclassify(svmStruct,X(P.test,:),'showplot',true);

 % errRate = sum(Y(P.test)~= C)/P.TestSize %mis-classification rate

 % conMat = confusionmat(Y(P.test),C) % the confusion matrix

 %

 % See also SVMCLASSIFY, NAIVEBAYES, CLASSREGTREE, CLASSIFY,

TREEBAGGER,

 % GROUPINGVARIABLE

 % Copyright 2004-2012 The MathWorks, Inc.

 % References:

 %

 % [1] Cristianini, N., Shawe-Taylor, J An Introduction to Support

 % Vector Machines, Cambridge University Press, Cambridge, UK. 2000.

 % http://www.support-vector.net

 % [2] Kecman, V, Learning and Soft Computing,

 % MIT Press, Cambridge, MA. 2001.

 % [3] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B.,

 % Vandewalle, J., Least Squares Support Vector Machines,

 % World Scientific, Singapore, 2002.

 % [4] J.C. Platt: A Fast Algorithm for Training Support Vector

 % Machines, Advances in Kernel Methods - Support Vector Learning,

 % MIT Press, 1998.

 % [5] J.C. Platt: Fast Training of Support Vector Machines using

 % Sequential Minimal Optimization Microsoft Research Technical

 % Report MSR-TR-98-14, 1998.

 % [6] http://www.kernel-machines.org/papers/tr-30-1998.ps.gz

 %

 % SVMTRAIN(...,'KFUNARGS',ARGS) allows you to pass additional

137

 % arguments to kernel functions.

 %

 % Code is modified for multuclass svm

 % by Er.Abbas Manthiri BE

 % Email abbasmanthiribe@gmail.com

 % Date:15-03-2017

 classInstance=unique(groupnames);

 svmValue=sum(classInstance);

 nsample=length(classInstance);

 if nsample>2

 model=cell(1,nsample);

 for i=1:nsample

 classx=groupnames;

 classx(classx==classInstance(i))=svmValue;

 classx(classx~=svmValue)=1;

 classx(classx==svmValue)=0;

 model{i}=svmtrain(training,classx,varargin{:});

 fprintf('Multi Class SVM Model for Class Instance %d ---

>\n',classInstance(i))

 disp(model{i})

 end

 else

 model=svmtrain(training,groupnames,varargin{:});

 fprintf('\nx Two class svm Model--->\n')

 disp(model)

 end

 Model.model=model;

 Model.classInstance=classInstance;

 fprintf('\nTrain Model Completed\n')

 end

 function [output,matrix]=predict(Model,sample,varargin)

 %SVMCLASSIFY Classify data using a support vector machine

 % GROUP = SVMCLASSIFY(SVMSTRUCT, TEST) classifies each row in

TEST using

 % the support vector machine classifier structure SVMSTRUCT created

 % using SVMTRAIN, and returns the predicted class level GROUP. TEST must

 % have the same number of columns as the data used to train the

 % classifier in SVMTRAIN. GROUP indicates the group to which each row of

 % TEST is assigned.

 %

138

 % GROUP = SVMCLASSIFY(...,'SHOWPLOT',true) plots the test data TEST

on

 % the figure created using the SHOWPLOT option in SVMTRAIN.

 %

 % Example:

 % % Load the data and select features for classification

 % load fisheriris

 % X = [meas(:,1), meas(:,2)];

 % % Extract the Setosa class

 % Y = nominal(ismember(species,'setosa'));

 % % Randomly partitions observations into a training set and a test

 % % set using stratified holdout

 % P = cvpartition(Y,'Holdout',0.20);

 % % Use a linear support vector machine classifier

 % svmStruct = msvmtrain(X(P.training,:),Y(P.training),'showplot',true);

 % C = msvmclassify(svmStruct,X(P.test,:),'showplot',true);

 % err_rate = sum(Y(P.test)~= C)/P.TestSize % mis-classification rate

 % conMat = confusionmat(Y(P.test),C) % the confusion matrix

 %

 % See also SVMTRAIN, NAIVEBAYES, CLASSREGTREE, CLASSIFY,

TREEBAGGER

 % Copyright 2004-2012 The MathWorks, Inc.

 % References:

 %

 % [1] Cristianini, N., Shawe-Taylor, J An Introduction to Support

 % Vector Machines, Cambridge University Press, Cambridge, UK. 2000.

 % http://www.support-vector.net

 % [2] Kecman, V, Learning and Soft Computing,

 % MIT Press, Cambridge, MA. 2001.

 % [3] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B.,

 % Vandewalle, J., Least Squares Support Vector Machines,

 % World Scientific, Singapore, 2002.

 %

 % Code is modified for multuclass svm

 % by Er.Abbas Manthiri BE

 % Email abbasmanthiribe@gmail.com

 % Date:15-03-2017

 model=Model.model;

 classInstance=Model.classInstance;

 nsample=length(classInstance);

139

 if nsample>2

 numberOfSamples=size(sample,1);

 classRange=zeros(numberOfSamples,length(classInstance));

 for i=1:nsample

 [~,threshold]=svm.svmclassify(model{i},sample,varargin{:});

 classRange(:,i)=threshold;

 fprintf('\nMulti Class SVM classify values Claculated for Class Instance %d

',classInstance(i))

 end

 [~,index]=max(transpose(classRange));

 output=classInstance(index);

 matrix = classRange;

 else

 output=svm.svmclassify(model,sample,varargin{:});

 end

 fprintf('\n SVM Classification is completed\n')

 end

 function [outclass,val] = svmclassify(svmStruct,sample, varargin)

 % set defaults

 plotflag = false;

 % check inputs

 narginchk(2, Inf);

 % deal with struct input case

 if ~isstruct(svmStruct)

 error(message('stats:svmclassify:TwoInputsNoStruct'));

 end

 if ~isnumeric(sample) || ~ismatrix(sample)

 error(message('stats:svmclassify:BadSample'));

 end

 if size(sample,2)~=size(svmStruct.SupportVectors,2)

 error(message('stats:svmclassify:TestSizeMismatch'));

 end

 % deal with the various inputs

 if nargin > 2

 if rem(nargin,2) == 1

 error(message('stats:svmclassify:IncorrectNumberOfArguments'));

140

 end

 okargs = {'showplot','-compilerhelper'};

 for j=1:2:nargin-2

 pname = varargin{j};

 pval = varargin{j+1};

 k = find(strncmpi(pname, okargs,numel(pname)));

 if isempty(k)

 error(message('stats:svmclassify:UnknownParameterName', pname));

 elseif length(k)>1

 error(message('stats:svmclassify:AmbiguousParameterName', pname));

 else

 switch(k)

 case 1 % plotflag ('SHOWPLOT')

 plotflag = opttf(pval,okargs{k});

 case 2 % help the compiler find required function handles by including

svmtrain

 svmtrain(eye(2),[1 0]);

 end

 end

 end

 end

 groupnames = svmStruct.GroupNames;

 % check group is a vector -- though char input is special...

 if ~isvector(groupnames) && ~ischar(groupnames)

 error(message('stats:svmclassify:GroupNotVector'));

 end

 % grp2idx sorts a numeric grouping var ascending, and a string grouping

 % var by order of first occurrence

 [~,groupString,glevels] = grp2idx(groupnames);

 % do the classification

 if ~isempty(sample)

 % shift and scale the data if necessary:

 sampleOrig = sample;

 if ~isempty(svmStruct.ScaleData)

 for c = 1:size(sample, 2)

 sample(:,c) = svmStruct.ScaleData.scaleFactor(c) * ...

 (sample(:,c) + svmStruct.ScaleData.shift(c));

 end

 end

141

 % try

 [outclass,val] = svm.svmdecision(sample,svmStruct);

 % catch ME

 % error(message('stats:svmclassify:ClassifyFailed', ME.message));

 % end

 if plotflag

 if isempty(svmStruct.FigureHandles)

 warning(message('stats:svmclassify:NoTrainingFigure'));

 else

 try

 hAxis = svmStruct.FigureHandles{1};

 hLines = svmStruct.FigureHandles{2};

 hSV = svmStruct.FigureHandles{3};

 % unscale the data for plotting purposes

 [~,hClassLines] = svmplotdata(sampleOrig,outclass,hAxis);

 trainingString = strcat(cellstr(groupString),' (training)');

 sampleString = strcat(cellstr(groupString),' (classified)');

 legend([hLines(1),hClassLines(1),hLines(2),hClassLines(2),hSV],...

 {trainingString{1},sampleString{1},...

 trainingString{2},sampleString{2},'Support Vectors'});

 catch ME

 warning(message('stats:svmclassify:DisplayFailed', ME.message));

 end

 end

 end

 outclass(outclass == -1) = 2;

 unClassified = isnan(outclass);

 outclass = glevels(outclass(~unClassified),:);

 if any(unClassified)

 try

 outclass = statinsertnan(unClassified,outclass);

 catch ME

 if ~isequal(ME.identifier,'stats:statinsertnan:LogicalInput')

 rethrow(ME);

 else

 error(message('stats:svmclassify:logicalwithNaN'));

 end

 end

 end

142

 else

 outclass = [];

 end

 end

 function [out,f] = svmdecision(Xnew,svm_struct)

 %SVMDECISION Evaluates the SVM decision function

 % Copyright 2004-2012 The MathWorks, Inc.

 sv = svm_struct.SupportVectors;

 alphaHat = svm_struct.Alpha;

 bias = svm_struct.Bias;

 kfun = svm_struct.KernelFunction;

 kfunargs = svm_struct.KernelFunctionArgs;

 f = (feval(kfun,sv,Xnew,kfunargs{:})'*alphaHat(:)) + bias;

 out = sign(f);

 % points on the boundary are assigned to class 1

 out(out==0) = 1;

 end

 function [Model,predicted] = classify(Sample,class,SampleTest)

 Model=svm.train(Sample,class);

 predicted=svm.predict(Model,SampleTest);

 end

 end

end

% buildDetector: build face parts detector object

%

% detector = buildDetector(thresholdFace, thresholdParts, stdsize)

%

%Output parameter:

% detector: built detector object

%

%

%Input parameters:

% thresholdFace (optional): MergeThreshold for face detector (Default: 1)

% thresholdParts (optional): MergeThreshold for face parts detector (Default: 1)

% stdsize (optional): size of normalized face (Default: 176)

143

%

%

%Example:

% detector = buildDetector();

% img = imread('img.jpg');

% [bbbox bbimg] = detectFaceParts(detector,img);

%

%

%Version: 20120529

%%%

%%%%%%%%%%%%%%%%%

% Face Parts Detection: %

% %

% Copyright (C) 2012 Masayuki Tanaka. All rights reserved. %

% mtanaka@ctrl.titech.ac.jp %

% %

%%%

%%%%%%%%%%%%%%%%%

function detector = buildDetector(thresholdFace, thresholdParts, stdsize)

if(nargin < 1)

 thresholdFace = 1;

end

if(nargin < 2)

 thresholdParts = 1;

end

if(nargin < 3)

 stdsize = 176;

end

nameDetector = {'LeftEye'; 'RightEye'; 'Mouth'; 'Nose'; };

mins = [[12 18]; [12 18]; [15 25]; [15 18];];

detector.stdsize = stdsize;

detector.detector = cell(5,1);

for k=1:4

 minSize = int32([stdsize/5 stdsize/5]);

 minSize = [max(minSize(1),mins(k,1)), max(minSize(2),mins(k,2))];

 detector.detector{k} = vision.CascadeObjectDetector(char(nameDetector(k)),

'MergeThreshold', thresholdParts, 'MinSize', minSize);

144

end

detector.detector{5} = vision.CascadeObjectDetector('FrontalFaceCART',

'MergeThreshold', thresholdFace);

% detectFaceParts: detect faces with parts

%

% [bbox,bbX,faces,bbfaces] = detectFaceParts(detector,X,thick)

%

%Output parameters:

% bbox: bbox(:, 1: 4) is bounding box for face

% bbox(:, 5: 8) is bounding box for left eye

% bbox(:, 9:12) is bounding box for right eye

% bbox(:,13:16) is bounding box for mouth

% bbox(:,17:20) is bounding box for nose

% please see the documentation of the computer vision toolbox for details of the

bounding box.

% bbX: image with found faces which are shown as boxes

% faces: found faces stored as cell array

% bbfaces: found faces with boxes stored as cell array

%

%

%Input parameters:

% detector: the detection object built by buildDetector

% X: image data which should be uint8

% thick(optional): thickness of bounding box (default:1)

%

%

%Example:

% detector = buildDetector();

% img = imread('img.jpg');

% [bbbox bbimg] = detectFaceParts(detector,img);

%

%

%Version: 20120529

%%%

%%%%%%%%%%%%%%%%%

% Face Parts Detection: %

% %

% Copyright (C) 2012 Masayuki Tanaka. All rights reserved. %

% mtanaka@ctrl.titech.ac.jp %

145

% %

%%%

%%%%%%%%%%%%%%%%%

function [bbox,bbX,faces,bbfaces] = detectFaceParts(detector,X,thick)

if(nargin < 3)

 thick = 1;

end

%%%%%%%%%%%%%%%%%%%%%%% detect face

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Detect faces

bbox = step(detector.detector{5}, X);

bbsize = size(bbox);

partsNum = zeros(size(bbox,1),1);

%%%%%%%%%%%%%%%%%%%%%%% detect parts

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nameDetector = {'LeftEye'; 'RightEye'; 'Mouth'; 'Nose'; };

mins = [[12 18]; [12 18]; [15 25]; [15 18];];

stdsize = detector.stdsize;

for k=1:4

 if(k == 1)

 region = [1,int32(stdsize*2/3); 1, int32(stdsize*2/3)];

 elseif(k == 2)

 region = [int32(stdsize/3),stdsize; 1, int32(stdsize*2/3)];

 elseif(k == 3)

 region = [1,stdsize; int32(stdsize/3), stdsize];

 elseif(k == 4)

 region = [int32(stdsize/5),int32(stdsize*4/5); int32(stdsize/3),stdsize];

 else

 region = [1,stdsize;1,stdsize];

 end

 bb = zeros(bbsize);

 for i=1:size(bbox,1)

 XX = X(bbox(i,2):bbox(i,2)+bbox(i,4)-1,bbox(i,1):bbox(i,1)+bbox(i,3)-1,:);

 XX = imresize(XX,[stdsize, stdsize]);

 XX = XX(region(2,1):region(2,2),region(1,1):region(1,2),:);

146

 b = step(detector.detector{k},XX);

 if(size(b,1) > 0)

 partsNum(i) = partsNum(i) + 1;

 if(k == 1)

 b = sortrows(b,1);

 elseif(k == 2)

 b = flipud(sortrows(b,1));

 elseif(k == 3)

 b = flipud(sortrows(b,2));

 elseif(k == 4)

 b = flipud(sortrows(b,3));

 end

 ratio = double(bbox(i,3)) / double(stdsize);

 b(1,1) = int32((b(1,1)-1 + region(1,1)-1) * ratio + 0.5) + bbox(i,1);

 b(1,2) = int32((b(1,2)-1 + region(2,1)-1) * ratio + 0.5) + bbox(i,2);

 b(1,3) = int32(b(1,3) * ratio + 0.5);

 b(1,4) = int32(b(1,4) * ratio + 0.5);

 bb(i,:) = b(1,:);

 end

 end

 bbox = [bbox,bb];

 p = (sum(bb') == 0);

 bb(p,:) = [];

end

%%%%%%%%%%%%%%%%%%%%%%% draw faces

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

bbox = [bbox,partsNum];

bbox(partsNum<=2,:)=[];

if(thick >= 0)

 t = (thick-1)/2;

 t0 = -int32(ceil(t));

 t1 = int32(floor(t));

else

 t0 = 0;

 t1 = 0;

147

end

bbX = X;

boxColor = [[0,255,0]; [255,0,255]; [255,0,255]; [0,255,255]; [255,255,0];];

for k=5:-1:1

 shapeInserter =

vision.ShapeInserter('BorderColor','Custom','CustomBorderColor',boxColor(k,:));

 for i=t0:t1

 bb = int32(bbox(:,(k-1)*4+1:k*4));

% bb(:,1:2) = bb(:,1:2)-i;

 bb(:,3:4) = bb(:,3:4)+i*2;

 bbX = step(shapeInserter, bbX, bb);

 end

end

%%%%%%%%%%%%%%%%%%%%%%% faces

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(nargout > 2)

 faces = cell(size(bbox,1),1);

 boxfaces = cell(size(bbox,1),1);

 for i=1:size(bbox,1)

 faces{i,1} = X(bbox(i,2):bbox(i,2)+bbox(i,4)-1,bbox(i,1):bbox(i,1)+bbox(i,3)-1,:);

 bbfaces{i,1} = bbX(bbox(i,2):bbox(i,2)+bbox(i,4)-1,bbox(i,1):bbox(i,1)+bbox(i,3)-1,:);

 end

end

148

Appendix B:

Stand-alone Speech Recognition System results for combination 1 database:

20 utterances were tested for each participant. The entries highlighted in Green indicate correct

recognition.

Participant 1 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 2

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

149

Participant 2 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 3

 6 6

 7 7

 8 8

 9 9

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 8

 7 7

 8 8

 9 9

Participant 3 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 9

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

150

Participant 4 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 0

 1 1

 2 8

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

Participant 5 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 0

 1 9

 2 2

 3 5

 4 5

 5 5

 6 6

 7 7

 8 8

 9 9

151

Participant 6 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 0

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

Participant 7 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 5

 9 9

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

152

Participant 8 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 8

 1 0

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

Participant 9 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 0

 1 1

 2 9

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

153

Participant 10 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 9

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

154

Stand-alone Lip Reading System results for combination 1 database:

Participant Number 1 Digit Spoken Digit Recognized

 0 8

 1 1

 2 1

 3 3

 4 8

 5 5

 6 6

 7 0

 8 8

 9 0

 0 8

 1 1

 2 8

 3 3

 4 4

 5 8

 6 6

 7 8

 8 7

 9 9

155

Participant Number 2 Digit Spoken Digit Recognized

 0 0

 1 5

 2 2

 3 8

 4 4

 5 8

 6 6

 7 8

 8 0

 9 9

 0 0

 1 8

 2 4

 3 3

 4 4

 5 5

 6 8

 7 7

 8 8

 9 9

Participant Number 3 Digit Spoken Digit Recognized

 0 0

 1 8

 2 8

 3 3

 4 4

 5 0

 6 2

 7 7

 8 8

 9 4

 0 0

 1 1

 2 2

 3 2

 4 4

 5 8

 6 1

 7 7

 8 8

 9 9

156

Participant Number 4 Digit Spoken Digit Recognized

 0 2

 1 1

 2 8

 3 8

 4 4

 5 5

 6 6

 7 7

 8 8

 9 2

 0 0

 1 8

 2 8

 3 3

 4 8

 5 5

 6 8

 7 7

 8 6

 9 3

Participant Number 5 Digit Spoken Digit Recognized

 0 0

 1 1

 2 5

 3 8

 4 4

 5 5

 6 3

 7 8

 8 8

 9 9

 0 0

 1 1

 2 8

 3 3

 4 5

 5 8

 6 6

 7 0

 8 8

 9 9

157

Participant Number 6 Digit Spoken Digit Recognized

 0 0

 1 7

 2 2

 3 8

 4 8

 5 5

 6 8

 7 8

 8 8

 9 8

 0 8

 1 1

 2 5

 3 3

 4 8

 5 8

 6 6

 7 7

 8 8

 9 8

Participant Number 7 Digit Spoken Digit Recognized

 0 0

 1 1

 2 8

 3 3

 4 4

 5 5

 6 8

 7 8

 8 8

 9 8

 0 0

 1 8

 2 0

 3 8

 4 4

 5 0

 6 5

 7 7

 8 8

 9 9

158

Participant Number 8 Digit Spoken Digit Recognized

 0 0

 1 5

 2 2

 3 7

 4 8

 5 5

 6 6

 7 8

 8 8

 9 1

 0 0

 1 8

 2 8

 3 1

 4 4

 5 5

 6 7

 7 5

 8 8

 9 1

Participant Number 9 Digit Spoken Digit Recognized

 0 4

 1 1

 2 6

 3 3

 4 4

 5 5

 6 1

 7 7

 8 1

 9 9

 0 0

 1 1

 2 8

 3 1

 4 4

 5 3

 6 8

 7 7

 8 1

 9 9

159

Participant Number 10 Digit Spoken Digit Recognized

 0 1

 1 1

 2 2

 3 8

 4 4

 5 6

 6 6

 7 8

 8 8

 9 8

 0 8

 1 8

 2 2

 3 3

 4 4

 5 5

 6 8

 7 8

 8 4

 9 9

160

Fusion-based Audio-Visual Speech Recognition System results for combination 1 database:

Participant 1 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 9

 7 7

 8 8

 9 9

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

161

Participant 2 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 1

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

Participant 3 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

162

Participant 4 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 1

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

Participant 5 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 0

 1 0

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

163

Participant 6 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 9

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

Participant 7 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 0

164

Participant 8 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 9

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

Participant 9 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 8

 8 8

 9 9

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

165

Participant 10 Digit Spoken Digit Recognized

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

166

References:

[1] Thiang, Implementation of Speech Recognition on MCS51 Microcontroller for Controlling

Wheelchair, Electrical Engineering Department, Petra Christian University.

[2] Uvais Qidwai and Fatma Ibrahim, Arabic Speech-Controlled Wheelchair: A Fuzzy Scenario,

Computer Science & Engineering Department, Qatar University

[3] Rashmi C R, Review of Algorithms and Applications in Speech Recognition System,

(IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4),

2014, 5258-5262.

[4] M.Tokuhira and Y.Ariki, Effectiveness of Kl-Transformation in Spectral Delta Expansion,

Ryukoku University.

 [5] Tetsuya Takiguchi, Yasuo Ariki, PCA-Based Speech Enhancement for Distorted Speech

Recognition, Department of Computer and System Engineering, Kobe University, Japan.

 [6] Utpal Bhattacharjee, A Comparative Study of LPCC And MFCC Features For The

Recognition Of Assamese Phonemes, Department of Computer Science and Engineering, Rajiv

Gandhi University, Arunachal Pradesh, India.

[7] L. R. Rabiner, R. W. Schafer, Digital Processing of Speech Signals.

[8] WANG Zhen-li, Bai Zhi-qiang, A Hybrid Method of Noise Robust Speech Recognition

Based on Fractional Spectral Subtraction and Perceptual Linear Predictive, 2008 Congress on

Image and Signal Processing.

[9] Lindasalwa Muda, Mumtaj Begam and I. Elamvazuthi, Voice Recognition Algorithms using

Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques

Journal of Computing, Volume 2, Issue 3, March 2010.

167

[10] Talal Bin Amin, Iftekhar Mahmood, Speech Recognition Using Dynamic Time Warping,

ICAST 2008 2nd International Conference on Advances in Space Technologies Islamabad,

Pakistan, 29th – 30th November, 2008.

 [11] D.B. Paul, Speech Recognition Using Hidden Markov Models, The Lincoln Laboratory

Journal, Volume 3, Number 1 (l990)

[12] Jaume Padrell-Sendra, Dario Martin-Iglesias and Fernando Diaz-de-Maria, Support Vector

Machines for Continuous Speech Recognition, 14th European Signal Processing Conference

(EUSIPCO 2006), Florence, Italy, September 4-8, 2006.

[13] Prashant Borde, Amarsinh Varpe, Ramesh Manza, Pravin Yannawar, Recognition of

Isolated Words using Zernike and MFCC features for Audio Visual Speech Recognition, Dr.

Babasaheb Ambedkar Marathwada University, Aurangabad (MS) India.

[14] Nahid Akhter, Amitabha Chakrabarty, A Survey-based Study on Lip Segmentation

Techniques for Lip Reading Applications, Department of Computer Science and Engineering

BRAC University, Dhaka, Bangladesh.

[15] Paul Viola Michael Jones, Rapid Object Detection using a Boosted Cascade of Simple

Features, Accepted conference on computer vision and pattern recognition 2001.

[16] Ritesh Boda and M. Jasmine Pemeena Priyadarsini, Face Detection and Tracking Using Klt

and Viola Jones, ARPN Journal of Engineering and Applied Sciences.

[17] Rein-Lien Hsu, Mohamed Abdel-Mottaleb, and Ani1 K. Jain, FACE DETECTION IN

COLOR IMAGES.

[18] Sunil S. Morade, Suprava Patnaik, Visual Lip Reading using 3D-DCT and 3D-DWT and

LSDA, International Journal of Computer Applications (0975 – 8887) Volume 136 – No.4,

February 2016.

168

[19] Sunil Sudam Morade, Suprava Patnaik, Lip Reading Using DWT and LSDA.

[20] Xiaopeng Hong, Hongxun Yao, A PCA based visual DCT feature extraction method for lip

reading, Conference Paper · December 2006.

[21] Liang Yaling, Yao Wenjuan, Du Minghui, Feature Extraction Based on LSDA for

Lipreading, 2010 IEEE.

[22] He Jun, Zhang Hua, Research on Visual Speech Feature Extraction, 2009 International

Conference on Computer Engineering and Technology.

[23] Michael Kass, Andrew Witkin, Demetri Terzopoulos, Snakes:Active Contour Models,

International Journal of Computer Vision, 321-331 (1988).

[24] Iain Matthews, Tim Cootes, Stephen Cox, Richard Harvey, and J. Andrew Bangham,

Auditory-Visual Speech Processing (AVSP’98), Lipreading Using Shape, Shading and Scale.

[25] Janet Finlay and Russell Beale, Neural Networks and Pattern Recognition in Human-

Computer Interaction, Workshop at CHI'91, New Orleans, Louisiana, U. S. A

[26] Phillip Ian Wilson and Dr. John Fernandez, Facial Feature Detection using Haar Classifiers,

Texas A&M University – Corpus Christi.

[27] Dave Marshall, ‘The Discrete Cosine Transform’, 2001. [Online]. Available:

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node231.html

[28] Veton Z. Këpuska, Mohamed M. Eljhani, Brian H. Hight, Wake-Up-Word Feature

Extraction on FPGA, Electrical & Computer Engineering Department, Florida Institute of

Technology, Melbourne, USA.

 [29] G. Saha1, Sandipan Chakroborty2, Suman Senapati3, A New Silence Removal and

Endpoint Detection Algorithm for Speech and Speaker Recognition Applications, Department of

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node231.html

169

Electronics and Electrical Communication Engineering Indian Institute of Technology,

Khragpur, Kharagpur-721 302, India.

[30] Bachu R.G., Kopparthi S., Adapa B., Barkana B.D., Separation of Voiced and Unvoiced

using Zero crossing rate and Energy of the Speech Signal, Electrical Engineering Department

School of Engineering, University of Bridgeport.

[31] Nirmesh J. Shah, Bhavik B. Vachhani, Hardik B. Sailor and Hemant A. Patil, Effectiveness

of Plp-Based Phonetic Segmentation for Speech Synthesis, Dhirubhai Ambani Institute of

Information and Communication Technology (DA-IICT), Gandhinagar-382007, India

[32] Namrata Dave, Feature Extraction Methods LPC, PLP and MFCC In Speech Recognition, G

H Patel College of Engineering, Gujarat Technology University, INDIA

[33] Rajesh Mahanand Hegde, Fourier Transform Phase-Based Features for Speech Recognition,

Department of Computer Science and Engineering Indian Institute of Technology Madras.

July2005

 [34] Gerasimos Potamianos, Hans Peter Graf, and Eric Cosatto, An Image Transform Approach

for HMM Based Automatic Lipreading, Proceedings of the International Conference on Image

Processing, Chicago, vol. III, pp. 173-177, 1998.

[35] Prashant Borde, Ramesh Manza, Bharti Gawali and Pravin Yannawar. Article: ‘vVISWa’ –

A Multilingual Multi-Pose Audio Visual Database for Robust Human Computer

Interaction. International Journal of Computer Applications 137(4):25-31, March 2016

[36] Zhe Wang and Xiangyang Xue, Chapter 2 Multi-Class Support Vector Machine.

[37] Urmila Shrawankar, Dr. Vilas Thakare, Techniques for Feature Extraction in Speech

Recognition System: A Comparative Study, SGB Amravati University, Amravati

170

[38] Eamonn J. Keogh and Michael J. Pazzani, Scaling up Dynamic Time Warping to Massive

Datasets, Department of Information and Computer Science University of California, Irvine,

California 92697 USA.

[39] Ga¨el de Lannoy and Damien Fran¸cois and Michel Verleysen, Class-Specific Feature

Selection for One-Against-All Multiclass SVMs, Universit´e catholique de Louvain Institute of

Information and Communication Technologies, Electronics and Applied Mathematics Machine

Learning Group

[40] Zeng Yumin, Wu Zhenyang, Combination of Pitch Synchronous Analysis and Fisher

Criterion For Speaker Identification, Journal Of Electronics(China), November 2007.

[41] W. Astuti, A.M.Salma, A.M. Aibinu , R. Akmeliawati , Momoh Jimoh E.Salami, Automatic

Arabic Recognition System based on Support Vector Machines (SVMs), International Islamic

University Malaysia, Gombak, Selangor Darul Ehsan, Malaysia.

[42] Thomas G. Dietterich, Approximate Statistical Tests for Comparing Supervised

Classification Learning Algorithms, Department of Computer Science, Oregon State University.

[43] Longbiao Wang, Shinji Ohtsuka, Seiichi Nakagawa, High Improvement of Speaker

Identification and Verification By Combining MFCC And Phase Information, 2009 IEEE

International Conference on Acoustics, Speech and Signal Processing, 2009.

[44] Swapnanil Gogoi, Utpal Bhattacharjee, Vocal Tract Length Normalization and Sub Band

Spectral Subtraction Based Robust Assamese Vowel Recognition System, Proceedings of the

IEEE 2017 International Conference on Computing Methodologies and Communication

(ICCMC).

171

[45] Yen-Lin Chiang, Yuan-Shan Lee,Wen-Chi Hsieh, and Jia-Ching Wang, Efficient and

Portable Content-Based Music Retrieval System, 2014 IEEE International Conference on Orange

Technologies, 2014.

[46] Taabish Gulzar, Anand Singh, Sandeep Sharma, Comparative Analysis of LPCC, MFCC

and BFCC for the Recognition of Hindi Words using Artificial Neural Networks, International

Journal of Computer Applications (0975 – 8887) Volume 101– No.12, September 2014.

[47] Joseph W. Picone, Signal Modeling Techniques in Speech Recognition, Proceedings of The

IEEE, Vol. 81, No. 9, September 1993.

[48] Davis, S. Mermelstein, P. (1980) Comparison of Parametric Representations for

Monosyllabic Word Recognition in Continuously Spoken Sentences, IEEE Transactions on

Acoustics, Speech, and Signal Processing, Vol. 28 No. 4, pp. 357-366

[49] Mark Greenwood, Andrew Kinghorn, Suving: Automatic Silence /Unvoiced/Voiced

Classification of Speech, Department of Computer Science, University of Sheffield.

	Fusion of Audio and Visual Information for Implementing Improved Speech Recognition System
	ScholarWorks Citation

	tmp.1527278810.pdf.YwEgr

