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Abstract 
 

Background 

Inflammatory Bowel Disease (IBD) affects as many as 1.3 million Americans and 

includes both ulcerative colitis (UC) and Crohn’s disease (CD). Recent practices have moved 

towards using immunomodulators early in the course of disease to prevent disease progression.  

Patients have shown improved outcomes on immunomodulators compared to aminosalicylates, 

and reduced risk for tachyphylaxis compared to corticosteroid treatment. Thiopurine agents such 

as azathioprine and 6-mercaptopurine are immunomodulators often used to treat IBD. 

Unfortunately, many patients experience cytotoxicity from thiopurine use. Recent studies have 

shown that patients deficient in thiopurine-S-methyltransferase (TMPT), produce an 

overabundance of the therapeutic end product, 6-thioguanine nucleotide (6-TGN), causing 

toxicity leading to apoptosis in all types of immune cells. In this study we investigated whether 

pre-emptive genotyping for TPMT would allow customized doses of thiopurines based on TPMT 

status and whether knowing this genotyping would reduce the risk of adverse events without 

compromising disease control. 

Methods 

 A retrospective study using an available data set identified 30 adults over 18 with CD or 

UC. Patients were included in the study if their TPMT genotype and phenotype, 6-TGN and 6-

MeMPN levels, and disease exacerbation were recorded. Using Fisher’s Exact test for statistical 

analysis, genotype was compared to phenotype (enzyme activity), metabolite levels, and 

toxicity/exacerbation. Phenotype was compared to metabolite levels. 

Results 

Genotype and enzymatic activity were not independent of each other. Subjects with a 

mutant TPMT genotype were more likely to respond to thiopurine therapies. Genotype was not 
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indicative of high risk for hepatotoxicity, and there was no significant relationship between 

enzyme activity and metabolite levels. Lastly, there was no relationship between genotype and 

toxicity. 

Conclusions 

 Multiple studies have studied dose escalation based on genotype alone. However, 

genotype does not take into consideration confounding factors that might impact patient 

outcomes when using thiopurine therapy for IBD.  This would include rare deficiency alleles, 

true phenotypic expression, other genetic polymorphisms, and most importantly polypharmacy. 

Thiopurine interaction with ASAs, benzoic acid derivatives, non-steroidal anti-inflammatory 

drugs, and methotrexate have been shown to influence TPMT enzyme activity. Whether this is 

due to allosteric inhibition or competitive inhibition has yet to be discovered. 
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Chapter 1 Introduction 
Introduction 

The digestive tract is primarily responsible for the mechanical and enzymatic break down 

of food, extraction of nutrients, and removal of waste products. Inflammation within the 

digestive tract may disrupt any one of these processes. Inflammatory bowel disease (IBD) is a 

group of inflammatory conditions affecting the gastrointestinal (GI) tract, and while the exact 

etiology of IBD is unknown, three characteristics define IBD: (1) an altered response to gut 

microorganisms, (2) a dysregulated immune response, and (3) genetic predisposition for the 

disease (1-4). The two primary forms of IBD are Crohn’s disease (CD) and ulcerative colitis 

(UC) (44). Common symptoms of IBD include abdominal pain, weight loss, diarrhea, and 

colonic perforation (1-2). The anatomic location of the inflammation is important for 

distinguishing CD from UC. UC is limited to the colon and starts in the distal sigmoid colon. 

Disease development is uniform from the rectum through the colon and symptoms include 

bloody diarrhea, abdominal pain, weight loss, ulceration, and bleeding (1-3). UC cannot only 

progress to colorectal cancer (CRC), but also predisposes patients to CRC. The longer 

inflammation persists, the greater the chance it will progress to CRC. According to a 2012 

review by Dilip et al. (5), the lifetime incidence of colon cancer in patients with UC is 2.5% at 10 

years, 7.6% at 30 years, and 10.8% at 50 years (5-6). While gender and age of onset are 

considered risk factors for the development of colon cancer, the location of the lesions predicts 

the aggressiveness of the disease (7). In contrast with UC, CD is characterized by segmental and 

occasionally randomized spread, termed “skip” lesions, throughout the GI tract with the most 

common site of involvement being at the ileocecal valve. Additional manifestations of CD are 

fistulas, fissures, strictures, abscesses, anemia, fever, arthritis, and skin changes.  

There are four categories of medicinal therapy used to treat IBD: aminosalicylates 

(ASA), corticosteroids, immunomodulators, and biologics. Aminosalicylates reduce 
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inflammation by inhibiting cyclooxygenase and prostaglandins, which are involved in mediating 

inflammation, anaphylactic reactions, vasoconstriction, and vasodilation (8-10). Corticosteroids 

prevent inflammation and cause general immune suppression, especially of T cells. 

Immunomodulators modulate the immune response toward adaptive rather than maladaptive 

activities and induce, amplify, attenuate, or prevent the immune response, depending on 

therapeutic goals (11).  Biological agents are typically monoclonal antibodies that act as TNF-a 

antagonists and integrin receptor antagonists (12). As a group, biologics are the most recently 

developed medicinal therapies approved for the treatment of IBD and they are typically a last 

resort because they may act on more than one target, cause an immune response, are expensive, 

and run the risk of overtreatment of patients with milder IBD (12-13). 

In recent years, a change in the treatment goals for IBD has generated intense discussion. 

In the past, treatment was initiated only in response to acute flares of the disease and were aimed 

at reducing clinical symptoms. This was considered the “step-up” approach, which refers to a 

sequential treatment strategy that usually begins with a less toxic but potentially less effective 

therapy choice such as aminosalicylates, with progression to the more effective but potentially 

more toxic treatment strategies such as prednisone, immunomodulators and biologics as patients 

begin to fail the previous line of therapy. The paradigm for IBD treatment has now shifted to 

preventing damage to the intestinal wall to prevent disease progression and disability. This has 

become known as the “top-down” approach. It encourages the initial use of more aggressive, 

highly effective, but potentially more toxic treatment strategies early in the course of chronic 

illness because studies have shown that this approach decreases the long-term rates of surgery 

and hospitalization.  

Thiopurines, which fall under immunomodulators, are situated in the middle of the 

therapy pyramid. If treatment is started with immunomodulators, which are more effective than 
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ASA and less toxic than biologic agents, it is possible in the course of chronic illness to prevent 

disease progression and disability. However, genetic predisposition can not only determine 

susceptibility to disease state, but also impacts the ability to metabolize thiopurines (14-16). The 

clinical efficacy of thiopurine as an immunomodulator is highly dependent the degree to which 

the body metabolizes the drug, either converting it to therapeutic levels of the active product or 

toxic levels that cause adverse effects such as leukocytopenia (14-17). Thiopurines are 

metabolized in the liver and gut by one of three competing enzymes: thiopurine-S-

methyltransferase (TPMT), xanthine oxidase (XO), or hypoxanthine-guanine-phosphoribosyl 

transferase (HGPRT) (18-19). HGPRT is responsible for converting the pro-drug to the 6-

mercaptopurine (6-MP) therapeutic form, while the other two enzymes lead to inactivation of 

thiopurines. 

TPMT is the major enzyme for inactivation of thiopurines, since the amount of XO is 

negligible in hematopoietic tissues. TPMT enzymatic activity is a major factor in determining 

whether the amount of 6-TGN produced is in the therapeutic range or the toxic range because its 

catabolism of 6-MP controls how much remains for HGPRT to convert to 6-TGN. The degree to 

which TPMT is able to inactivate 6-MP is determined by the genotype of the patient. Ethnicity 

may also influence enzyme activity, as some variant alleles are more common among certain 

ethnic groups. While people of all ethnicities can get IBD, the disease burden is lower in ethnic 

minorities compared to non-Hispanic whites (20). In the Caucasian population, approximately 

89% of the population is homozygous for wild type TPMT, associated with normal levels of 

enzymatic activity. Approximately 0.3% are homozygous for mutations in TPMT and thus have 

negligible enzyme activity, meaning they have a true deficiency of TPMT. The remaining 11% 

are heterozygous and exhibit reduced enzymatic activity (21-22). In patients who exhibit reduced 
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TPMT activity, higher levels of active 6-MP are available to be converted to 6-TGN, producing 

toxic levels that cause myelosuppression as well as bone marrow and liver toxicity (23-26).   

TPMT genotyping prior to using these drugs would help to identify individuals with low 

or absent TPMT activity so that toxicity could be prevented by adjusting the dose of 6-MP or 

Aza prescribed (14,17, 21-22,27). In fact, guidelines for TPMT genotyping and associated 

thiopurine dosing were created in 2011 by the Clinical Pharmacogenetics Implementation 

Consortium (CPIC), which is part of the National Institutes of Health's Pharmacogenomics 

Research Network (28). Because the CPIC guidelines are relatively new, it is likely that not all 

gastroenterologists have implemented TPMT genotyping prior to prescribing thiopurine 

treatments for their IBD patients, leaving room for improvement regarding safety, efficacy and 

cost to the patient.  

 

Purpose 

To address the usefulness of TPMT genotyping, we proposed a retrospective study to 

determine the extent to which TPMT genotyping predicts phenotype, drug toxicity, and/or 

disease exacerbation. The first question addressed whether or not genotype is a good predictor of 

phenotype. TPMT genetic testing detects variations in the TPMT gene that predict its activity. 

Phenotypes are categorized as high, normal, or low enzyme activity and can be measured in 

RBCs. However, there may be other factors influencing TPMT enzyme activity (phenotype) and 

its potential for bone marrow toxicity. TPMT enzyme activity can be inhibited by interactions 

with several drugs, including naproxen, ibuprofen, ketoprofen, furosemide, sulfasalazine, 

mesalamine, olsalazine, mefenamic acid, thiazide diuretics, and benzoic acid inhibitors, some of 

which are frequently used in combination therapy with thiopurines. Because of the potential 

confounding effects of polypharmacy, further data is needed to determine the reliability of 
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predicting phenotype from genotype. The second question asked whether genotype is a 

prognostic indicator of drug toxicity and/or exacerbations. One of the benefits of preemptive 

TPMT enzyme genotyping is that doses can be customized based on genotype status to reduce 

the likelihood of adverse events without compromising disease control. We investigated whether 

the genotype could predict elevated exacerbations such as abdominal pain, diarrhea, and weight 

loss. 

 

Significance 

Exacerbations of CD and UC have a substantial economic impact on annual healthcare 

expenditures. Direct and indirect annual costs in the U.S. were estimated to be $1.6 to $31.6 

billion in 2014, as reported by the Crohn’s and Colitis Foundation of America (CCFA).  

Although treatment expenses make up a significant portion of the cost of IBD, studies have 

shown that inappropriate treatment, suboptimal treatment, and lack of adherence to therapeutic 

regimens also contribute to the cost burden (29). Costs for IBD include hospitalizations, the 

eventual need for surgery due to disease complications, and frequent physician visits. The 

staggering economic burden of IBD makes it imperative to couple early diagnosis with effective 

treatment at the onset of symptoms (29-31). To this end, preemptive genotyping to generate 

customized doses of thiopurines based on TPMT status would reduce the likelihood of adverse 

events without compromising disease control. 
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Chapter 2 Review of Literature 

Characteristics of IBD 

The exact etiology and pathology of IBD remain unknown, but available evidence 

suggests that an abnormal immune response against the microorganisms in the intestine is 

responsible for the disease in genetically susceptible individuals (32). Pathologic alterations in 

the intestinal microbiome trigger an aberrant mucosal immune response in genetically 

predisposed individuals, leading to the development of chronic intestinal inflammation. These 

pathologic alterations in gut microbial composition seen in IBD are referred to as intestinal 

“dysbiosis.” There is a shift from predominantly “symbiont” microbes to potentially harmful 

“pathobionts.” Research suggests that perturbations in the gut microbiome are an essential factor 

triggering inflammation in IBD rather than being merely a consequence of the chronic 

inflammation (33). Abundant evidence supports the integral role that the intestinal microbiome 

plays in the pathogenesis of IBD, including dysbiosis observed in individuals with IBD. In 

addition, the majority of genetic polymorphisms for IBD susceptibility are associated with host 

mucosal barrier function and are involved in host–microbiome interactions (33).  

The gut microbiota is the largest and most diverse community of microbes in the human 

body. The intestinal microbiota, or microorganism population of the intestine, constitutes only a 

fraction of the complexity of the intestinal microbiome. This diverse array of microbiota 

expresses a variety of microbial genes resulting in gene products that can interact with the host 

environment. The composition of the gut microbiome changes over time, and no single microbe 

or microbial milieu has proven to be the specific cause of IBD. The immediate question that 

follows is how the host responds to dysbiosis. Host genetic factors, specifically those pertaining 

to the innate arm of immunity, are predicted to play a role in the pathogenesis of IBD. The 

intestinal microbiota is a major source of immune stimulation, and the colonic epithelium lies in 
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close proximity to a high density of diverse microbes (34). The continual communication 

between host cells and host microbes is essential for normal homeostasis, but imbalance can 

cause deleterious effects and contribute to intestinal inflammation (35-36).  

Host immune factors play a role in maintaining or reacting to mucosal inflammation. It 

has long been suspected that an individual’s genotype contributes to overall susceptibility to 

developing IBD. Studies evaluating specific genetic variants have highlighted the interplay 

between the gut immune system and intestinal microbiota. For example, genetic variations in 

NOD2 (nucleotide-binding oligomerization domain 2) correlate with decreased IL-10, an 

important anti-inflammatory cytokine (33). Genetic polymorphisms of NOD2 have demonstrated 

an inability to respond to bacterial muramyl dipeptide (MDP), reducing downstream activities of 

NF-κB activation and subsequent inflammation (34). This contributes to down-regulation of 

inflammatory responses, with chronic stimulation of NOD2 acting to tolerize cells against 

bacterial stimulation and ultimately down regulating other pathogen recognition receptors 

(PRRs). Additional polymorphisms in toll-like receptors (TLRs) have been identified and 

associated with pancolitis in UC patients (34). The innate immune response produces 

inflammation that in turn allows for the recruitment of the adaptive arm of the immune response 

into the tissue, causing dysregulation. 

Dysregulation of the immune response in the intestine plays a critical role in the 

pathogenesis of IBD. Dysregulation involves a wide range of cells including cytokines, T 

regulatory cells, and T helper cells that are likely to be associated with disease progression (32). 

Dysregulation can lead to an imbalance in the T helper cells subsets, an increase in the cytotoxic 

activity of cytotoxic T cell and natural killer cells, and increased activation of antigen presenting 

cells that present to T cells (32). The dysfunction of the mucosal immune system plays a central 

role in both the induction and persistence of chronic inflammation by producing pro-
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inflammatory cytokines. These pro-inflammatory cytokines are potent stimulators of the 

intestinal mucosal effector functions. Under inflammatory conditions, a large number of 

activated immune cells infiltrate the intestinal tract. 

Genome-wide association studies (GWAS) have been successful in, identifying 99 over-

lapping genetic risk loci (37) involved in IBD. Twenty-eight of these are shared between CD and 

UC. Analysis of the genes and genetic loci implicated in IBD indicate several functions that are 

crucial for intestinal homeostasis, including barrier function, epithelial restitution, microbial 

defense, innate immune regulation, reactive oxygen species (ROS) generation, autophagy, 

regulation of adaptive immunity, endoplasmic reticulum (ER) stress and metabolic pathways 

associated with cellular homeostasis (Figure 1) (37). These actions are coordinated at four 

different levels in the epithelium: microbial sensors, recruitment of mediators, signal 

amplification, and transducers and effectors (37). The gut has many tiers of defense against 

invasion by microbes, including the epithelial barrier, and the innate and adaptive immune 

responses. These components are all closely interrelated and may all be susceptible to genetic 

variations, including variations in drug metabolism. 
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Figure 1. A model for IBD pathways based on GWAS. Intestinal homeostasis involves the coordinated actions 
of epithelial, innate and adaptive immune cells. Barrier permeability permits microbial incursion, which is 
detected by the innate immune system, which then orchestrates appropriate tolerogenic, inflammatory and 
restitutive responses in part by releasing extracellular mediators that recruit other cellular components, 
including adaptive immune cells. Genetic variants, the microbiota and immune factors affect the balance of 
these signals. Genes in linkage disequilibrium (r2 > 0.8) with IBD-associated single nucleotide polymorphisms 
(SNPs) were manually curated and classified according to their function(s) in the context of intestinal 
homeostasis and immunity. Text color indicates whether the genes are linked to risk loci associated with 
Crohn’s disease (CD; black), ulcerative colitis (UC; blue) or both (red). Asterisk denotes corresponding coding 
mutations; cis-eQTL effects are underlined. G, goblet cell; P, Paneth cell. (37) 

 

Metabolomics of Thiopurines 

Two of the most common drugs in the thiopurine class of immunomodulators are 

azathioprine (AZA) and 6-mercaptopurine (6-MP). AZA is the pro-drug form of 6-MP, where an 

imidazole ring has been added to the 6-MP molecule to facilitate uptake by the liver (Figure 2) 

(16). Glutathione, a physiologically important antioxidant and reducing agent, rapidly converts 

AZA to 6-MP by a non-enzymatic, nucleophilic attack of the thioether bond (16,38).  
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Figure 2. A) AZA molecular structure.  B) 6-MP molecular structure (39). 

Once AZA has been converted to 6-MP, the 6-MP is metabolized in the liver and gut by 

one of three competing enzymes: thiopurine-S-methyltransferase (TPMT), xanthine oxidase 

(XO), or hypoxanthine-guanine-phosphoribosyl transferase (HGPRT) (18-19). TPMT inactivates 

6-MP by the methylation of 6-MP to generate the inactive metabolite known as 6-methyl-

mercaptopurine (6-MeMP). XO converts 6-MP to inactive 6-thioruate (6-TU), which is excreted 

in the urine (22, 40). In contrast, HGPRT converts 6-MP to the active metabolite 6-thioguanine 

nucleotide (6-TGN) (18-19, 22, 40). Both the therapeutic activity of 6-MP and AZA, as well as 

its toxicity to bone marrow and liver, are a result of the 6-TGN metabolite (Figure 3) (41-43). 

When 6-TGN levels are maintained in the range of 230-400 pmol/8 x 108 RBC, a positive 

therapeutic response is achieved and IBD goes into remission. On the other hand, when 6-TGN 

levels exceed 400 pmol/8 x 108 RBC (44), the metabolite causes liver toxicity and suppression of  

hematopoiesis in the bone marrow. 

A B 
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Achieving a therapeutic response 

There are three mechanisms by which thiopurines achieve a therapeutic response. Taken 

together, these three mechanisms prevent activation and proliferation of the T-lymphocytes 

implicated in the pathogenesis of IBD and induce them to undergo apoptosis (Figure 4). First, 6-

TGN, a purine analog arrests the cell cycle and triggers apoptosis by being incorporated into 

DNA in place of adenosine and guanine, leading to chromosome damage (46). Second, when 6-

TGN is incorporated into base pairs, this causes reduced stability, through small changes in local 

DNA structure, and increased levels of methylation, activating the DNA mismatch repair system 

(46). Third and most importantly, 6-thioguanine triphosphate nucleotide (6-TGTP), one of the 

thioguanine nucleotides, acts as a direct antagonist of Rac1, a factor that dampens the 

inflammatory cascade through its effects on NF-kB and signal transducer and activator of 

transcription 3 (STAT-3) (46).  

 

Figure 3. AZA metabolism pathway.  Competing pathways result in either inactivation of 6-MP by the enzymes 
TPMT or XO, or conversion of 6-MP to metabolically active 6-TGN for incorporation of cytotoxic nucleotides into 
DNA (45). 
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Figure 4. Action of 6-TGN (43). 

 

Balance between efficacy and toxicity 

 The immunosuppressive properties of thiopurines are most probably mediated through 

their interference with protein synthesis and nucleic acid metabolism, as well as by their 

cytotoxic effects on lymphoid cells (47). 6-MP must be transformed into a ribonucleotide, which 

functions as a purine antagonist. However, 6-MP undergoes rapid and extensive catabolic 

oxidation by xanthine oxidase (XO), limiting the absolute bioavailability of 6-MP (47). As such, 

the bioavailability can range from 5-37%. The anabolic transformation of 6-MP into active 

metabolites is mediated by the competing pathways catalyzed by TPMT and HPGRT.  

Therefore, the same pathways that lead to efficacy in treatment can also lead to toxicity. Low 

TPMT activity has been associated with increased cytotoxicity because it allows 6-MP 

metabolism to be shunted towards the excessive production of 6-TGN via the enzyme HPGRT. 

 

Genetic polymorphism 

TPMT enzymatic activity is a major factor in determining whether the amount of 6-TGN 

produced is in the therapeutic or toxic range because its catabolism of 6-MP determines how 

much is available to convert to 6-TGN. TPMT enzyme activity can be measured in the clinical 
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setting and characterized as deficient (<10mU/L), low (20–67mU/L), normal (68–150mU/L), 

and high (>150mU/L) (44). The level of enzyme activity is determined by the genotype of the 

patient. Ethnicity may also influence enzyme activity, as some variant alleles are more prominent 

among certain ethnic groups when compared to others. In the Caucasian population, 

approximately 89% of the population is homozygous for wild type TPMT, associated with 

normal levels of enzymatic activity. Approximately 0.3% are homozygous for mutations in 

TPMT and thus have negligible enzyme activity, meaning they have true deficiency of TPMT. 

The remaining 11% are heterozygous and exhibit reduced enzymatic activity (21-22). In patients 

who exhibit reduced TPMT activity, higher levels of active 6-MP are available to be converted to 

6-TGN, shifting 6-TGN from a therapeutic to a toxic range that causes liver toxicity and 

myelosuppression (23-26).   

There are at least 20 genetic polymorphisms of TPMT identified within the human 

population that lead to varying degrees of reduced enzyme activity (38). Among these, TPMT 2, 

3A, 3B, and 3C are the most common mutations (48). The reduced enzyme activity of these 

variants causes the affected individuals to be particularly susceptible to thiopurine toxicity due to 

overproduction of 6-TGN.  Thus, TPMT activity correlates inversely with 6-TGN levels in 

erythrocytes and presumably other hematopoietic tissues. Since these cells have 

negligible xanthine oxidase activities, TPMT methylation is the only inactivation pathway 

available (38, 44). This leads to increased levels of 6-TGN in the red blood cells and bone 

marrow toxicity that leads to clinical symptoms of myelosuppression, anemia, bleeding 

tendency, leukopenia and infection (22,75).  Therefore, it is not recommended that patients with 

a known TPMT deficiency be treated with AZA or 6-MP (28).  

Polypharmacy drug interactions and TPMT activity 
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Adverse effects can occur that are unrelated to the main pharmacological action of a 

drug. Such adverse effects are termed idiosyncratic and are often initiated by metabolites of the 

parent drug or by other indirect mechanisms (49). In recent years, with the advent of novel 

therapeutic agents to treat a host of disorders, including inflammatory bowel disease and others, 

the potential for serious clinically relevant drug reactions has increased. Novel drugs such as 

thiopurines were originally designed to treat a specific disease but were later repurposed to treat 

additional diseases without further clinical trial research. A significant number of adverse events 

can be explained by drug interactions (49). For example, some drug interactions are caused by 

one drug competitively inhibiting the rate of metabolism of another drug. Other interactions can 

be mechanistic, in which one or more drugs become synergistic without any change in actual 

drug levels (49).  

 Thiopurines and ASA are two of the most widely used drugs for IBD, and they are often 

used in combination therapy. In vitro studies have shown that ASAs and their metabolites can 

inhibit the activity of TPMT (50). 5-ASA is inactivated by the n-acetyl transferase 1 (NAT1) 

isoform in colonic mucosa. NAT1 catalyzes the transfer of an acetyl group from acetyl-CoA to 

various aryl amine and hydrazine substrates. This enzyme helps metabolize drugs and other 

xenobiotics, substances that are foreign to the body. Polymorphisms in this enzyme can be 

classified as low, intermediate, or normal just like TPMT. The inheritance of a slow acetylator 

genotype could lead to a reduced inactivation of 5-ASA (50), which in turn allows 5-ASA to 

inhibit the activity of recombinant TPMT in vitro (51-52). In one study by Stocco et al. (50), 

patients with NAT1 slow metabolizer phenotype had significantly higher 6-TGN levels in 

comparison with rapid NAT1 metabolizers. A study completed by Hande et al. (53), concluded 

that 5-ASA therapy was associated with higher 6-TGN levels in adults and children with IBD in 

remission on Aza or 6-MP. It is possible that NAT1 influences TGN concentrations 
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independently of mechanisms involved in 5-ASA metabolism; i.e. allosteric binding at certain 

concentrations of ASAs. 

 In an ex vivo study by Xin et al. (54), the inhibitory potential of sulfasalazine (SZ), 5-

aminosalicylate, and 5-ASA’s main metabolite Ac-5-aminosalicylate on TPMT activities were 

investigated in patients with IBD. This inhibitory potential could be the consequence of its 

common ASA-prodrug structure, which may determine the binding affinity to TPMT. This 

proposed binding and inhibition is speculated to be reversible. In addition, they assessed whether 

there was a difference in the ASA drug interactions between thiopurine free patients or patients 

on long-term treatment with thiopurines. What they discovered was that while all three ASAs 

had inhibitory effects on TPMT activity (Figure 5), SZ was the strongest inhibitor (Figure 6, top) 

(54). There was no difference in thiopurine-free patients (Figure 6, bottom). Because ASAs are 

relatively slow in being eliminated from the body (54, 74), it is possible that the adverse effects 

occurring from thiopurine therapy could be the result of drug interactions between thiopurines 

and ASAs (55). 

 

 

Figure 5. Inhibition of TPMT activity in erythrocytes of two representative patients with IBD using the prodrug SZ, 
5-ASA, and N-Ac-5-ASA. Inhibition of thiopurine S-methyltransferase (TPMT) activity in erythrocytes of two 
representative patients with inflammatory bowel disease (IBD) by the prodrug sulfasalazine (SZ, black triangle), 5-
aminosalicylate (5-ASA, black square) and its major acetylated metabolite (N-Ac-5-ASA, open circle). According to 
basal TPMT activity the two patients were phenotyped either as individuals with very high (62 units; solid lines) or 
with intermediate (20 units; broken lines) activity. (54) 
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Figure 6. Inhibition of TPMT activity in erythrocytes of AZA-free patients compared to patients on AZA. Table 1) in 
all three groups, SZ was the strongest inhibitor (mean IC50 values ranged from 9 to 17 µM) if compared with 5-
ASA (IC50 range: 129–236 µM) and Ac-5-ASA (IC50 range: 58–74 µM) in AZA-free patients. Table 2) in patients 
treated with AZA the assessment of the inhibitory action for the three aminosalicylates revealed that the 
corresponding IC50 values were very similar to those determined in AZA-free patients. (54) 

  

In addition, benzoic acid derivatives have been shown to be potential inhibitors of TPMT activity 

and ASAs contain benzoic acid in their chemical structure (Figure 10). In a study by Woodson et 

al. (56), the benzoic acid derivative tropolone, also a catechol-O-methyltransferase (COMT) 

inhibitor, was shown to be a noncompetitive inhibitor of TPMT. A catechol structure contains a 

benzoic ring with an additional hydroxy group attached. This led to the suggestion that other 

COMT inhibitors might affect TPMT activity as well. COMT is one of several enzymes that 

degrades catecholamine, catechol estrogens, and various drugs and substances having a catechol 

structure. Woodson et al., furthered their studies of benzoic acid derivatives by looking at a 

series of benzoic acid derivatives known to inhibit TPMT. Each of the eight compounds tested 

inhibited TPMT activity (56). Concentrations needed to inhibit TPMT by 50% ranged from 20 

µM to 2.1 mM (Figure 7).  
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Figure 7: Structures and IC50 for benzoic acid derivatives that inhibit TPMT (56). 
 

The authors then sought to determine whether there was a structure-activity relationship 

for benzoic acid inhibition of TPMT. Preliminary structure-activity analysis indicated that the 

carboxyl group was important for TPMT inhibition and that displacement of that group from the 

aromatic ring on a carbon side-chain decreased inhibition (Figure 8) (56). The addition of 

methoxy and/or phenolic hydroxyl substituents to the aromatic ring enhanced inhibition of 

TPMT activity (56-57). Thus, the authors concluded that TPMT may be catalyzing the 

methylation of nonheterocyclic aromatic sulfhydryl compounds other than the thiopurines and 

thiopyrimidines previously thought to be the only substrates for the enzyme, and this is possibly 

happening as a noncompetitive inhibition. Another study by Ames et al. (57), also looked at the 

structure-activity relationship for benzoic acid inhibitors and thiophenol substrates. They too, 

concluded that TPMT catalyzes the S-methylation of nonheterocyclic thiophenol derivatives. 

They also concluded that the most important factor in the binding of benzoic acid compounds to 

TPMT is the hydrophobicity of the first substituent, suggesting that the binding site on the 

enzyme for inhibitors includes a hydrophobic cleft (57). Interestingly enough, acetylsalicylic 
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acid, is also a benzoic acid derivative. This was one of the derivatives used in the Woodson et al. 

experiment that demonstrated the ability to inhibit TPMT activity. 

 

  

Figure 8. Structure-activity relationship analysis for TPMT inhibitors. A series of preliminary experiments was then 
conducted to study structure-activity relationships for benzoic acid inhibitors of TPMT. The first set of experiments 
(Table 2, Group A) demonstrated that compounds with more than one carboxyl group were less active than benzoic 
acid itself. The IC50 values for phthalic acid and isophthalic acid were twice that of benzoic acid (Table 2, Group A). 
The importance of the carboxyl group for TPMT inhibition was confirmed by comparison of the activities of 
benzoic acid derivatives with those of an analogous series of benzaldehyde compounds. Although all of the 
benzaldehydes studied were TPMT inhibitors, in each case the IC50 value of the corresponding benzoic acid 
derivative was considerably lower than that of the comparable benzaldehyde (Table 2, Group B). Exactly the 
opposite relationship between benzoic acid derivatives and benzaldehydes was found when similar compounds were 
tested as COMT inhibitors (18). Separation of the carboxyl group from the benzene ring by even a single carbon 
atom greatly reduced the inhibition of TPMT. The IC50 values of vanillic acid and gentisic acid were approximately 
1 order of magnitude lower than those of homovanillic acid and homogentisic acid (Table 2, Group C). Finally, as 
expected, the relative positions of substituents on the ring played an important role in their effects on TPMT 
inhibition. When three different isomers of anisic acid were studied, the rank order of their potencies related to the 
position of the methoxy group was m ³ p >> o (Table 2, Group D). (56) 

 
 Nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit pharmacological effects similar 

to those of 5-ASA and have features in common with ASA and benzoic acid (Figure 9). It was 

demonstrated by Oselin et al. (58), that NSAIDs inhibit human TPMT in vitro, and clinically 

significant drug interactions may occur when thiopurines are used simultaneously with various 
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NSAIDs such as naproxen and mefenamic acid. This may be due to their structural determinants 

that are responsible for their pharmacological action in a manner similar to ASAs and benzoic 

acid derivatives (56, 58). ASA, benzoic acid derivatives, and NSAIDs have all been shown to be 

noncompetitive inhibitors of TPMT, with similar structural configurations. It is possible that they 

are inhibiting TPMT activity via binding the substrate based on structure and hydrophobicity (56, 

58).  

  

A.  

 

 

B. 

 

 

C.  

  

Figure 9. A. Benzoic Acid, B. 5-ASA, C. NSAIDs (59-61). 

 While not structurally similar to ASA, benzoic acid, or NSAIDs, methotrexate has been 

shown to bind TPMT and inhibit its enzyme activity (62). Methotrexate, a folic acid analog, was 

originally developed as a chemotherapy agent, but has been used in the treatment of autoimmune 

diseases such as rheumatoid arthritis and CD (63). Its mechanism of action is to competitively 

inhibit dihydrofolate reductase (DHFR), an enzyme that participates in tetrahydrofolate synthesis 

that is needed for essential purine and pyrimidine base biosynthesis (64-65).  In the treatment of 

autoimmune disorders such as rheumatoid arthritis and CD, inhibition of DHFR is not thought to 

be the main mechanism, but rather multiple mechanisms are involved, including the inhibition of 

enzymes such as TPMT involved in purine metabolism. This leads to inhibition of T cell 

activation and suppression of intercellular adhesion molecule (ICAM) expression by T cells; 

selective down-regulation of B cells; increasing CD95 sensitivity of activated T cells; and 

inhibition of methyltransferase activity, leading to deactivation of enzyme activity relevant to 

immune system function (66-67). 
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Conclusion 

 Thiopurines and other immunomodulators are often used in co-therapy with other drug 

classes to treat IBD, including ASAs and biologics and the effect of polypharmacy on thiopurine 

is still being debated. Decreased thiopurine metabolism could be due to other enzymes coded in 

the genes that metabolizes a different class of drugs used to treat IBD, such as NAT1 and 5-

ASA. Research has also debated the effect of structural similarities between thiopurines and 

other drug classes such as ASA and benzoic acid derivatives. It is possible that these structures 

either mimic thiopurines to bind at the same sight on TPMT or bind at an allosteric site. Further 

research is needed to deduce the location in which these molecules are binding and affecting the 

activity of TMPT and decreasing enzymatic activity. 
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Chapter 3 Methodology 

Experimental Design 

 This was a retrospective study of CD and UC patients who have been treated with Aza or 

6-MP, at Spectrum Health (SH). SH is a managed health care organization based in West 

Michigan and founded in 1997. SH has one of the largest groups of gastroenterologists in West 

Michigan, treating a variety of GI diseases including CD and UC. Data was collected from an 

existing database of adults diagnosed with either CD or UC who had also been genotyped for 

TPMT alleles and phenotyped for enzyme activity, and from the date we determined whether 

drug toxicity and/or disease exacerbation occurred. The occurrence of exacerbations and toxicity 

were recorded as a dichotomous variable (Y/N), rather than recording the number of events. A 

disease exacerbation was defined as a change in drug regime, change in symptoms, or need for 

surgery.  

  

Definitions 

• Genotype: we noted the following alleles, *1, *3C, and *3A.  

• Phenotype: phenotype was defined as low, normal, or high enzyme activity. Normal is 

classified as 15.1-26.4 enzyme units (EU), intermediate as 6.3-15 EU, and low as <6.3 

EU. 

• Exacerbation: change in drug regime, escalation of symptoms, toxicity, or surgery (see 

Table 1) 

Subjects 

Deidentified data was collected from the Spectrum Health digestive disease research 

database, which consisted of data obtained from donors who consented to be a participant in a 

registry approved by the Institutional Review Board (IRB). The Spectrum Health IRB protocol 
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number for this project was 2011-332. The time frame for data collection in the database was 

1999-2006. Subjects were adults 18 or older, male or female, with a diagnosis of UC or CD.  

Data Collection 

The following data was collected for each subject. 

• Disease type: UC or CD 

• Age: 18-61 

• Gender: Male or Female 

• Genotype: *1 / *1 (Wild type), *1 / *3A or *1/ *3C (Heterozygous), *3A / *3A 

(Homozygous) 

• Phenotype represented: Normal, intermediate, or low TPMT enzyme activity was noted 

based on the classifications above (see Definitions) 

• Exacerbation: disease exacerbation and/or toxicity 

Table 1. Criteria for diagnosing CD and UC. 

 CD UC 
Clinical • Frequent small-volume 

diarrhea with urgency 
• Predominantly bloody 

diarrhea 

• Diarrhea accompanied by 
abdominal pain and 
malnutrition 

• Abdominal mass 
• Perianal lesions 

Endoscopic/radiological • Diffuse superficial colonic 
inflammation 

• Involvement of rectum, but 
this can be patchy 

• Shallow erosions and ulcers 
• Spontaneous bleeding 

• Discontinuous transmural 
asymmetric lesions 

• Mainly involving ileum 
and right-sided colon 

• Cobblestone appearance 
• Longitudinal ulcer 
• Deep fissures 

Histological • Diffuse inflammation in 
mucosa or submucosa 

• Crypt architecture distortion 

• Granulomatous 
inflammation 

• Fissures or aphthous 
ulcers can be seen; often 
transmural inflammation 

 

Statistical Analysis 
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Demographic analysis of age, weight, and gender were completed. The normality and 

equal variance assumptions were met for both age and weight. Therefore, a two-sample t-test 

was used to compare means between the groups with wild-type or mutant genotypes for TPMT. 

Gender between groups was compared using Fisher’s Exact Test. For all comparisons between 

genotype versus phenotype (Aim 1), genotype versus toxicity and/or exacerbations (Aim 2), 

Fisher’s Exact Test was used. Secondary analysis was also completed on genotype versus 

metabolite levels, and phenotype versus metabolite levels using Fisher’s Exact Test. Fisher’s 

Exact Test of independence is a nonparametric test used on small sample sizes. Given that the 

sample size was 30 or less, and expected cell counts that were less than 5 was greater than 20% 

for all categorical analyses the Fisher’s Exact test was the correct statistical test to use. Numeric 

data is summarized as mean ± standard deviation and categorical data is summarized as 

frequency (percent). All analyses were assessed at a significance level of 0.05 and completed 

using IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: 

IBM Corp. 
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Chapter 4 Results 

A total of 62 subjects with UC and CD were screened. Of the 62, 30 were included in this 

study. Ten subjects were lost to follow-up post genotype/phenotype results. Twenty-two were 

excluded due to missing data, including genotype/phenotype, weight, and thiopurine data. Age, 

gender, and weight were included for each subject. Twenty-two patients were genotyped as 

TPMT* 1/* 1 WT. Seven were genotyped as TPMT* 1/* 3A and TPMT* 1/* 3C heterozygous 

for one non-functional TPMT allele. One was genotyped as TPMT* 3A/* 3A homozygous for 

two non-function TPMT alleles. Given the small sample size for the mutant alleles, both the 

groups were combined to create the mutant (M) group.  

A demographic comparison of those with WT or M genotype indicated that there was no 

significant difference between gender, mean age, or mean weight between groups (p = 0.242, 

0.093, and 0.522 respectively) (Table 2). While there was no significant difference, we noted that 

the WT group tended towards a higher mean age and lower mean weight when compared to the 

M group (Table 2).  

 
Table 2. Demographics compared between groups, N=30. 

 WT (n = 22) Mutant (n = 8) p-value 

Gender (% Female)           14 (63.6)            3 (37.5) 0.242 

Age 42.3 ± 13.3 33.3 ± 10.2 0.093 

Weight (kg) 80.7 ± 19.9 86.4 ± 25.1 0.522 

 
 
Genotype vs. Phenotype 
 

Recall that genetic variations in TPMT have been associated with adverse drug events 

such as hepatotoxicity, and TPMT genotyping is now being used as a pharmacogenomic 

biomarker for these adverse events. However, there may be other factors influencing TPMT 

enzyme activity (phenotype) and consequently adverse events. Because of these confounding 
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factors, we wanted to ask whether genotype was indeed a good predictor of phenotypic 

expression. Our data indicates that these two variables are not independent of each other (p = 

0.002) (Table 3), and subjects with a mutant genotype are much more likely to have a 

low/intermediate phenotype when compared to subjects with a wild-type genotype for TPMT 

(Table 3). 

 
Table 3. TPMT genotype versus TPMT enzyme activity, N=30. 

 
 

 
 

 
 

 
Metabolite Levels  
 

Thiopurine metabolism produces two major metabolites, 6-MeMPN and 6-TGN (Figure 

4). 6-TGN is the metabolite responsible for most adverse events associated with thiopurines, as it 

is incorporated into DNA to ultimately dampen the inflammatory response and leads to cell 

death. Because of this, one would expect that those with normal TPMT enzymatic activity (WT) 

to inactivate thiopurines would have corresponding low levels of metabolite production. 

Similarly, those with mutations in TPMT would have high levels of metabolites, leading to 

higher risk of toxicity. We tested the association between genotype and metabolite levels. If 

genotype was normal, intermediate, or low, then we predicted that metabolite levels would be 

normal, intermediate, or low respectively in accordance with the likelihood of response for 6-

TGN and risk of hepatotoxicity for 6-MeMPN.  

To study this relationship between genotype and metabolite levels, a 6-TGN level of 0-

230 pmol/8x10^8 RBC was classified as a high response, 230-400 pmol/8x10^8 RBC as a low 

response, and 400-600 pmol/8x10^8 RBC as a higher risk for leukocytopenia. However, no 

patients presented with 6-TGN metabolite levels in the higher risk category. The median value 

 Mutant (n = 8) WT (n = 22) p-value 

Low/Intermediate 8 (100.0) 7 (31.8) 0.002 

Normal 0 (0.0) 15 (68.2) 
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for those with a TPMT mutation was 287 pmol/8x108 RBC, which was much higher than the 

median value for the wild-type group (178 pmol/8x108 RBC). There was significant evidence to 

suggest an association between genotype and 6-TGN levels (p = 0.029) (Table 4). Subjects with 

a mutant TPMT genotype were also much more likely to respond to thiopurine therapy when 

compared to patients with a wild-type genotype (Table 4). This was quite interesting, as our 

initial hypothesis predicted that subjects with one or both non-functional TPMT alleles would 

have a lower response or higher risk of leukocytopenia respectively. Because all 4 subjects in 

the mutant group fell into the high response category, while none were in the low response 

group, it is difficult to answer the question with the available data (Table 4).  

Table 4. Genotype vs. responsiveness to 6-TGN therapy, N=17. 
 Mutant (n = 4) WT (n = 13) p-value 

High response 4 (100.0) 4 (30.8) 0.029 

Low response 0 (0.0) 9 (69.2) 

 

6-MeMP metabolites were classified with regard to risk of hepatotoxicity: 0-5700 = 

lower risk of hepatotoxicity (LRH) and >5700 = high risk of hepatotoxicity (HRH). When 

comparing genotype to 6-MeMPN metabolite levels, we hypothesized that WT genotypes would 

have lower risk of hepatotoxicity, because two normal alleles leads to normal enzymatic activity 

and therefore less 6-MP available for the active pathway to convert to metabolite. The median 

value for the group with mutant TPMT was 528 pmol/8x108 RBC and was much lower than the 

median value for the wild-type TPMT group (1493 pmol/8x108 RBC). However, there was no 

evidence to suggest a relationship between genotype and 6-MeMPN levels (p = 1.00) (Table 5). 

This is likely due to the small number of subjects in the mutation group. Like 6-TGN, no 

subjects with a mutant genotype had a designation of high risk for hepatotoxicity. It was also 

noted that there were more WT subjects with a lower risk of hepatotoxicity (Table 5). This 
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agrees with our hypothesis that WT genotypes would have a lower risk of hepatotoxicity, 

because two normal alleles have normal enzymatic activity, decreasing the amount of 6-MP 

available for the active pathway. However, there were low numbers and multiple outliers in the 

wild-type group, which may be another reason for the overall non-significant result. 

Table 5. Genotype vs. risk of hepatotoxicity with 6-MeMPN Levels, N=17. 
  Mutant (n = 4) WT (n = 13) p-value 

Low risk hepatotoxicity   4 (100.0) 11 (84.6) 1.00 

High risk hepatotoxicity           0 (0.0)   2 (15.4) 

 

Genotype had a significant correlation with 6-TGN levels but not with 6-MeMPN levels. 

Genotype is a major influencing factor in the development of phenotype, but it is not the only 

one. Phenotypic plasticity defines the degree to which phenotype can be predicted by genotype. 

For example, if a phenotype can reliably be predicted from phenotype, it is said to have little 

plasticity. However, if confounding factors influence phenotypic expression, this causes high 

plasticity.  It is possible that phenotype is a truer representation of enzyme activity, because it 

reflects metabolite levels more accurately. To determine whether phenotypic expression would 

be a better predictor of metabolite levels than genotype, we tested the association between TPMT 

enzyme activity, and 6-TGN or 6-MeMPN metabolite levels.  

The results provide no significant evidence of a relationship between enzyme activity and 

6-TGN levels (p = 0.153) (Table 6). This is evident in the fact that there no significant difference 

in the mean 6-TGN levels between the mutant and wild-type group, 243.6 pmol/8x108 RBC and 

166.1 pmol/8x108 RBC respectively (data not shown). In Table 6, there may be some evidence of 

a trend that showing normal phenotypes tend to be in the high response group compared to the 

low/intermediate phenotypes. More testing with subjects should be done to determine if this 

trend may be present. 
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Table 6. Phenotype vs. responsiveness to 6-TGN levels, N=17. 
 Low/Intermediate (n = 9) Normal (n = 8) p-value 

Low response 6 (66.7) 2 (25.0) 0.153 

High response 3 (33.3) 6 (75.0) 

 

Similarly, there was no significant evidence to suggest that phenotype was a good 

predictor of 6-MeMPN levels (p = 0.206) (Table 7). In Table 7, all mutant subjects fell into the 

lower risk of hepatotoxicity compared to 6 in the normal subjects. There were no mutants in the 

higher risk of hepatotoxicity. This was contradictory to our hypothesis. The fact that all mutants 

were in the lower risk group and small sample size may be contributing to this non-significant 

result, since we hypothesized that low/intermediate enzyme activity would result in a higher risk 

of hepatotoxicity given that they would be unable to convert 6-MP into it’s inactive form 6-

MeMP. More testing should be done to determine if there is a true association or not. 

 
Table 7. Phenotype vs risk of hepatotoxicity with 6-MeMPN levels, N=17. 

 Low/Intermediate (n = 9) Normal (n = 8) p-value 

Low risk hepatotoxicity 9 (100.0) 6 (75.0) 0.206 

High risk hepatotoxicity                0 (0.0) 2 (25.0) 

 
Genotype vs Cytotoxicity  
 
 Lastly, we wanted to ask whether the genotype was a good predictor of the presence of 

toxicity and/or exacerbation. We predicted that subjects with a normal genotype would 

experience no toxicity/exacerbations because normal enzyme activity would reduce the amount 

of 6-MP available for the active pathway to convert to 6-TGN, leaving less to cause cytotoxicity. 

There was as a total of 30 subjects. However, one was missing information about toxicity or 

exacerbation, and was therefore excluded from the analysis. There was no significant evidence to 

show there is a relationship between the genotype and the presence toxicity (p = 1.00) (Table 8). 
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Surprisingly, the WT group had more subjects with toxicity than the mutant group (Table 8). The 

small size of the mutation group had an impact on achieving significance.  

 
Table 8. Genotype vs Toxicity/Exacerbation, N=29. 
Toxicity/Exacerbation Mutant (n = 7) WT (n = 22) p-value 

No 2 (28.6) 8 (36.4) 1.00 
Yes 5 (71.4) 14 (63.6) 
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Chapter 5 Discussion and Conclusions 

TPMT is the key enzyme in the pathway by which 6-MP gets converted to the inactive 

metabolite 6-MeMP. This reduces the amount of 6-MP available for HGPRT to convert to 6-

TGN in the active pathway. Reduced activity of TPMT can lead to an increase in 6-MP and 

therefore an increase in 6-TGN, leading to cytotoxicity. However, the TPMT enzyme is not only 

affected by genotype, but other factors as well, including polypharmacy. Thiopurines and ASAs, 

especially 5-ASA, are often combined in the treatment of IBD, and studies have shown the 

possibility of an interaction between these drug classes, that impacts the TPMT enzyme activity. 

These effects on TPMT may directly or indirectly influence the efficacy of thiopurines, 

depending on the level of metabolites generated in hematopoietic tissues. In our present study, 

we tried to determine the extent to which the TPMT genotype impacted the enzyme’s activity, 

the generation of 6-TGN and 6-MeMP and resulting toxicity. We also tried to gain additional 

insight about whether enzymatic activity might be a better predictor of metabolite levels than 

genotyping.  

We demonstrated a correlation between genotype and phenotype, and it was shown that these 

two variables were not independent of each other. In other words, subjects with a mutant TPMT 

genotype were much more likely to have low/intermediate enzymatic activity when compared to 

subjects with the wild-type TPMT genotype. While the data indicated an association between 

genotype and 6-TGN, it did not show a significant relationship with 6-MeMP. This may be due 

to the fact that all mutants, had a higher response when comparing genotype to 6-TGN, 

indicating an ability to reach therapeutic efficacy, This contradicted the given hypothesis that 

genotypes with low or intermediate activity would have a lower response to thiopurines or a 

higher risk of cytotoxicity, respectively. TPMT enzyme activity comparisons showed no 

significant relationship with 6-TGN levels although there may be some evidence of a trend. 
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TPMT enzyme activity also showed no significant relationship with 6-MeMP. This could be 

attributed to having no mutant TPMT subjects with a high risk of hepatotoxicity. This too, did 

not agree with the initial hypothesis. Lastly, we noted that genotype showed no correlation with 

toxicity and/or exacerbation. Interestingly, the WT genotypes group actually had more subjects 

with toxicity than the mutant group. As stated previously, we expected WT genotypes to have 

two functional alleles, and therefore normal enzymatic activity. This was not the case in the 

present study. 

Even though there were some significant associations, the majority of the comparisons tested 

were not statistically significant. However, the results obtained in this study had several 

limitations that were contributing factors. First, there was a small sample size. With only 30 

subjects included in this study, we had to resort to using mostly non-parametric testing. Sample 

size is directly proportional to the confidence level of the study. Therefore, a small sample size 

reduces the confidence level in the results. This result could result in potentially false significant 

or false non-significant results. This could compromise the conclusions drawn from the present 

study. Second, in several comparisons multiple subjects were excluded due to missing data. For 

example, in metabolite level comparisons, 13 subjects were missing this data in their records. 

Lastly, we did not have access to patient pharmaceutical lists, which would have allowed us to 

determine the commonality of drugs between subjects and whether polypharmacy was affecting 

phenotypic expression or metabolite levels. 

Ha et al. (41) observed that although TPMT genotype generally correlated with enzymatic 

activity, some patients with two normal alleles nevertheless had intermediate/low TPMT activity. 

They suggested that a TPMT enzymatic assay might be more informative than TPMT 

genotyping. In addition, Ha et al. thought that ITPase deficiency could cause accumulation of 6-

TITP, which activates 6-MP. Inosine monophosphate (IMP) is a central intermediate in purine 
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metabolism that gets converted to adenine or guanine nucleotides. ITPase converts inosine 

triphosphate (ITP) back to IMP. Deficiency of ITPase leads to accumulation of ITP. Since ITP 

can readily substitute for GTP-requiring actions such as thiopurine metabolism, the accumulation 

in 6-TITP could cause toxicity by inhibiting GTP-mediated pathways (41,68). A retrospective 

study found that the allele associated with ITPase deficiency was significantly linked to adverse 

drug reactions to Aza (71). 

Several studies have addressed the correlation of 6-TGN concentrations with thiopurine 

effectiveness but have yielded conflicting results. In a clinical setting, Dubinsky et al. found that 

the 6-MP response correlated with 6-TGN concentrations above 235 pmol/8 x 108 RBCs (69). 

Similarly, Cuffari et al. found that higher 6-TGN concentrations correlated with higher response 

to thiopurines and maintenance of inflammation in adults with IBD (70). Other studies, such as 

Goldenberg et al. (71), have disputed the value of 6-TGN levels in predicting the response to 

thiopurine therapies, stating less than 40% of the subjects had 6-TGN concentrations over 235 

pmol/8 x 108 RBCs.  

The metabolites are responsible for achieving a therapeutic response in the active pathway of 

thiopurine metabolism. The main 6-TGN nucleotides incorporated into DNA are 6-thio-GMP,     

-GDP, and -GTP.  Neurath et al. developed assays to measure these three nucleotides separately 

and found that patients with higher 6-TGN concentrations demonstrated a better response rate 

(72-73). Of note in their study, subjects with increased 6-thio-GDP levels had a worse outcome 

(72-73). Prospective studies could focus on manipulating 6-TGN nucleotide concentrations to 

see if there is an effect on therapeutic response. 

In the present study, we focused on genotyping and whether it is a good predictor of 

phenotype. Multiple studies have focused on dose escalation based on genotype. However, 

genotyping in these studies only includes the most common alleles and also does not consider 



42 
 

cofounding factors such as polypharmacy, which affects thiopurine metabolism. Allopurinol, a 

uric acid reducer, has been shown to have effects on metabolite concentrations and thiopurine 

effectiveness, but Sparrow et al. were unable to demonstrate a precise mechanism of action for 

this effect (73). As mentioned previously, several studies have focused on ASAs, NSAIDs, and 

benzoic acid derivatives and the role they play in thiopurine metabolism. Most importantly, they 

focused on the structural influence these therapies have on thiopurine metabolism. These authors 

assumed an allosteric inhibition that would decrease TPMT’s affinity for 6-MP. However, the 

site of binding is still unknown. 

Several future studies could be done to further contribute to this thiopurine research. A 

prospective study would be advantageous because it would provide a larger sample size and 

allow us to follow these effects over time. It would also be helpful to measure enzyme activity at 

multiple time points to confirm the reliability of the results and to look for trends. In addition, 

liver function tests should be obtained to provide a numerical representation of cytotoxicity 

rather than relying on more subjective measures of cytotoxicity noted in the subject’s medical 

records. This would allow comparison between enzyme activity, change in drug therapy, and 

liver function tests.  

Other future studies could focus on the nature of the interaction between TPMT enzyme and 

other drugs that affect its activity. It is possible that the drugs that influence TPMT activity are 

acting as allosteric inhibitors of TPMT. However, the specific site for allosteric inhibition is still 

unknown. Future studies should determine what site, if any, these other drugs are binding to and 

how it affects both TPMT activity and the enzymes affinity for thiopurines. Lastly, future studies 

should further look into the metabolite concentrations and their effect on dose response. 

In conclusion, implementing thiopurine therapy based on genotype is beneficial, but it does 

not account for the effects of polypharmacy on enzymatic activity. In addition, the genotype-
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phenotype relationship is best viewed from two perspectives, one at the genetic level and one at 

the phenotypic level. Normal genotype-phenotype testing often does not take into account the 

combined effect of mutations and environmental factors on true enzyme activity. It is best to 

view genotype-phenotype as an integration of development involving genes, pleiotropy, 

epistasis, and environmental factors. Thinking of genotype-phenotype relationships in integrated 

terms clarifies the comparison between environmental and genetic effects on phenotype and 

helps us to further understand the connection between genotypes and phenotypes. 
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