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A Recommendation Algorithm for Spotify Users

This project was my submission to the Grand Valley State University Honors College senior project under

mentor Dr. Erin Carrier. All code in the GitHub repository is licensed under an MIT license.

Music is one of the rare forms of communication that can be understood on a profound level by anyone; it

has the power to cause significant emotional effects, to spark inspiration, to ignite change, to spread

knowledge, and more, even regardless of song language. Music s̓ influence is ever-growing, and its unique

powers have become significantly more relevant throughout the COVID-19 pandemic. As communities shut

down and governments issued lockdown orders, music played a more significant role for many people

wishing to take advantage of their isolation and extra time. Studies in Spain and Israel have demonstrated

that, during the pandemic, people have turned to music more than average, whether it be listening to songs,

playing an instrument, or watching a livestream [1][4].

With so many people interacting with music, it is natural that many would be searching for new music to

listen to. This raises some interesting questions. How do we recommend new music to people? What

variables need to be considered in order to provide a good recommendation? What exactly is a good

recommendation and how can we be certain a listener agrees? Can user satisfaction of recommendations

improve if a user is given control over how their recommendations are created?

Spotify users may be familiar with current Spotify-provided personalized recommendation systems. One,

Discover Weekly provides listeners with new songs they haven't heard before and another, Release Radar,

provides recently-released songs that a listeners might enjoy. Both playlists give 30 songs once a week and

are the result of a complex algorithm. The exact methods used to construct this algorithm are private to

Spotify as are the variables considered in recommendation; therefore, conducting research with Spotify-

provided recommendations is difficult. Researchers would have no control over any part of the process and

would be unable to manipulate any variables.

While the present algorithm is not as complex nor as efficient as those from Spotify, it does allow

researchers to have some freedom in choosing which/how many variables to manipulate. Outside of

research, the goals of this program are to provide a new way for users to find new music without having to

wait a whole week and to make those recommendations as accurate as possible. In other words, we want to

minimize the number of recommended songs that a user did not enjoy and to recommend as many songs

as possible that a user will enjoy. A few sub-goals follow:

We want to avoid recommending only Top-40 songs (unless this is what should be recommended)

We want to recommend songs that a user does not already have saved in their library

We want to recommend songs that a user has not heard before (see Limitations for more on this)

In general, we are interested if, as mentioned above, giving a user some control over how their

recommendations are created leads to higher overall satisfaction with those recommendations.

Prerequisites

This program is not currently available on the web and is not able to be easily run by an individual user. The

app requires an API id and secret, both of which are hidden for security purposes. Should anyone wish to

run the app for themselves, they would need to have an installation of Python, a nice text editor (such as

https://github.com/ian-curtis/recommender
file:///Users/iancurtis/Documents/coding/recommender/reflection/LICENSE
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Visual Studio Code), and a familiarity with how to use Git/GitHub and run a Python program. They then

might create clone this repository by the instructions in the README file and the code's GitHub repository.

Data and Permissions Required

In order to run this app, a user must give it permission to access their profile data as well as the songs in

their library. The app can only access the information a user permits it too. As such, we have chosen only

the permissions necessary for the app to run, ensuring that no excess data is used. This app uses the

following scopes (followed by their purpose):

Scope Name Reason

user-
library-read

Allows the app to collect songs in a user's library from playlists marked as "public"

or "collaborative"

playlist-
read-private

Allows the app to collect songs in a user's library from playlists marked as "private"

playlist-
modify-
public

Allows the app to create a new playlist, modify the title/description, and add new

songs

user-read-
private

Allows the app to read private profile data. The app only uses information user

country and whether or a not a user can listen to explicit music.

user-top-
read

Allows the app to read a user's top tracks and top artists

At the end of the program, all user data and track information is erased. Should a user want more

recommendations, they would need to run the app again (those using the algorithm for personal use might

comment out the data erasing code). The app does not modify any old playlists, even playlists it has already

created, but will instead always create a new one (Spotify playlists can have the same name; each new

playlist has a unique identifier allowing for this).

The Process

The idea behind this project was to provide insight into how different methods of recommendation affect

user satisfaction with recommended products. Specifically we explore music recommendation and

satisfaction with a recommended playlist and we were interested in how satisfaction of a playlist changes

when a user has some control over how the playlist is formed. To investigate this, we created nine different

groups, each with a slightly different recommendation process. The first group is a control group where a

user is simply assigned 30 random recommendations from a list. The remaining groups rely on a K-Means

clustering algorithm and differ in terms of the type of data used to cluster (numeric vs.

numeric/ordinal/nominal), the distance metric used (euclidean vs. random other metric), and whether a user

is able to contribute to the recommendation process (by rating the importance of certain numeric

variables). The K-Means algorithm from the pyclustering package is used as it allows for custom

definitions of distance metrics [2]. We chose K-Means due to the unsupervised nature of this project;

although we know what songs a user likes, we don't know which songs the user does not like (and we

cannot assume they dislike every song not in their library).

https://github.com/ian-curtis/recommender
https://github.com/annoviko/pyclustering
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Possible distance metrics currently include manhattan (city-block), euclidean, canberra, chebyshev,

minkowski with degree 6, and minkowski with degree 12 with the potential for more to be added. Variables

used in clustering are as follows (note that some groups only consider the quantitative variables while

others consider all variables). Variables with an asterisk (*) indicate that variable could be affected by user

input.

Variable Name Type Values Brief Description

artist_popularity num 0-100 Value of the artist's popularity

duration_m num 0-? Duration of a track in minutes

track_popularity num 0-100 Value of the individual track's popularity

danceability* num 0-1 How danceable the track is

energy* num 0-1 How energetic the track is

loudness num -60-10? How loud a track is (in decibels)

acousticness* num 0-1 How acoustic a track is

instrumentalness num 0-1 How instrumental (without words) a track is

liveness* num 0-1 How live a song is (presence of a live audience)

tempo num 1-240? How fast a track is (in beats per minute)

valence* num 0-1 How happy/upbeat a track is

half_decade ord
1900-

2020

The half-decade a track was released (e.g., 1970, 1975,

1980, etc.)

key ord -1-11 The musical key of the track (-1=None, 0=C, 1=D#, etc.)

time_sig ord 3-7 Time signature of the track (3/4, 4/4, 5/4, etc.)

explicit nom True/False
Tells if a track contains explicit content (True) or not

(False)

mode nom 0/1 Whether a track is major (1) or minor (0)

What happens when the program is run mostly depends on random selection. The program is designed to

give users a different experience by changing the method by which recommendations are created so when

the program is run, the user is assigned to a random group. Regardless of group assignment, all users will

go through the following first steps:

�. The program loads all necessary outside packages, connects to the Spotify API (online database

from which user data can be accessed), and sets up user information (username, country, and

whether they can listen to explicit music).

�. The program reads in all of a user's playlists then asks the user if there are any playlists they would

not like considered in the recommendation process. For instance, a user may want their holiday

playlists excluded from the algorithm.
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�. For each playlist to be analyzed, the program collects all of the songs in the playlist and removes the

duplicates, creating a master list of all songs a user is known to "like" (or like enough to add to their

library).

�. For each song in this list, 30 recommendations are generated from a built-in recommendation

algorithm and duplicates are removed. (Note: the algorithm used to generate these recommendations

is not known.) This is done because we need a collection of songs from which to recommend. Since

we do not have access to every song on Spotify, we believe 

 potential recommendations is enough to imitate

such a list, at least for the purposes of this program. However, it is a parameter in a function so others

may decide to use a different value.

It is not necessary to recommend all of the songs in this list (e.g., this could mean recommending over

20,000 songs). Thus the goal is now to determine the best songs out of the list to recommend.

It is at this point that groups differ. A user will be randomly assigned to one of the following groups (see

Figure 1 for a flowchart of the groups):

�. Given 30 random recommendations from the large list mentioned above (algorithm would end here)

�. Only the numeric (quantitative) variables are inputted into a KMeans algorithm with euclidean

distance

�. All variables (numeric, ordinal, and nominal) are inputted into a KMeans algorithm with euclidean

distance

�. Only the numeric (quantitative) variables are inputted into a KMeans algorithm with a random

distance other than euclidean

�. All variables (numeric, ordinal, and nominal) are inputted into a KMeans algorithm with a random

distance other than euclidean

�. Only the numeric (quantitative) variables are inputted into a KMeans algorithm with euclidean

distance and the user supplies weights

�. All variables (numeric, ordinal, and nominal) are inputted into a KMeans algorithm with euclidean

distance and the user supplies weights

�. Only the numeric (quantitative) variables are inputted into a KMeans algorithm with a random

distance other than euclidean and the user supplies weights

�. All variables (numeric, ordinal, and nominal) are inputted into a KMeans algorithm with a random

distance other than euclidean and the user supplies weights

For groups 4, 5, 8, and 9, the other possible distance metrics are currently manhattan, canberra,

chebyshev, minkowski with degree 6 and minkowski with degree 12. In conditions where users give weights,

the program prompts them to rate the importance of the numeric variables danceability, valence

(happiness), acousticness, liveness, and energy. These weights are then used when standardizing the data.

Without weights, standardization is done with scikit-learn's StandardScaler (for quantitative

variables), OrdinalEncoder (for ordinal variables), and OneHotEncoder (for nominal variables). Users

are only asked to provide weights for five numeric variables; thus, only the quantitative standardization is

affected. In cases were users provide weights, all scaled values on each of the five rated variables are

multiplied by the square root of the supplied weight. All outliers are removed before a playlist is created no

matter the group. There are typically enough potential recommendations that outlier removal is helpful for

the K-Means algorithm.
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Is the user to receive
the K-Means

clustering algorithm?
No

Yes

Group 1

Will only numeric
variables be
analyzed?

Yes No

Will Euclidean
distance be used?

Will Euclidean
distance be used?

Yes No Yes No

Will the user supply
custom weights?

Will the user supply
custom weights?

Will the user supply
custom weights?

Will the user supply
custom weights?

Yes No Yes No Yes No Yes No

Group 6 Group 2 Group 8 Group 4 Group 7 Group 3 Group 9 Group 5

For all groups except group 1, recommendations are chosen after clustering proportional to the number of

saved songs in each cluster. For example, if 28% of songs in a user's library are predicted to be in cluster

#2, then 28% of the recommended songs will also come from cluster #2. Final playlists should end up with

30 recommended songs (like the Spotify-provided playlists); however, due to rounding 29 or 31 songs may

occur.

Basic Testing of the Program

Singh et al. (2013), in dummy simulations with three different distance metrics, demonstrated that

euclidean distance performs better in terms of the least distortion while other distance metrics (manhattan

and minkowski in this case) fall behind [3]. It follows that including all variables (rather than just numeric)

will lead to a better clustering output and user satisfaction. As such, it is predicted that group 1 would bring

the least user satisfaction and group 7 would bring the most. However, will these trends remain when a user

is given more control over the recommendation process?
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In sum, we predict that euclidean distance would outperform other distances, using all variables would

outperform just numeric variables, and allowing for user weights would outperform the contrary. Tests were

not performed in an experimental setting and therefore cannot be taken too seriously; however, the tests

that were done were enough to verify that the program was working as expected.

For basic tests of all groups, five playlists were created:

�. A duplicate of one of my playlists (to emulate a natural playlist "environment")

�. 50 classical pieces

�. 50 pop songs

�. 50 rock songs

�. 50 semi-random, semi-diverse songs

For replication purposes, these playlists are included in testing.ipynb. Tests were also run on my own
personal library and on playlists from consenting close friends and family. Each person was asked to rate

the songs on their final playlists as "Added to a playlist", "Skipped", "Listened to fully, good song", and

"Listened to fully, not good song". They were also asked if the track was already in their playlists and if they

had already heard the song. A final score was created through the following:

1 point was added for adding to a playlist

0.5 points were added for listening to the full track and it was a good song

0.2 points were added for listening to the full track and it was not a good song

1 point was deducted for skipping a track

1 point was deducted if the track was already in their playlist regardless of rating

0.2 points were deducted if the track had already been heard

Scoring criteria could not occur simultaneously except for if the track had already been heard. For instance,

if a user listened to a full track and it was a good song but had already heard the song, 0.5 points were

added and 0.2 points were deducted. The goal was to get a p laylist with a score of 30, indicating that each

song in the playlist was new to the user and was worth adding to a playlist.

These preliminary tests (n = 5) of groups shows does seem to be in favor of some hypotheses. Of course

this must be taken with skepticism as there was no attempt to control for any other factors. One participant

in group 3 scored a -2.6 which was higher than the participant assigned to group 2 with a score of -5.9, as

predicted. Two were assigned to group 9 with minkowski degree 12 distance and scores were -10.2 and -3.

The participant assigned to group 7 scored higher with a score of 1.1 which does follow the hypotheses. No

analysis was done to see if these scores differed significantly or if these phenomena are reproducible.

Limitations

There are certain limitations to this project mostly due to the type of data accessible. Developers using the

Spotify API only have access to certain track attributes. Missing notably is song language. We believe that

knowing the language of a track provides additional insight into the songs a user enjoys and could help the

clustering accuracy; however, this information is not provided by Spotify.

We also do not have access to a user's listening history (other than the top tracks and top artists). We

assume that all songs saved to a user's library are songs they enjoy. While this is a relatively safe

assumption, it is surely a conservative estimate of all of the songs they enjoy. It is entirely possible that a

user likes a song that they do not choose to add to a playlist. We do not have access to these tracks and
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must settle with top tracks and saved tracks which may not be truly representative of a user's listening

preferences. For example, I have a playlist with 1200 songs from movie soundtracks; even though this is my

longest playlist by far it does not mean that I listen to it the most (I don't). Instances like this may skew the

clustering and tests on my personal library do show a notable number of recommended soundtracks.

Additionally, all data is taken from the Spotify API meaning that we are trusting the accuracy of Spotify's

systems. While is it highly likely that track data is accurate and correct, there is a potential that certain

attributes are missing or wrong (for example, a popularity of 0 or a tempo of 0). Some values, such as a

loudness of -60 dB, are plausible and correct, but are outliers. Due to the immense amount of

recommendations to choose from, we have elected to remove any tracks with any missing data and remove

outliers as determined from three outlier-removal algorithms: IsolationForest, LocalOutlierFactor,
and OneClassSVM. There is no sure way to detect incorrect data at this time.

In order to recommend songs, we need a list of possible songs to recommend. Then, by analyzing trends in

a user's library, we can pick out the best to recommend. Ideally, we would have a list of every possible song

on Spotify and pick from there. However, this list is not available to the public. Thus, we claim that by

generating 30 recommendations for every 1 saved song (and removing duplicates) we can emulate such a

list. It is, however, not known what the recommendation generation algorithm does or how it works.

Future Work / Potential Applications

The original time allotted for this project (one semester) was not enough to design, run, and complete any

full experimental studies. However, the code has the potential to be used in such a setting. The intial

inspiration for this project came from questioning the effectiveness of different types of recommendation

algorithms. Are consumers more likely to purchase an item if they have control over how their

recommendations were created? In other words, can giving consumers direct input into their

recommendations help to increase the satisfaction with those recommendations and increase the chances

that they purchase a recommended item?

The code here might be used in an attempt to answer questions similar to those by focusing a specific type

of recommendation: music. To specify a potential research question, does giving users input into their

recommendations lead to higher satisfaction with recommended music quality compared to those who do

not get input?

A potential experiment might randomly assign participants to each of the nine groups. With a recommended

playlist, participants would rate each track as "liked", "neutral" and "disliked" and researchers could

compare the number of tracks "liked" by each participant. Are ratings different for those who had input? Are

ratings different between distance metrics (do "better" clusters lead to higher ratings)? To add a semi-

supervised learning approach, participants in conditions where they supply weights could also be asked to

rate their recommended tracks as "liked" or "disliked" and a new playlist would be created given those

responses (this would require extra code).

An experiment of this sort is not in the current scope of the project nor its future; however, others may be

inspired to use the code or create something of their own. Nevertheless, there are plans for some future

work:

Incorporate the code into a web application where users can run the app without installing Python

(this may involve switching to R and Shiny apps)

Build in a way to include track genres
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Support data for tracks with more than one artist

Add in small facts about a user's library and top tracks while they wait for the algorithm to finish (in

progress)

Add more possible distance metrics

Reduce the time it takes to complete the recommendation process

Adding more specific comments throughout the code (especially functions) to help guide other

developers

Add error handling mechanisms to avoid unnessecary stopping

Build in a semi-supervised learning option incorporating user feedback to generate a new playlist

Improve the code that removes any to-be-recommended songs already in a user's library

Currently relies on unique track ids but it is possible for the same track to have a different id,

such as Blank Space from Taylor Swift's 1989 and Blank Space from Taylor Swift's 1989

(Deluxe)

Turn code into a more object-oriented approach

Fix explicit filter
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