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Abstract 

 
The rationale behind the thesis was to design efficient implementations of cryptography 

algorithms used for Wi-Fi Security as per IEEE 802.11i Wi-Fi Security (WPA2-PSK) standard. 

The focus was on software implementation of Password-Based Key Derivation Function 2 

(PBKDF2) using Keyed-Hash Message Authentication Code (HMAC)-SHA1, which is used for 

authentication, and, hardware implementation of AES-256 cipher, which is used for data 

confidentiality. 

In this thesis, PBKDF2 based on HMAC-SHA1 was implemented on software using C 

programming language, and, AES-256 was implemented on hardware using Verilog HDL. The 

overall implementation was designed and tested on Nexys4 FPGA board. The performance of the 

implementation was compared with other existing designs. Latency (us) was used as the 

performance metric for PBKDF2, whereas, throughput (Gb/s), resource utilization (Number of 

Slices), efficiency (Kb/s per slice) and latency (ns) were used as performance metrics for AES-

256. MRF24WG0MA PMOD Wi-Fi module was the 2.4 GHz Wi-Fi module which was 

interfaced with Nexys4 FPGA board for wireless communication.  

When the correct security credentials were entered in the implemented system interfaced 

to the Wi-Fi module, it was successfully authenticated by a 2.4 GHz wireless router (or mobile 

hotspot) configured to work in WPA2-PSK security mode. Once this system was authenticated, 

the implemented AES-256 cipher within the system was used to provide a layer of encryption 

over the data being communicated in the network. 
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Chapter 1: Introduction 

1.1 Background 

As most technologies have continued to transition from traditional wired systems to 

wireless ones, the number of wireless devices has grown by leaps and bounds over the last 

decade. Wireless devices have become a part of our day-to-day lives with its presence seen in 

household, educational and business institutions, to name a few. These devices are inter-

connected with one another and share a variety of data, ranging from mundane to very personal 

and confidential information. Such interconnected devices that share data among themselves 

form a network. There can be various types of networks based on topology, size, area, 

organization, etc. One such type of network based on area is called Local Area Network (LAN). 

Such network is confined within a localized area such as a room, building or a group of 

buildings. However, it can be inter-connected to other LANs using wired or wireless media. If 

wireless medium is used to connect such LANs, then the overall network is called Wireless LAN 

(WLAN) [1]. 

The communication between the devices within a network is governed by a set of rules 

called communication protocols. The devices within a network must adhere to such protocols to 

successfully share and interpret data among other devices connected to the network. To maintain 

interoperability between the devices manufactured by various vendors, standardized 

communication protocols are defined for different type of networks.  One such protocol for 

communication between wireless devices over LAN is the IEEE 802.11 protocol and is 

commonly known as Wi-Fi [2]. An example of Wi-Fi network is shown in Figure 1. 
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Figure 1: Example of Wi-Fi Network 

 

1.2 Wireless Security Principle 

Security is paramount in any type of network, but it is more so in the case of wireless 

networks, as they are far more vulnerable to attack in comparison to wired networks. In a wired 

network, the communicating devices must be physically connected using a cable. Hence, it is 

easier to verify the identity of the device to which the data is being communicated, as opposed to 

in wireless networks, where this is not quite easy. Also, unlike in wired networks, where the data 

is communicated through copper wires or optical fibers, in wireless networks, the wireless 

devices use RF signals in open air as their communication medium. So, theoretically any 

transceiver which is within the range of this RF signal and tuned to its frequency can read and/or 

meddle with the data being communicated [3]. Hence, for a secure communication, it is 

necessary to identity whether a device trying to connect to the network has proper security 
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credential or not. This process is called authentication [3]. After a wireless device is 

authenticated to a network, the data being communicated within that network must be made 

confidential using a secure cryptography algorithm [3]. 

 

1.3 WPA2-PSK Overview 

 

The current standardized security protocol for Wi-Fi is IEEE 802.11i standard. This is 

also commonly known as Wi-Fi Protected Access II (WPA2). WPA2 was launched in September 

2004 and supports PSK technology and includes an advanced encryption mechanism using the 

Counter-Mode/CBC-MAC Protocol (CCMP) called the Advanced Encryption Standard (AES) 

[4]. The PSK technology (in personal networks) is used to verify the identity of the 

communicating wireless devices. In PSK, the authentication process is performed by the access 

point (wireless router, mobile hotspot, etc.). With PSK, we can configure the access point 

(wireless router or hotspot) with a passphrase of 8 to 63 printable ASCII characters [5]. Using a 

technology called PBKDF2, that passphrase, along with the network SSID, is used to generate 

unique encryption keys for wireless clients. In WPA2-PSK security, the same set of SSID and 

PSK is shared between all Wi-Fi end devices and the access point as shown in Figure 2 [6]. The 

SSID is analogous to Username and PSK is analogous to Passphrase in Figure 2. The wireless 

devices are authenticated and granted access to the network, if the password to the particular 

SSID matches [5]. After authentication, AES cipher is used to maintain the confidentiality of the 

data being communicated within the network. 
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Figure 2: WPA2-PSK Security 

In Figure 3, SSID and Passphrase goes through PBKDF2 to derive the 256-bit PMK 

which is used as the main key for AES cipher. The validity of this key is confirmed using the 4-

way handshake process (Figure 2) between the Wi-Fi device and the access point [6]. If the key 

matches, then, the Wi-Fi device is successfully authenticated by the access point. 

 

 
 

Figure 3: WPA2-PSK Authentication 
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After successful authentication, the data between Wi-Fi end devices and the access point 

is encrypted using AES cipher with the 256-bit PMK as the main key (Figure 4). 

 

 

Figure 4: WPA2-PSK Data Confidentiality 

 

1.4 Project Scope 

 

The purpose of this thesis is to optimize the cryptography algorithms used in device 

authentication and data confidentiality in Wi-Fi networks configured with WPA2-PSK security. 

To achieve this, the main key derivation part of the authentication process, as well as, the AES 

cipher algorithm required for data confidentiality will be optimized. The scope of the 

implementation will encompass the following areas:  

• Efficient software implementation of PBKDF2 based on HMAC-SHA1 which is used 

for device authentication.  

• Efficient hardware implementation of AES-256 cipher which is used for data 

confidentiality. 

The performance of these implementations will be compared with other existing designs. 

Latency (us) will be used as the performance metric for PBKDF2, whereas, throughput (Gb/s), 

resource utilization (Number of Slices), efficiency (Kb/s per slice) and latency (ns) will be used 

as performance metrics for AES-256. 
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Chapter 2 describes the theory related to PBKDF2, HMAC and SHA1 used in WPA2-

PSK device authentication. It also elaborates on AES-256 key expansion, encryption and 

decryption. 
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Chapter 2: WPA2-PSK Theory 
 

2.1  WPA2-PSK Device Authentication  

 

Authentication is the process by which you prove that you are eligible to join a network 

(and that the network is legitimate) [3]. Pre-Shared Key (PSK) is a device authentication method 

used in WPA2-PSK networks, and it uses a passphrase of 8 to 63 printable ASCII characters to 

generate unique encryption keys [5].  The general idea of PSK mode is to use the same secret 

key on an access point and on a Wi-Fi device to authenticate the device and establish an 

encrypted connection for networking [6]. Hence, both Wi-Fi device and access point must prove 

to each other that they know the pre-shared key to ensure a secure connection. In WPA2-PSK, 

the access point (wireless router, hotspot, etc.) with a network SSID is configured with a 

passphrase. Using PBKDF2, that passphrase along with network SSID is used to generate the 

256-bit Pairwise-Master-Key (PMK).  The Wi-Fi device must also derive the same PMK using 

the same passphrase and SSID for the access point to authenticate the device. 

PMKs are never transmitted across the network as the channel of communication is not 

secure before the authentication process has completed. Because, without authentication, sharing 

of PMK would be done through an unencrypted channel and susceptible to be discovered by 

outside parties [7]. To overcome this, WPA2-PSK uses 4-way handshake to verify whether the 

Wi-Fi device and the access point have the same PMK or not (Figure 2). The 4-way handshake is 

designed so that the access point and Wi-Fi device can independently prove to each other that 

they know the PMK, without ever disclosing it. In Figure 2, the 4-way handshake is broken 

down into 4 messages [7]: 

• Message 1 (From Access Point to Wi-Fi Device): The first step is for the access point to 

generate a nonce value. The nonce value is a pseudo random value generated by a 
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publicly known and repeatable process. This pseudo random value is generated by the 

Pseudo Random Function 256 or PRF-256, as defined by WPA2 specifications. The 

nonce value generated by access point is called A-nonce. The access point sends a 

message containing this A-nonce value to the Wi-Fi device. 

• Message 2 (From Wi-Fi Device to Access Point): The Wi-Fi device generates a nonce 

value using the same process as the access point and it is denoted as S-nonce. When the 

Wi-Fi device receives Message 1, it will generate Pairwise-Transient-Key (PTK). This 

key is required to be generated by both parties, and allows each party to verify that the 

other has the correct PMK. The creation of PTK is performed via another Pseudo 

Random Function (PRF), which uses a combination of the PMK, Access Point MAC 

Address, Wi-Fi Device MAC Address, A-nonce and S-nonce [8]. A part of the PTK is 

known as the message integrity check (MIC). This value, along with the S-Nonce is then 

transmitted back to the access point. 

• Message 3 (From Access Point to Wi-Fi Device): When the access point receives 

Message 2, it has all the values required to generate the PTK. The access point then 

generates the PTK, and checks whether the MIC value in Message 2 matches the MIC 

value that it has just generated. If the two MIC values matches, this proves that the Wi-Fi 

device knows the value of the PMK. If the MIC value is correct, the access point, then 

sends Message 3 to the Wi-Fi device. Message 3 allows the Wi-Fi device to ensure that 

the access point is a trusted party. If the access point did not have a matching PMK, the 

MIC would be different. Message 3 also informs the Wi-Fi device that the 

communication channel is about to be encrypted. 
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• Message 4 (From Wi-Fi Device to Access Point): The final part of the handshake 

allows the Wi-Fi device to acknowledge that the access point is now going to use 

encryption for the communication. After the Wi-Fi device transmits Message 4, it will 

install the encryption keys on the channel. After the access point receives message 4, it 

will install the encryption keys as well. All further unicast communication is protected by 

this encryption, until the client disconnects from the access point [3]. 

 

2.1.1  PBKDF2 (Password-Based Key Derivation Function 2) 

 

Using PBKDF2, the passphrase and SSID are hashed 4096 times to produce a 256-bit 

PMK [9]. Internally, the PBKDF2 key derivation function employed in WPA2-PSK utilizes 

4096 iterations of HMAC-SHA1 to obtain 160-bit hash outputs. Since the PMK in WPA2-PSK is 

of 256-bits, two rounds of PBKDF2 are necessary [10]. Their outputs are concatenated, but for 

the second iteration the output is truncated to 96 bits to achieve the 256-bit PMK.  The PBKDF2 

key derivation function is defined as follow: 

 

To derive key from PBKDF2, each hLen   bit block Ti of derived key DK, is computed as 

follows: 

DK = PBKDF2(PRF, P, S, C, dkLen) ................... (1) 

where,  

DK: Derived key 

PRF: Pseudorandom function of two parameters with output length hLen  

P: Password 

S: Salt (sequence of bits) 

C: Iteration count, a positive integer 

dkLen: Length of Derived key 
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In equation (3), the function F is the Exclusive-OR operations of C iterations of PRFs (as 

shown in equation (4)). In the first iteration, the PRF uses Password as the key and Salt 

concatenated with i (encoded as a big-endian 32-bit integer) as the 2 parameters (as shown in 

equation (5)). For, subsequent iterations, PRF uses Password as the key and the output of the 

previous PRF computation as the salt (as shown in equations (6) and (7)). The block diagram for 

PBKDF2 key derivation function is shown is Figure 5.  

 

 

Figure 5: Block Diagram for PBKDF2 

DK = T1 || T2 || ... || Tdklen/hlen ................... (2) 

Ti = F (P, S, C, i) .............................. (3) 

 

F (Password, Salt, C, i) = U1 ⊕ U2 ⊕ ... ⊕ Uc .... (4) 

where, 

U1 = PRF (Password, Salt || INT_32_BE(i)) ......... (5) 

U2 = PRF (Password, U1) ........................... (6) 

... 

Uc = PRF (Password, Uc - 1) ........................(7) 
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The overview of PBKDF2 along with HMAC and SHA1 is shown in Figure 6 [11]. 

 

Figure 6: PBKDF2 with HMAC-SHA1 

In case of WPA2-PSK, the output and parameters in equation (1) are as follows: 

 
PMK = PBKDF2(HMAC−SHA1, passphrase, ssid, 4096, 256) ...... (8) 
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2.1.2  HMAC (Keyed-Hashing for Message Authentication) 

HMAC provides a mechanism to calculate a message authentication code (MAC) based 

around a cryptographic hashing function [7]. A message authentication code (MAC) is a short 

piece of information used to authenticate a message. MACs are used between two parties that 

share a secret key to validate information transferred between them [12]. The use of HMAC in 

PBKDF2 is shown in Figure 6. The definition of HMAC requires a cryptographic hash function 

denoted by H, the secret key denoted by M and the message to be authenticated denoted by m. The 

HMAC function is defined as follows: 

 

  

HMAC (M, m) = H ((M' ⊕ opad) || H ((M' ⊕ ipad) || m)) ..........(9) 

where, 

H: a cryptographic hash function         

M: the secret key                                                                            

m: the message to be authenticated                                                                                

M': another secret key, derived from the original key K  

(by padding K to the right with extra zeroes to the    

input block size of the hash function, or by hashing K if it 

is longer than that block size) 

opad: the outer padding (0x5c5c5c…5c5c, one-block- long hexadecimal 

constant 

ipad: the inner padding (0x363636…3636, one-block- long hexadecimal 

constant). 
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The block diagram for HMAC function is shown in Figure 7. 

 

 

Figure 7: Block Diagram for HMAC 

For WPA2-PSK, the parameters in equation (9) are as follows: 

 

 

 

HMAC-SHA1 (passphrase, ssid) = SHA1 ((passphrase ⊕ opad)  

|| SHA1((passphrase ⊕ opad ⊕ ipad)  

||ssid) ... (10) 
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2.1.3  SHA1 

 

Hashing algorithms are used to process a message and produce a condensed 

representation of the message which is called a message digest, and for a perfect hashing 

function, it should be only one-way and a unique digital signature of the message [7]. The use of 

SHA1 in PBKDF2 is shown in Figure 6. The SHA1 hashing algorithm is valid for messages with 

a size less than 264 bits, it operates on blocks of size 512 bits, it uses a word size of 32 bits, and 

has a resultant message digest of 160 bits [7]. SHA1 algorithm primarily consists of 6 steps [13]: 

Step1: Append Padding Bits: The original message is padded based on the following rules: 

• The original message is first padded with one bit ‘1’. 

• Zeros ‘0’ are then padded to bring the length of message to 64 bits less than 

multiple of 512. 

Step2: Append Length: A 64-bit value indicating the length of the original message is 

appended to end the message obtained from Step 1 based on the following rules: 

• 64-bit value of the original message is appended at the end of the padded 

message. If overflow occurs, the lower order of the 64-bit value is appended. 

• The lower 32-bit word of the 64-bit value is appended first followed by the upper 

32-bit value. 

Step3: Prepare Processing Functions: SHA1 has 80 processing rounds. There are 4 

mathematical operations assigned to each of the 4 sets of 20 rounds. These operations are as 

follows: 
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Step4: Prepare Processing Constants: SHA1 has 4 different constants assigned to 4 sets of 20 

rounds. These constants are as follows: 

 

Step5: Initialize Buffer: SHA1 has five 32-bit buffers which are initialized as follows:  

 

for 0 <= r <= 19, 

F (r: B, C, D) = (B & C) | ((! B) & D) .............(11)  

for 20 <= r <= 39, 

F (r: B, C, D) = B ⊕ C ⊕ D.........................(12)                           

for 40 <= r <= 59, 

F (r: B, C, D) = (B & C) | (B & D) | (C & D) .......(13) 

for 60 <= r <= 79, 

F (r: B, C, D) = B ⊕ C ⊕ D ........................(14)      

for 0 <= r <= 19, 

K(r) = 0x5A827999 ............................... (15)         

for 20 <= r <= 39, 

K(r) = 0x6ED9EBA1 ............................... (16) 

for 40 <= r <= 59, 

K(r) = 0x8F1BBCDC ............................... (17) 

for, 60 <= r <= 79 

K(r) = 0xCA62C1D6 ............................... (18) 

 

H0 = 0x67452301 ................................. (19) 

H1 = 0xEFCDAB89 ................................. (20) 

H2 = 0x98BADCFE ................................. (21) 

H3 = 0x10325476 ................................. (22) 

H4 = 0xC3D2E1F0 ................................. (23) 
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Step6: Process 512-bit block messages: The algorithm to process this 512-bit block of message 

is as follows: 

 

  

For loop on k = 1 to N  /* 1st For loop */ 

  (W (0), W (1) ..., W (15)) = M[k] /*Divide M[k] into 16 words*/ 

   For t = 16 to 79 do: /* 2nd For loop */ 

     W(t) = (W(t-3) XOR W(t-8) XOR W(t-14) XOR W (t-16)) << 1 

   End of For loop /* 2nd For loop */ 

   A = H0, B = H1, C = H2, D = H3, E = H4 

   For t = 0 to 79 do: // 3rd for loop 

        TEMP = A<<5 + f (t: B, C, D) + E + W(t) + K(t) 

        E = D, D = C, C = B<<30, B = A, A = TEMP 

   End of For loop // 3rd for loop 

         H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D,  

   H4 = H4 + E 

     End of for loop /* End of 1st For loop */ 

     Output = H0 << 128 | H1 << 96 | H2 << 64 | H3 << 32 | H4 
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The block diagram for SHA1 processing function is given in Figure 8. 

 

Figure 8: Block Diagram for SHA1 Processing Function 
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2.2 WPA2-PSK Data Confidentiality 

 

WPA2-PSK uses Advanced Encryption Standard (AES) cipher for data confidentiality. 

The AES algorithm is a symmetric block cipher that can encrypt and decrypt information. 

Encryption converts data to an unintelligible form called ciphertext and decryption converts the 

ciphertext back into its original form, called plaintext [14]. AES has input block size of 128 bits 

and key size can be of 128, 192 or 256 bits. WPA2-PSK uses key size of 256 bits i.e. AES-256. 

It requires 60 rounds for key expansion and the size of the expanded key is 240 bytes. When 

decryption is performed using Equivalent Inverse Cipher method, then there are separate set of 

expanded keys for encryption and decryption processes [14]. Hence, in total, there will be 480 

bytes of expanded keys when decryption is performed using Equivalent Inverse Cipher method. 

AES-256 requires 14 rounds each for the completion of encryption and decryption processes and 

the size of output block is 128 bits. 

AES algorithm’s operations are performed on a two-dimensional array of bytes called the 

State [14].  For AES-256, the State consists of four rows of bytes, each containing 4 bytes.  At 

the start of the encryption and decryption, the input – the array of bytes In0, In1, … In15 – is 

copied into the State array as illustrated in Figure 9. The encryption and decryption operations 

are then conducted on this State array, after which its final value is copied to the output – the 

array of bytes Out0, Out1, … Out15 as shown in Figure 10. [14]. 

 

Figure 9: Input Bytes Arranged in State Array at Beginning of AES Operation 
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Figure 10: Output Bytes Arranged from State Array at End of AES Operation 

AES consists of key expansion, encryption and decryption processes. These processes are 

realized with the help of following transformations [14]: 

• RotWord (): This function takes 4 bytes as an argument. It performs circular left shift 

on the 4 input bytes. 

Example: 1,2,3,4 to 2,3,4,1 

• Rcon (): This function returns a 4-byte value based on Figure 11. 

 

Figure 11: Rcon () Values 

• AddRoundKey (): In the AddRoundKey () transformation, a Round Key is added 

to the state by a simple bitwise XOR operation. 
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• SubBytes (): In this transformation, each byte of data is substituted with the 

corresponding value from the S-box lookup table (Table 7 in Appendix A). 

• ShiftRows (): This function arranges the bytes of the state in 4x4 matrix and 

performs byte-wise circular left shift. The order of the shift varies with rows. The shift 

operation is not performed for the first row. The second row is shifted by 1 byte, the third 

row is shifted by 2 bytes and the fourth row is shifted by 3 bytes. An example of shift row 

operation is shown in Figure 12. 

 

Figure 12: Example of ShiftRows () 

• MixColumns (): The matrix obtained from the ShiftRows () operation goes 

through the multiplication over Galois Field (Figure 13). The lookup tables required for 

multiplication over Galois Field in the MixColumns () operation are shown in Table 

9 and Table 10 in Appendix A. 
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Figure 13: MixColumns () Calculation 

• InvSubBytes (): In this transformation, each byte of data is substituted with the 

corresponding value from the inverse S-box table (Table 8 in Appendix A).   

• InvShiftRows (): This function arranges the bytes of the state in 4x4 matrix and 

performs byte-wise circular right shift. The order of the shift varies with rows. The shift 

operation is not performed for the first row. The second row is shifted by 1 byte, the third 

row is shifted by 2 bytes and the fourth row is shifted by 3 bytes. An example of shift row 

is shown in Figure 14 [15]. 

 

Figure 14: Example if InvShiftRows () 
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• InvMixColumns (): The matrix obtained from the InvShiftRows () operation 

goes through the multiplication over Galois Field (Figure 15). The lookup tables required 

for multiplication over Galois Field in the InvMixColumns () operation are shown 

in Table 11, Table 12, Table 13 and Table 14 in Appendix A 

 

Figure 15: InvMixColumns Calculation 

 

2.2.1 AES-256 Key Expansion 

The AES algorithm takes the Cipher Key and performs a Key Expansion routine to 

generate a key schedule. The Key Expansion generates a total of Nb (Nr + 1) words: the 

algorithm requires an initial set of Nb words, and each of the Nr rounds requires Nb words of 

key data [14]. The resulting key schedule consists of a linear array of 4-byte words, denoted 

[wi], with i in the range 0< i< Nb (Nr + 1) [14]. 

In AES-256, Nb = 4, Nk = 8 and Nr = 14, so the key expansion routine generates a total 

of 60 words (240 bytes). The key expansion routine runs for 14 rounds and generates 240 bytes 
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of expanded key. Two different sets of 240 bytes of expanded keys are generated for encryption 

and decryption when the decryption is done using Equivalent Inverse Cipher method. The 

expansion of the input key into the key expansion routine proceeds according to the pseudo code 

in Figure 16 [14]. For AES-256, Nb = 4, Nk = 8 and Nr = 14. 

 

Figure 16: Pseudo Code for Key Expansion for Encryption 

 

For the Equivalent Inverse Cipher, the following pseudo code shown in Figure 17 must 

be added to the end of the pseudo code shown in Figure 16 [14]. For AES-256, Nb = 4, Nk = 8 

and Nr = 14. 

 

Figure 17: Additional Pseudo Code to be Added for Key Expansion for Decryption 
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2.2.2 AES-256 Encryption 

 

In each round of AES encryption, the cipher makes four different transformations to the 

block of data. The four transformations are: AddRoundKey (), SubBytes (), ShiftRows () 

and MixColumns (). The exception is the final round, which only has three transformations 

since it does not have the MixColumns () operation [16]. During these rounds, each block of 

data is depicted as 4 x 4 byte matrix and the key is divided into 4 x 4 byte matrix as well. Each 

round gets these matrices as an input and produces 4 x 4 byte state matrix as an output. 

The pseudo code for AES encryption is shown in Figure 18. For AES-256, Nb = 4, Nk = 

8 and Nr = 14. 

 

Figure 18: Pseudo Code for AES Encryption 

 

 

2.2.3  AES-256 Decryption 

Like encryption, in each round of decryption, the cipher makes four different 

transformations to the block of data. The four transformations being: InvAddRoundKey (), 

InvSubBytes (), InvShiftRows () and InvMixColumns (). The exception is the final 
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round, which only has three transformations since it does not have the InvMixColumns () 

operation [16]. Similarly, during these rounds, each block of data is arranged as 4 x 4 byte matrix 

and the key is also arranged as 4 x 4 byte matrix. But the expanded keys used here are different 

to the ones used for encryption. Each round gets these matrices as an input and produces 4 x 4 

byte state matrix as an output. Pseudo code for the Equivalent Inverse Cipher is shown in Figure 

19 [14]. For AES-256, Nb = 4, Nk = 8 and Nr = 14. 

 

Figure 19: Pseudo Code for the Equivalent Inverse Cipher 

  



39 

 

The overall block diagram of AES-256 is shown in Figure 20. 

 

Figure 20: AES-256 Block Diagram 

Chapter 3 explains how the theory related to PBKDF2, HMAC and SHA1 used in 

WPA2-PSK device authentication, and key expansion used in AES-256 encryption and 

decryption were implemented in software using C programming language. 
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Chapter 3: Software Implementation 

3.1  Overview 

 

 Derivation of PMK using PBKDF2 for authentication, and key expansion for encryption 

and decryption for AES-256, were implemented in software. This was because authentication is 

only performed once per node before the Wi-Fi connection has been established. Hence, 

PBKDF2, HMAC and SHA1 were performed only for the authentication process. After 

authentication, these operations didn’t have to be repeatedly used during the data communication 

phase. Similarly, key expansion for AES-256 is only performed once. After expansion, keys 

were stored in the memory and retrieved only when they were required. 

 All software development in this thesis was implemented using combination of C and 

C++ programming languages for the MicroBlaze™ embedded processor soft core in Xilinx 

Software Development Kit (SDK). Code related to PBKDF2 and AES-256 key expansion was 

written in C, while the application code was written in C++. 

 

3.2  MicroBlaze™ Environment 

 

 The MicroBlaze™ embedded processor soft core is a reduced instruction set computer 

(RISC) optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs). 

Figure 21 shows a functional block diagram of the MicroBlaze core [17]. 
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Figure 21: MicroBlaze Core Block Diagram 

The MicroBlaze soft core processor is highly configurable, allowing you to select a 

specific set of features required by your design. The fixed feature set of the processor includes 

[17]. 

• Thirty-two 32-bit general purpose registers 

• 32-bit instruction word with three operands and two addressing modes 

• 32-bit address bus 

• Single issue pipeline 

MicroBlaze core is organized as a Harvard architecture with separate bus interface units 

for data accesses and instruction accesses [18]. It does not separate between data accesses to I/O 

and memory (i.e. it uses memory mapped I/O). The processor has up to three interfaces for 

memory accesses [18]: Local Memory Bus (LMB), IBM’s On-chip Peripheral Bus (OPB), and 

Xilinx CacheLink (XCL). MicroBlaze also supports reset, interrupt, user exception, break and 

hardware exceptions. For interrupts, MicroBlaze supports only one external interrupt source 
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(connecting to the Interrupt input port) [18]. If multiple interrupts are needed, an interrupt 

controller must be used to handle multiple interrupt requests to MicroBlaze. The stack 

convention used in MicroBlaze starts from a higher memory location and grows downward to 

lower memory locations when items are pushed onto a stack with a function call [18]. Items are 

popped off the stack the reverse order they were put on. Writing software to control the 

MicroBlaze processor must be done in C/C++ language [18]. 

 

3.3  WPA2-PSK Device Authentication 

 

The code for WPA2-PSK authentication was written using C programming language. The 

overall code implementation contained 4 layers. At the bottom layer, there was code for SHA1 

Hash algorithm. The second layer of code was for HMAC-SHA1, which called functions from 

the first layer. The third layer of code was for PBKDF2 which would call functions from the 

second layer. Finally, the application layer called the functions in the PBKDF2 layer for the 

complete WPA2-PSK functionality.  This layered architecture is illustrated in Figure 22.  

 

Figure 22: Layered Software Implementation of WPA2-PSK Authentication 
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3.3.1  Layer1: SHA1-HASH Implementation 

 

This layer dealt with all the functions related to the implementation of SHA1 Hash 

algorithm. The information regarding relevant data types and the function prototypes for all the 

functions in this layer are given below: 

• Data Type: SHA1_CTX 

 

This data type was used to maintain information relevant to an iteration of an 

SHA1-Hash process. It held information regarding 512-bits of input block, 160-bits of 

output hash, data length and bit length. This data type was used to pass information to 

and store information from all the functions defined in the SHA1-Hash Layer.  

 

• Function Prototype 1: SHA1Init () 

 

This Function was used to initialize a new context for the SHA1-Hash process. It 

initialized datalen and bitlen to 0. It also initialized the states of the context to the 

initial Hash values of 0x67452301 ,0xEFCDAB89, 0x98BADCFE,  

0x10325476 and 0xC3D2E1F0. 

 

• Function Prototype 2: SHA1Update () 
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This function was used to update data, data length and bit length for the 

context of SHA1. If the data length was 64 bytes (512 bits) i.e. input block size of 

SHA1, we started the SHA1-Hash process by calling SHA1Transform (). 

 

• Function Prototype 3: SHA1Final () 

 

This was the function where the initial processing before the actual SHA1-Hash 

processing was done. The initial padding and the appending of the data length to the input 

block was done in this function. After the initial processing, it called SHA1Transform () 

to perform the SHA1-Hash algorithm. 

 

• Function Prototype 4: SHA1Transform () 

 

This was the main function where the processing part of the actual SHA1-Hash 

Algorithm was implemented. First, the 32-bit words of the 512-bit input block were 

stored into initial 16 arrays of size 32-bits. W (16) to W (79) values were then calculated 

from these values. 80 rounds of SHA1- Hash transform was performed on the data to get 

the 160-bits of SHA1-Hash Output value. Finally, the new Hash for the context was 

updated with the new output Hash value. 
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3.3.2  Layer2: HMAC_SHA1 Implementation 

This layer dealt with the function related to the implementation of HMAC-SHA1. It 

contained a single function that called functions defined in SHA1-Hash algorithm. The prototype 

for this function is given below: 

 

This single function was used for the HMAC operation over SHA1-Hash. The first step 

of the code performed the initial padding and appending operations required for HMAC 

operation. After this initial process, this function would successively call SHA1Init (). 

SHA1Update (), SHA1Final () and SHA1Transform (). 

 

3.3.3  Layer3: PBKDF2 Implementation 

This layer dealt with the function related to the implementation of PBKDF2 operation. It 

contained a single function that called my_hmac_sha1() for 4096 iterations after some initial 

processing. The prototype for this function is given below: 

256-bit PMK was derived from this function which was used as the first key in AES 

encryption. The application code would use this function to obtain the PMK from SSID-

Passphrase combination, which is used to authenticate a wireless device using WPA2-PSK 

before starting the wireless communication.  
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3.4  AES-256 Key Expansion 

 

The code for AES-256 key expansion was written using C programming language and for 

32-bit soft processor MicroBlaze. The information regarding relevant function definitions for all 

the functions used for key expansion are given below: 

• Function Definition 1: RotWord () 

 

This function took an array which contained 4 one-byte values [a0, a1, a2, a3] as 

input, performed a cyclic permutation, and returned [a1, a2, a3, a0] as the output. 

 

• Function Definition 2: SubWord () 

 

This function took an array which contained 4 one-byte values [a0, a1, a2, a3] as 

input and returned S-Box substituted values of the array as the output. The code snippet 

for S-Box lookup table implementation in C is shown in Figure 48 (Appendix B). 
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• Function Definition 3: InvMixColumns () 

 

This function took an array containing 16 one-byte values [a0, a1, a2 … a15] and 

number of bytes of completed expanded key for equivalent inverse cipher as an input, 

performed Inverse Mix Column transformations, and returned the transformed values and 

new count of the completed expanded key as the output. In this function definition, 

state was a global 4x4 one-byte array. The code snippets for mul9, mul11, mul13 and 

mul14 lookup tables implementations in C are shown in Figure 49, Figure 50, Figure 51 

and Figure 52 respectively in Appendix B. 
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Function Definition 4: KeyExpansion () 

 

This function took an array which contained 32 bytes of PMK as input, expanded it to 

240 bytes each of expanded key for encryption and decryption, and returned these expanded keys 

as the output. These expanded keys were stored in BRAM of the FPGA.  
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Chapter 4 describes how these keys were arranged in the BRAM after the expansion 

process, retrieved from the BRAM, and how they would be used in the hardware implementation 

of the AES-256 module to encrypt and decrypt data. Chapter 4 also shows how the 

encrypted/decrypted data were stored in BRAM after the transformation. 
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Chapter 4: Hardware Implementation 

4.1  Overview 

 

Encryption and decryption on data with AES-256 module was implemented on hardware 

using Verilog HDL. This was because, after authentication, all data communicated within the 

network had to be encrypted. And, we used the AES-256 core to encrypt and decrypt the data 

being communicated within the network. Since, this core must be used repeatedly for data 

confidentiality during communication, it was implemented in hardware. The Verilog Code was 

written on Xilinx Vivado Design Suite 2017.2 IDE. After AES-256 module designed using 

Verilog HDL was synthesized and implemented, the design was packaged into an IP core using 

Vivado IP Packager tool. This AES-256 IP core was then interfaced to MicroBlaze softcore 

processor with the help of AXI Interconnect. This design was targeted for Nexys4 FPGA board. 

The reason for using Nexys4 board was that MicroBlaze softcore processor needs a lot of FPGA 

resources. Additionally, further FPGA resources were also required in the hardware 

implementation of AES-256. Since, Nexys4 board was able to support these requirements, it was 

used as the target device for this thesis. 

 

4.2  Nexys4 

 

Nexys4 board is a development platform based on the latest Artix-7™ (Xilinx part 

number XC7A100T-1CSG324C) Field Programmable Gate Array (FPGA) from Xilinx [19]. The 

Artix-7 FPGA is designed for high performance and it features 15850 logic slices (each with 6-

input LUTs and 8 flip-flops), 240 DSP slices and 4860 KB of fast block RAM [20]. Nexys4 has 

generous external memories, and collection of USB, Ethernet, and other ports, and can host 

designs ranging from introductory combinational circuits to powerful embedded processors [19]. 
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It also has several built-in peripherals such as an accelerometer, temperature sensor, MEMs 

digital microphone, a speaker amplifier, and a lot of I/O devices [19]. Nexys4 board with its 

component description is shown in Figure 23. 

 

Figure 23: Nexys4 Board Features 

 

4.3  AXI Interconnect 

 

Advanced extensible Interface (AXI) is a part of the Arm Advanced Microcontroller Bus 

Architecture (AMBA) specification that provides the interface between the processing system 
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and programmable logic sections of the chip [21]. The AXI specifications describe an interface 

between a single AXI master and a single AXI slave, representing IP cores that exchange 

information with each other [22]. Memory mapped AXI masters and slaves can be connected 

using a structure called an Interconnect block [22]. The Xilinx AXI Interconnect IP contains 

AXI-compliant master and slave interfaces and can be used to route transactions between one or 

more AXI masters and slaves [22] . AXI Interconnect connects one or more AXI memory-

mapped master devices to one or more memory-mapped slave devices [23]. When connecting 

one master to one slave, the AXI Interconnect core can perform address range checking. Also, it 

can perform any of the normal data-width, clock rate, or protocol conversions and pipelining 

[23]. When not performing any conversions or address range checking, the AXI Interconnect 

core is implemented as wires, with no resources, no delay and no latency [23]. 

 

4.4  AES-256 Implementation 

 

This hardware implementation of AES-256 primarily contained 2 components: BRAMs 

(Key BRAM and Data BRAM) and AES core. BRAMs were used to store expanded keys, 

plaintext and ciphertext, whereas, the AES core had modules for encryption and decryption 

blocks that used the expanded key, plaintext and ciphertext for encryption and decryption.  

Since block size of AES is 128 bits (16 Bytes), both encryption and decryption processes 

worked on 128-bits (16 Bytes) of data at a time. If the data to be transformed was less than 128 

bits, then, it was padded with trailing 0’s to make it 128-bit block before being transformed. If 

the data to be transformed was greater than 128 bits but not a multiple of 128 bits, then, it was 

also padded with trailing 0’s until we had a data block which is multiple of 128 bits. After 

padding, the encryption/decryption was done on one 128-bit block of data at a time. The data to 
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be transformed was initially stored in a certain location of Data BRAM. At the beginning of the 

transformation, they were read from the Data BRAM and passed to the AES core. After the 

transformation was completed, the converted data was stored in a separate location of the Data 

BRAM that was allocated for the transformed data. 

 

4.4.1  BRAMs 

 

BRAMs are blocks of 32-bit memory locations used to store expanded key, original data 

to be encrypted or decrypted, and transformed data after encryption or decryption. It is a 

synchronous memory block with 32-bit data being clocked in or out at every clock. Two 

instances of BRAMs were created for the implementation of AES-256 module: Key BRAM and 

Data BRAM. 

• Key BRAM: The Data width of the Key BRAM was 32-bits. The expanded keys were 

stored in Key BRAM. 4 Bytes of expanded keys were stored per BRAM location. Hence, 

60 memory locations were used to store 240 bytes of expanded key for encryption. 

Similarly, further 60 memory locations were used to store the other 240 bytes of 

expanded key for decryption. These keys were only read once from the BRAM at the 

beginning of the encryption/decryption process and saved into a temporary buffer. For 

multiple blocks of encryption/decryption, the keys were accessed directly from the 

temporary buffer instead of BRAM. The start address for Key BRAM was 0xC2000000. 

The overall memory organization for Key BRAM locations used in the design of AES-

256 module is shown in Figure 24. 
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Figure 24: Key BRAM Organization 

 

• Data BRAM: It was a Read/Write Memory block where original data and data to be 

transformed were stored. The Data width of the Data BRAM was 32-bits. 32 such 

memory locations were allocated each for original data and transformed data. Hence, 128 

bytes of BRAM memory was used for storing original and transformed data. The start 

address for Data BRAM was 0xC0000000. The overall memory organization for Data 

BRAM is shown in Figure 25. 

 

Figure 25: Data BRAM Organization 
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4.4.2  AES Core  

 

The block diagram of top level of AES-256 core implementation is shown in Figure 26. It 

has the following port definitions: 

 

 

Figure 26: AES Core with Input and Output Signals 

• Input Ports: 

o Clk: It was the clock source to the AES core. The frequency of clock used in the 

design was 100 Mhz. 

o Reset: It was the synchronous reset signal to the AES core. It worked on active 

low logic. The reset signal was controlled by bit 11 of Slave register0 from the 

AXI BUS of MicroBlaze. 

o Start: It was a 2-bit wide input signal which was used to start the encryption or 

decryption signal. If Start = 2’b01, the AES core would perform the encryption 

operation, if Start = 2’b10, the AES core would perform the decryption 

operation. All other possible values of Start signal were DON’T CARE cases. 
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Start signal was controlled by bits [1:0] of Slave register0 from the AXI BUS of 

MicroBlaze. 

o Length: It was a 9-bit input value which signified the number of 32-bit input data 

(after zero padding to make it multiple of 128-bit) to be either encrypted or 

decrypted. The Length signal was controlled by bits [10:2] of Slave register0 

from the AXI BUS of MicroBlaze. 

o Key: It was a 32-bit expanded key input to the AES core. This input port was 

connected to 32-bit Data output port of Key BRAM. 

o Data In: It was a 32-bit plaintext or ciphertext to be encrypted or decrypted 

respectively. This input port was connected to 32-bit Data output port of Data 

BRAM. 

 

• Output Ports 

o Key Address: It was a 32-bit output value which denoted the memory location of 

the Key BRAM from which the expanded key was to be retrieved during the 

encryption/decryption process. On reset the value of Key Address was 0. This 

output port was connected to 32-bit address input port of Key BRAM. 

o Data Address: It was a 32-bit output value which denoted the memory location 

of the Data BRAM from which the expanded key was to be retrieved during the 

encryption/decryption process. On reset the value of Data Address was 0. This 

output port was connected to 32-bit address input port of Data BRAM. 

o Data Out: It was a 32-bit output value which signified ciphertext in case of 

encryption operation and plaintext in case of decryption operation. On reset the 
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value of Data Out was 0. This output port was connected to 32-bit Data input 

port of Data BRAM. 

o Write Enable: It was a 4-bit output signal that was used to enable the write 

operation of the ciphertext in case of encryption or plaintext in case of decryption, 

to the allocated memory locations in the Data BRAM. On reset the value of Write 

Enable was 0. This output port was connected to 4-bit Write Enable input port of 

Data BRAM. 

o Done: It was a 3-bit output signal that showed the completion of the AES 

operation. The value of Done signal would become 3’b111 after the AES 

transformation was completed and the new data was written into the allocated 

memory locations in the Data BRAM. On reset the value of Done was 0. This 

output signal was connected to bits [2:0] of Slave register1 from the AXI BUS of 

MicroBlaze. 

 

This implementation took 41 clock cycles from the start signal to complete the 

encryption/decryption of the first 128-bit (16-Byte) block of data. After the first block of data 

was transformed, it only took 4 further clock cycles per block, for the other blocks of input to be 

encrypted or decrypted.  This implementation supported transformation of 8 blocks of input data 

at time i.e. the depth of the input data buffer and output data buffer was 128 bytes. 

 

4.4.3  AES-256 Internal Design 

 

 Internally, AES-256 module contained several sub-modules. The internal design of AES-

256 with the help of these sub-modules is shown in Figure 27.  
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Figure 27: Internal Design of AES-256 

The information regarding prototypes for various sub-modules of AES-256 are given 

below:  

• Module Prototype 1: keyAddrCounter () 

 

This module was used to keep track of read address for Key BRAM. If the value 

of the input signal start was 1, then the read address would start from the memory 

location containing the first encryption keys. If the value of the input signal start was 2, 
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then the read address would start from the memory location containing the first 

decryption keys.  

 

• Module Prototype 2: keyBuffer () 

 

This module was used to buffer the expanded key values from the Key BRAM to 

internal buffer. If the value of the input signal start was 1, then the module would 

buffer expanded keys for encryption. If the value of the input signal start was 2, then 

the module would buffer expanded keys for decryption. After the buffering is completed, 

it would always send a kReady = 1 signal. 

 

• Module Prototype 3: dataAddrCounter () 

 

This module was used to keep track of read and write address for Data BRAM. If 

the value of the input signal wrEn was 0, then the read address would start from the 

memory location containing the first input data. If the value of the input signal wrEn was 

1, then the write address would start from the memory location for the first output data.  
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• Module Prototype 4: dataBuffer () 

 

This module was used to buffer the input data from the Data BRAM to internal 

buffer. It could buffer up to 128 bytes of data at time. After the buffering was completed, 

it would send a dReady = 1 signal. 

 

• Module Prototype 5: rounds () 

 

Within this module, AddRoundKey (), SubBytes (), ShiftRows (), 

MixColumns (), InvAddRoundKey (), InvSubBytes (), InvShiftRows () and 

InvMixColumns () transformations were implemented. In this implementation, 

SubBytes () and ShiftRows (), and, InvSubBytes () and InvShiftRows () were 

implemented inside a single block and within in a single clock. If the input signal 

decrypt = 0, then this module would perform encryption, and if decrypt = 1, this 

module would perform decryption. 13 instances of rounds () were instantiated each for 

encryption and decryption. These 13 instances were cascaded to each other and the last 

instance was cascaded to the roundlast () module. 
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• Module Prototype 6: roundlast () 

  

Within this module, AddRoundKey (), SubBytes (), ShiftRows (), 

InvAddRoundKey (), InvSubBytes () and InvShiftRows transformations were 

implemented. In this implementation, SubBytes () and ShiftRows (), and, 

InvSubBytes () and InvShiftRows () were implemented inside a single block and 

within in a single clock. If the input signal decrypt = 0, then this module would perform 

encryption, and if decrypt = 1, this module would perform decryption. Hence, the 

output of this module would be the encrypted data for input signal decrypt = 0, and, the 

output of this module would be the decrypted data for input signal decrypt = 1. 

 

4.5  AES-256 Interface with MicroBlaze 

 

The implemented AES-256 module was packaged into a custom IP core using Vivado IP 

Packager tool. This AES-256 IP core was connected to MicroBlaze using AXI Interconnect. In 

this interface, MicroBlaze was the master device and AES-256 IP core was the slave device. The 

overall block diagram for interfacing AES-256 IP core and MicroBlaze processor is shown in 

Figure 28 and the Vivado Block Design of this overall implementation is shown in Figure 53 

(Appendix C). The resource utilization for this overall Vivado Block Design is shown in Figure 

54 and Figure 55 in Appendix D. 

 



62 

 

 

Figure 28: Block Diagram of AES-256 IP Core with MicroBlaze 

 

4.6  Total On-Chip Power Consumption 

The total on-chip power is also known as ‘thermal power’. It was obtained using 

Equation (24) [24]. 

 

Where, 

 

Device Static is the Transistor Leakage Power when the device is powered and not 

configured [24]. Design Static refers to the power when the device is configured and there is no 

switching activity [24]. It includes static power in I/O DCI terminations. Finally, Design 

Dynamic is the average power from user logic utilization and switching activity [24].    

 The power analysis of the implemented design was performed using the Vivado™ Power 

Analysis tool present in the Vivado Integrated Design Environment (IDE). It performs power 

estimation through all stages of the flow: after synthesis, after placement, and after routing. It is 

most accurate post-route since it can read from the implemented design database the exact logic 

and routing resources used [24]. A detailed on-chip power consumption values for the 

Total On-Chip Power = Static + Design Dynamic ......(24)     

 

Static = Device Static + Design Static .............(25) 
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implemented design is shown in Figure 56 in Appendix E.  The Vivado™ Power Analysis tool 

also provides values for Junction Temperature (°C) and Effective Thermal Resistance to Air 

(ΘJA (°C/W)). Junction Temperature is temperature of the device in operation [24]. Effective 

Thermal Resistance to Air is also known as Theta-JA, and TJA [24]. This coefficient defines how 

power is dissipated from the FPGA silicon to the environment (device junction to ambient air) 

[24]. The summary of power utilization for overall block design is shown in Figure 57 in 

Appendix E. 

Chapter 5 describes how software implementation of PBKDF2 based on HMAC-SHA1 

for WPA2-PSK device authentication, and hardware implementation of AES-256 used in device 

confidentiality was tested. It goes through various test setups that were used and explains the 

results obtained from the tests. Finally, it compares the results of the implementation done in this 

thesis with previous existing implementations. 
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Chapter 5: Testing and Result 

5.1 Overview 

The goal of this thesis was efficient software implementation of PBKDF2 based on 

HMAC-SHA1 using C programming language, and, efficient hardware implementation of AES-

256 cipher using Verilog HDL. In the Wi-Fi communication, PBKDF2 was used for device 

authentication, while AES-256 was used for data confidentiality. To test the validity of the goals 

achieved by the implementations described in Chapter 3 and Chapter 4, test setup illustrated by 

the block diagram shown in Figure 29 was arranged. The setup has 3 main components:  

•  Nexys4 board with code for the implemented hardware and software design. 

•  MRF24WG0MA PMOD Wi-Fi 

• Laptop 

For testing software implementation of PBKDF2 based on HMAC-SHA1, a single 

instance of block diagram shown in Figure 29 was used. Whereas, for testing hardware 

implementation of AES-256 cipher, two instances of block diagram shown in Figure 29 were 

used. Additionally, a wireless access point was created using a mobile hotspot to complete the 

test setup for both the tests. The mobile hotspot and wireless access point will be used 

interchangeably in this chapter. 
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Figure 29: Overall Block Diagram for Testing 

 

5.2 WPA2-PSK Testing and Result 

The test for authentication of Wi-Fi using WPA2-PSK was performed with mobile 

hotspot as the access point. The access point was configured with “TestWifi” as the SSID and 

“TestPassword” as the Passphrase (Figure 30). The wireless module (MRF24WG0MA PMOD 

Wi-Fi) interfaced with Nexys4 board (Figure 31) running the implemented design was used as 

the end node to connect to the access point. The Nexys4 board had USB-to-UART module 

running on it. The board was connected to a serial terminal software called TERA TERM, 

which opened a serial COM port with settings: 

• Baud rate: 115200 bps 

• Data size: 8- bit 

• Parity: None 

• Stop bits: 1-bit 

• Flow Control: None 
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Figure 30: Mobile Hotspot Configuration 

 

 

 
 

 

Figure 31: Nexys4 Board with MRF24WG0MA PMOD Wi-Fi 
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When this test setup connected to the serial term software was running, the values for 

SSID and Passphrase were prompted to the user on the terminal screen. The user would then type 

the values of SSID and Passphrase on the terminal. 4 test cases of SSID and Passphrase were 

used to check the validity of the authentication process. A table containing these 4 test cases 

along with the results of the tests is shown in Table 1. 

 

Table 1: Table of Test Cases and Results for Authentication 

CASE RESULT 

Incorrect SSID and Incorrect Passphrase Authentication Failed 

Correct SSID and Incorrect Passphrase Authentication Failed 

Incorrect SSID and Correct Passphrase Authentication Failed 

Correct SSID and Correct Passphrase Authentication Successful 

 

When incorrect values of SSID and/or Passphrase were entered in the end nodes using the 

terminal software, their authentication failed, and a communication channel was not created 

(Figure 32, Figure 33 and Figure 34). When SSID and Passphrase information of the access point 

were correctly entered in the end node, the access point was able to successfully authenticate it 

(Figure 35). After successful authentication, the access point was able to create a communication 

channel between itself and the end node.  
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Figure 32: Failed Authentication with Incorrect SSID and Incorrect Password 

 

 

Figure 33: Failed Authentication with Correct SSID and Incorrect Password 
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Figure 34: Failed Authentication with Incorrect SSID and Correct Password 

 

 

Figure 35: Successful Authentication with Correct SSID and Correct Password 
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5.3 WPA2-PSK Performance Evaluation 

The performance of PBKDF2, HMAC and SHA1 operations using the implemented 

software described in Chapter 3 was compared with the existing design used in the 

MRF24WG0MA PMOD Wi-Fi software library. Latency (us) was used as the performance 

metric for all 3 operations. Latency was defined as the time (in us) required to complete the 

given operation. 

To determine the latency of an operation, initially, an AXI timer with a resolution of 10 

ns was configured. Then, the following steps were performed: 

• Step1: Timer was started. 

• Step2: Timer value was read. 

• Step3: The operation to be profiled was started. 

• Step4: Timer was stopped after the completion of the function 

• Step5: The Timer value was read. 

These 5 steps were performed for SHA1, HMAC and PBKDF2 operations. The 

comparison of the latency results for these 3 operations is shown in Table 2. 

 

Table 2: Latency Comparison of Functions used in WPA2-PSK Authentication 

Operation Latency(us) in 

this 

implementation 

Latency(us) 

in existing 

code from 

library 

SHA1 184.63 1404.27 

HMAC 767. 36 2546.47 

PBKDF2 4960000 10040000 

0

5000

10000

15000

SHA1 HMAC PBKDF2

Latency(us) in this implementation

Latency(us) in existing code from library
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In Table 2, the latency of 3 main operations: SHA1, HMAC and PBKDF2 were 

tabulated.  In all the 3 operations, the values of the implemented design described in Chapter 3 

was less compared to the values of the existing design from the MRF24WG0MA PMOD Wi-Fi 

software library.  From these results, we can see that the implemented design was more efficient 

in terms of latency as compared to the design in MRF24WG0MA PMOD Wi-Fi software library. 

These results were attributed to the following reasons: 

• In the implementation of SHA1 operation in MRF24WG0MA PMOD Wi-Fi software 

library, memcpy () and memset () functions were used to copy every 512-bit input block 

of data into a temporary buffer. But, in the design described in Chapter 3, the need for the 

use of these functions were eliminated.  

• In MRF24WG0MA PMOD Wi-Fi software library, nested functions were used to 

implement 80 rounds of SHA1 operation per 512-bit input data block, Whereas, in the 

implementation described in Chapter 3, the same operation was implemented using loops 

within a single function. This decreased the overhead delay that was used to branch to 

multiple nested functions. 

• In the implementation of HMAC operation in MRF24WG0MA PMOD Wi-Fi software 

library, the XOR operation of opad and ipad were done using 2 separate loops. But the 

same operation was done within a single loop for the design described in Chapter 3. 

• In MRF24WG0MA PMOD Wi-Fi software library, the PBKDF2 was implemented using 

nested functions. Whereas in the implementation described in Chapter 3, the same 

operation was implemented within a single function. This decreased the overhead delay 

that was used to branch to different functions. 
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5.4 AES-256 Testing and Result 

The test for data confidentiality in Wi-Fi using AES-256 was performed with mobile 

hotspot as the access point.  This access point was configured with “TestWifi” as the SSID and 

“TestPassword” as the Passphrase (Figure 30). Two setups shown in Figure 31 were used as end 

nodes to connect to the access point. When SSID and Passphrase information of the access point 

were correctly entered in the two end nodes, the access point was able to successfully 

authenticate them (Figure 35). Data was communicated between these nodes using TCP protocol 

through the access point. The following two tests were conducted to verify data confidentiality 

using AES-256:  

 

5.4.1  TCP Server and TCP Client 

 

In this test setup, one of the wireless end nodes was coded to run as a TCP server while 

the other node was coded to run as a TCP client. Both end nodes were authenticated when 

correct values of SSID and Passphrase were entered. After authentication, the TCP server opened 

a socket listening at address 192.168.43.7:80. The TCP Client would then try to connect to the 

server. After a successful TCP connection, encrypted data was transferred from the client to the 

server (Figure 36).  
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Figure 36: Encrypted Data Sent by TCP Client to TCP Server 

 

When the server received the encrypted data, it would decrypt it.  In Figure 37, the server 

has received the encrypted data and successfully decrypted it to obtain the original data sent by 

the client. 

 

Figure 37: Decryption of Data Received by TCP Server from TCP Client 
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Now, the server would append additional data to decrypted data, encrypt this new data, 

and send this encrypted data back to the client (Figure 38).  

 

 

Figure 38: Encrypted Data Sent by TCP Server to TCP Client 
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When the client received the encrypted data, it would decrypt it. In Figure 39, the client 

has correctly received the encrypted data and successfully decrypted it to obtain the original data 

sent by the server. 

 

 

Figure 39: Decryption of Data Received by TCP Client from TCP Server 
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5.4.2  HTTP Server and Web Browser 

 

In this test setup, one of the wireless end nodes was coded to run as a HTTP server which 

could serve HTTP GET requests. This server was able to serve two webpages with URL 

192.168.43.7/aes and 192.168.43.7/config. At the beginning, this device was first authenticated 

by entering correct values of SSID and Passphrase. After authentication, the HTTP server 

opened a socket listening at address 192.168.43.7:80. Now, a test laptop was connected to the 

same access point and a web browser application was run on it. When the address 

http://192.168.43.7/aes was entered as the URL, the web browser would show the webpage seen 

in Figure 40. 

 

 
 

Figure 40: AES Webpage hosted by HTTP server 

 

In the webpage shown in Figure 40, Input to Encrypt (ASCII) field and Input to 

Decrypt (ASCII) field were filled with test data. When the Encrypt and Decrypt buttons were 

http://192.168.43.7/aes
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pressed in the webpage, the Encrypted Data (HEX) and Decrypted Data (HEX) fields were 

filled respectively. Finally, when the Submit Query button was pressed, the data in the 

Encrypted Data (HEX) field and Decrypted Data (HEX) field were transferred to the HTTP 

server using HTTP protocol. 

In Figure 41, the encrypted and decrypted set of data received by the HTTP server that 

was sent from the web browser is shown. The results of the decryption of the encrypted data, and 

encryption of decrypted data is also shown in Figure 41. It can be observed that the original data 

entered in Input to Encrypt (ASCII) field and Input to Decrypt (ASCII) field from webpage 

in Figure 40 matches with the decrypted and encrypted values from Figure 41. 

 

 

Figure 41:Decryption and Encryption of Data received by HTTP server 
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5.5 AES-256 Performance Evaluation 

With reference to Figure 27 in Chapter 4, two different logics were written for 

AddRoundKey (), SubBytes (), ShiftRows (), MixColumns (), InvAddRoundKey (), 

InvSubBytes (), InvShiftRows () and InvMixColumns () transformations in AES-256 

core. The first logic used the Look Up Table (LUT) method, whereas the second logic used the 

BRAM method. In the LUT method, the transformations were performed asynchronously, while 

in BRAM method, the transformations were performed synchronously. The resource utilization 

for LUT method is shown in Figure 42 and Figure 43, and resource utilization for BRAM 

method is shown in Figure 44 and Figure 45.  

 

 

Figure 42: Resources Utilization Table for LUT Implementation 

 

 

Figure 43: Graph for Resource Utilization for LUT Implementation 
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Figure 44: Resources Utilization Table for BRAM Implementation 

 

 

 

Figure 45: Graph for Resource Utilization for BRAM Implementation 

 

From Figures 42, 43, 44 and 45, we see that LUT and FF utilization is greater in the LUT 

method as compared to the BRAM method. Whereas, the BRAM utilization is less in LUT 

method in comparison to the BRAM method. The IO and BUFG utilization are same in both 

cases. The LUT utilization is greater in LUT method because, when transformations are 

implemented asynchronously, the memory related to the transformation in the design will be 

inferred as a Lookup table. Whereas, the BRAM utilization is greater in BRAM method 

because, when transformations are implemented synchronously, the memory related to the 

transformation in the design will be inferred as a Block RAM. Hence, there is a trade-off 

between utilization of LUTs and BRAMs in the two designs. 

In this thesis, the LUT method of AES-256 was arbitrarily selected to be converted to the 

AES-256 IP core and be interfaced with MicroBlaze Processor. The performance of this 
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implementation was compared with the other existing implementations described in [25], [26], 

[27], [28]. For the purpose of comparison in the following sections in Chapter 5 and Chapter 6, 

the implemented design of AES-256 using LUT is referred as Design 1, and implementations 

referenced from [25], [26], [27], [28] are referred as Design 2, Design 3, Design 4 and Design 5. 

 

5.5.1 Latency Comparison 

 

Latency is the time taken by the implemented design to produce one block of 128-bit 

output data for one block of 128-bit input data. This value depends on the number of clock cycles 

per encrypted/decrypted block and the frequency of the clock used. Latency was manually 

calculated using Equation (26) and the values for all five design are tabulated in Table 3. 

 

Table 3: Comparison of Implemented Designs Based on Latency 
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In Table 3, it was seen that Design 1 had less latency compared to Designs 2 and 3, while 

it wasn’t able to match or better the latency from Designs 4 and 5. This was because in Designs 

1,4 and 5, the multiplication tables for MixColumns()and InvMixColumns()operations were 

implemented using Look Up Tables, as opposed to Designs 2 and 3, which used actual 

multiplication calculations over Galois Field. Performing actual multiplication calculations 

would take more clock cycles to complete than just extracting the values from Look Up Tables. 

Even though Design 1 and 5 both used Look Up Tables, Design 5 had a less latency because it 

used pipelined architecture. 

 

5.5.2 Throughput Comparison 

 

Throughput was manually calculated using equation (27) and the values for all five 

designs are tabulated in Table 4.  In equation (27), the block size is 128-bit. 

 

 
 

Table 4: Comparison of Implemented Designs Based on Throughput 
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Throughput = Block Size / Latency ................................... (27) 
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In Table 4, it was observed that Design 1 had higher throughput as compared to Design 2 

and 3 but had a lower throughput in comparison to Design 4 and 5. From Equation (27), it was 

observed that throughput is related to latency and block size. Since, block size is same for all 5 

designs, the only variable affecting throughput between the five designs is latency. Hence, 

latency and throughout follow the same result pattern for the five designs. 

 

5.5.3 Resource Utilization Comparison 

The LUT slice utilization for the five implemented designs are shown in Table 5. 

 

 

Table 5: Comparison of Implemented Designs Based on Resource Utilization 

 
Design Total LUT 

for 

Encryption  

Total LUT 

for 

Decryption 

Design 1 23382 23382 

Design 2 1737  1737 

Design 3 1428 1428 

Design 4 15376 20324 

Design 5 76365 76365 

 

In Table 5, it was observed that Design 1 had less LUT slice utilization as compared to 

Design 5, but, had a higher LUT slice utilization in comparison to Designs 2, 3 and 4. This is 

because, in Design 1, MixColumns () and InvMixColumns () operations were implemented 

using Look Up Tables, which would increase the LUT resource utilization. Even though Design 

1 and 5 both used Look Up Tables, Design 5 had a higher LUT resource utilization because it 

used pipelined architecture. 
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5.5.4 Efficiency Comparison 

 

Efficiency was manually calculated using equation (28) and the values for all the five 

designs are shown in Table 6.  

 

Table 6: Comparison of Implemented Designs Based on Efficiency 

 
Design Efficiency for 

Encryption 

(Kb/s per slice) 

Efficiency for 

Decryption 

(Kb/s per slice) 

Design 1 13.344 13.344 

Design 2 61.025 61.025 

Design 3 83.333 83.333 

Design 4 59.183 30.505 

Design 5 9.022 5.892 

 

In Table 6, it was seen that Design 1 had better efficiency as compared to Design 5, but, 

had a lower efficiency when compared to Designs 2,3 and 4. This was because when compared 

to Design 1, the ratio of throughput to number of LUT slices was less for Design 5, while this 

ratio was higher for Design 2,3 and 4. 

 

5.5.5 Summary 

From the results of different performance metrics seen in Tables 3,4,5 and 6, it can be 

inferred that there is a tradeoff between latency and LUT resource utilization. These two metrics 

seem to be inversely proportional to each other as shown in Figure 46 and Figure 47.  

 

Efficiency = Throughput / Number of LUT slices ................... (28) 
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Figure 46: Comparison between Latency and LUT for Encryption in all Designs 

 

 

Figure 47: Comparison between Latency and LUT for Decryption in all Designs 

 

From Figure 46 and Figure 47, we observe that in all designs as the number of LUTs 

increases the latency decreases and vice versa. Hence, an efficient design would contain a 

compromise between latency and LUT resource utilization values. If we observe the formula to 

calculate latency in equation (26), we see that by using a larger clock frequency we can achieve 

lower latency values for the same number of clock cycles. Hence, using a FPGA board with a 

higher clock source could be a method to achieve better latency without increasing the LUT 
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resource utilization. This in turn will improve the throughput and efficiency results as well. 

Another way to improve the efficiency would be to reduce the LUT resource utilization by using 

most of the Block RAM(BRAM) available in FPGA chip. FPGA chips have limited BRAMs in 

comparison to Look up table. By selecting a FPGA chip supporting large amount of BRAMs and 

writing Verilog code in a manner that the memory locations infer BRAM instead of LUT, we can 

reduce the LUT resource utilization without increasing the latency. Hence, this will improve the 

overall efficiency of the design. 

Chapter 6 reiterates the outcome of the implemented design described in Chapters 3 and 

4. It also discusses conclusions that can be drawn from the results of the various tests performed 

in Chapter 5. 
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Chapter 6: Conclusion 

This thesis involved software implementation of PBKDF2 based on HMAC-SHA1 using 

C programming language, and hardware implementation of AES-256 using Verilog HDL. 

PBKDF2 was used for device authentication while AES-256 was used for data confidentiality in 

WPA2-PSK. The overall implementation was designed and tested on Nexys4 FPGA board. The 

performance of this implementation was compared with other existing designs.  

The latency(us) of software implementation of SHA1, HMAC and PBKDF2 operations 

were compared to the latency of the same operations obtained from MRF24WG0MA PMOD Wi-

Fi software library. The latency of these operations from the implemented design was less when 

compared to that from MRF24WG0MA PMOD Wi-Fi software library.  

Latency (ns), throughput (Gb/s), resource utilization (Number of Slices) and efficiency 

(Kb/s per slice) were the performance metrics used for hardware implementation of AES-256. 

These metrics were compared for the results from Design 2,3,4 and 5. Design 1 had a better 

latency and throughput results in comparison to Design 2 and 3, while it could not better the 

latency and throughput results when compared with Design 4 and 5. Similarly, Design 1 had a 

better LUT slice utilization and efficiency results when compared to Design 5 but could not 

better the results when compared to Designs 2,3 and 4. 

From these results, it can be concluded that latency and LUT resource utilization were 

inversely proportional to each other. Hence, an efficient design would be a compromise between 

latency and LUT resource utilization values. 

Chapter 7 discusses the limitations of the implemented design described in Chapters 3 

and 4. It also elaborates on possible future work to overcome these limitations. 
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Chapter 7: Future Work 
 

This thesis involved software implementation of PBKDF2 based on HMAC-SHA1 using 

C programming language for device authentication, and hardware implementation of AES-256 

using Verilog HDL for data confidentiality in WPA2-PSK. There are several areas of potential 

future improvements for device authentication and data confidentiality in WPA2-PSK. These are 

listed below: 

• Though an efficient design in terms of latency was obtained from software 

implementation of PBKDF2, HMAC and SHA1, a better implementation would be one 

on hardware using Verilog HDL. 

• At the end of PBKDF2 operation, a 256-bit PMK was obtained. For future work, the 

compete authentication process involving exchange of PMK between Wi-Fi device and 

access point using 4-way handshake could be implemented. 

• The Wi-Fi module (MRF24WG0MA) used in the thesis already had an AES core linked 

to it that had to be used. Hence, the implemented AES-256 module from this thesis was 

used along with the existing AES core from the MRF24WG0MA Wi-Fi module. In other 

words, an extra layer of encryption using the implemented AES-256 was added over the 

existing AES encryption layer from MRF24WG0MA PMOD Wi-Fi library. For future 

development, it would be better to use a Wi-Fi module that can be directly interfaced 

with the implemented AES-256, thus, it would only use a single layer of encryption. 
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Appendices 

A. AES Lookup Tables 

 

Table 7: S-Box Lookup Table 

 
 

Table 8: Inverse S-Box Lookup Table 
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Table 9: Mul2 Lookup Table 

 

Table 10: Mul3 Lookup Table 
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Table 11: Mul9 Lookup Table 

 

Table 12: Mul11 Lookup Table 
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Table 13: Mul13 Table 

 

Table 14: Mul14 Table 
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B. Code Snippets 

 

Figure 48: Implementation of S-Box in C 

 

Figure 49: Implementation of Mul9 Lookup Table in C 
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Figure 50: Implementation of Mul11 Lookup Table in C 

 

Figure 51: Implementation of Mul13 Lookup Table in C 
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Figure 52: Implementation of Mul14 Lookup Table in C 
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C. Vivado Block Design 

 

 
 

 

Figure 53: Vivado Block Design of Overall Implementation 
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D. Block Design Resource Utilization 

 

 

 

Figure 54: Resources Utilization Table for Overall Block Design 

 

Figure 55: Resources Utilization Graph for Overall Block Design 
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E. Block Design Power Utilization 

 

 

 

Figure 56: Detailed On-Chip Power Consumption of Overall Block Design 

 

 

Figure 57: Summary of Power Utilization for Overall Block Design 
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