
Grand Valley State University Grand Valley State University 

ScholarWorks@GVSU ScholarWorks@GVSU 

Masters Theses Graduate Research and Creative Practice 

1-2019 

Modeling of Optimized Neuro-Fuzzy Logic Based Active Vibration Modeling of Optimized Neuro-Fuzzy Logic Based Active Vibration 

Control Method for Automotive Suspension Control Method for Automotive Suspension 

Mohammad Adom Safiullah 
Grand Valley State University 

Follow this and additional works at: https://scholarworks.gvsu.edu/theses 

 Part of the Automotive Engineering Commons 

ScholarWorks Citation ScholarWorks Citation 
Safiullah, Mohammad Adom, "Modeling of Optimized Neuro-Fuzzy Logic Based Active Vibration Control 
Method for Automotive Suspension" (2019). Masters Theses. 921. 
https://scholarworks.gvsu.edu/theses/921 

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at 
ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of 
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu. 

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/theses
https://scholarworks.gvsu.edu/grcp
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1319?utm_source=scholarworks.gvsu.edu%2Ftheses%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/921?utm_source=scholarworks.gvsu.edu%2Ftheses%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu


 
 

Modeling of Optimized Neuro-Fuzzy Logic Based Active Vibration Control Method for 

Automotive Suspension 

 

 

Mohammad Adom Safiullah 

 

 

 

 

 

 

 

 

 

A Thesis Submitted to the Graduate Faculty of 

 

GRAND VALLEY STATE UNIVERSITY 

 

In 

 

Partial Fulfillment of the Requirements 

 

For the Degree of 

 

Master of Science in Engineering 

 

 

 

 

School of Engineering 

 

 

 

 

 

 

 

 

December 2018 

 

 



3 
 

Dedication 

To my mother, Professor Showkat Ara Begum, for her support and presence in my life. 

  



4 
 

Acknowledgements 

I would like to thank my thesis supervisor Dr. Nicholas Baine first. He guided me when I felt lost 

and whenever I needed help he was there to support. I am especially grateful for his guidance on 

the literature writing, without his supervison this thesis would not be possible.  I would also like 

to thank Dr. Shabbir Choudhuri for his help with this thesis. His expertise and suggestion was 

immensely helpful and made this thesis a better work. I also owe gratitude to Dr. Ryan Krauss for 

his encouragement during this work.  

Finally I must express my gratitude to my parents and younger siblings for supporting me 

continuously from the other side of the world. I am also grateful to all my friends and 

wellwishers, this accomplishment would not have been possible without their encouragement. 



5 
 

Abstract 

In this thesis, an active vibration control system was developed. The control system was 

developed and tested using a quarter car model of an adaptive suspension system.  For active 

vibration control, an actuator was implemented in addition to the commonly used passive spring 

damper system. Due to nature of unpredictability of force required two different fuzzy inference 

system (FIS) were developed for the actuator. First a sequential fuzzy set was built, that resulted 

lower vertical displacement compared to basic damper spring model, but system had limited effect 

with disturbances of higher magnitude and continuous vibrations (rough road). To improve the 

performance of the sequential fuzzy set, the main fuzzy set was improved using an adaptive neuro 

fuzzy inference system (ANFIS). This model increased the performance substantially, especially 

for rough road and high magnitude disturbance scenarios. Finally, the suspension’s spring constant 

and damping co-efficient was optimized using a genetic algorithm to further improve the vibration 

control properties to achieve a balance of both ride stability and comfort. The final result is 

improved performance of the suspension system.  
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1. Introduction 

Vibration isolation and control of a suspension is a popular topic of study in the automotive 

industry. In this research, a quarter-car model is studied along with active vibration control. An 

active element (actuator) is used to apply force on the car body to continuously control vibration, 

and a fuzzy logic controller is used to determine how much force is to be applied. 

Quarter Car Model (QCM) is used to study the vibration on a car. QCM simplifies the 

study but provides a representative result for the vibration and corresponding impact on the car. 

For this general vibration study, the QCM consist of two springs and two dampeners, one for 

suspension and another representing the tire of the car [1]. For this active suspension model, an 

actuator was added to mitigate the impact of vibrations in the road disturbance on the displacement 

of the car between the mass of the car and the wheel.  This QCM model is depicted in Figure 1 

with the actuator.   

 

Figure 1: Quarter Car Model 
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Here, m1 is mass of quarter car, k1 is spring constant of suspension, b1 is dampening 

coefficient of suspension, x1 is vertical displacement of car, m2 is mass of wheel, k2 is spring 

constant of tire, b2   is dampening coefficient of tire, x2 is vertical displacement of wheel, w is road 

disturbance and u is the actuator force applied. 

The force applied by the actuator is calculated using a Fuzzy Inference System (FIS). FIS 

is a human experience-based approach to make a computation that is not well defined 

mathematically [2]. However, the rule base for a traditional fuzzy logic controller is limited by the 

scope and capabilities of human experience and abilities. To work around this limitation, neural 

learning can be a useful method to improve upon the FIS model, with the system being trained to 

generate its own rule base based on a given set of training data. The combination of the two 

concepts is referred to as an Adaptive Neuro Fuzzy Inference System (ANFIS), which has a fuzzy 

set where the rule base is result of neural training based on data provided from human experience.  

While neural learning is known to be inspired by the functioning of human brain, Genetic 

Algorithms (GA) are based on natural selection. The third method used to improve performance 

is GA optimization, which is based on survival of fittest principle. A genetic algorithm will be 

used to optimize the system being controlled. This works by creating multiple versions of the 

system and comparing their performance. The best designs survive and are mixed to create the 

next generation of designs. In each generation, GA optimization generates a new population 

keeping only the best designs to be used to create subsequent populations. Eventually, the 

algorithm will converge on an optimized solution with a better performance than any of the initial 

designs in the first population. 
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1.1. Objective 

In this work, a second-order differential equation of forced damped vibration for a quarter 

car suspension model is used. The objectives of this research work are: 

 Development of a state-space model for forced damped vibration 

 Modelling of quarter car based on previous studies  

 Developing a FIS model for active vibration control of a suspension 

 Improving fuzzy rule base with ANFIS training 

 Optimizing suspension system parameters using a GA to further improve performance 

 

1.2. Scope  

This work models an active suspension system using a quarter car model, where the active 

force calculation system was developed using FIS and ANFIS methodology and the performance 

was compared. For FIS, the Mamdani inference system was used. For ANFIS the Takagi-Sugeno 

method and hybrid method were used for training. Finally, a genetic algorithm was used for 

optimization of the actual system model design. The system was limited to two masses and 

parameters were constrained as there are realistic limitations.   
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2. Background and Literature Review 

In various industries, noise and vibration control is an important concern. In the 

conventional spring damper system, springs store energy and dampeners dissipate the energy to 

reduce the effect of vibration. In a passive suspension system, there is no control of the spring and 

dampener; therefore, the vibration cannot be isolated and used to provide feedback. For the modern 

automobile vibration, researchers have improved upon the passive suspension through the 

development of active and semi-active vibration control studies. In semi-active suspension 

systems, vibration control is improved by changing the physical properties of suspension at certain 

stages. Alternatively, active suspension systems work by continuously monitoring and injecting 

the proper amount of force through an actuator attached with a conventional suspension.  

The active control of vibration is a popular research topic, with much work being done 

using both theoretical and experimental studies [3].  The comfort and maneuverability of a vehicle 

depends heavily on the response of the suspension and its ability to reject disturbances (i.e. 

vibration control). Semi-active suspension performs adequately in most scenarios, but with the 

growing possibility of the driverless car in the near future and increasing demand of smoother 

vibration control, active vibration control is being explored as a better solution according to Pinhas 

Barak [4]. His work predicted that active vibration control will be able meet the demand of the 

future, as new developments make it more practical to implement. Dean Karnopp in his study used 

[5] the skyhook damper model for the active suspension system with vibration control. This study 

also compares the active and semi-active suspension. The basic Skyhook damper system only used 

damping to control the vibration, but it has its limitation in flexibility and operation in the robust 

system. Scott Ikenaga et al. developed an active suspension control for a full car model using a 

control system that combines filtered feedback and input decoupling transformation [6]. They used 
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skyhook damping and mitigated the vibration by actively controlling the damping coefficient of a 

semi-active damper. For the nonlinear system, the skyhook damper has few limitations. For better 

flexibility and response Krtolica and Hrovat solved a fourth-order linear quadratic differential 

equation for a half-car model in order to find the optimal solution to vibration control [7].   

For the nonlinear system, Ozgur Demir et al. used fuzzy logic combined with a PID 

controller for a suspension design of a half-car model [8]. Fuzzy logic improves the control of the 

nonlinear system, and in the robust nonlinear system, the fuzzy logic system can react fast and has 

great performance [9].  Qu Wenzhonga et al. have shown the advantage of fuzzy logic over filtered-

X LMS algorithm [10]. They proved that use of fuzzy logic can be advantageous over an algorithm 

like filtered-X LMS, which is simple to use and requires low computational load but is more 

suitable for linear control problems. Shiuh-Jer et al. [11] have designed an adaptive fuzzy 

controller using the sliding mode controller, where a smaller rule base is required, but they 

implemented online learning to compensate the system’s time-varying and nonlinear behavior. 

Jinpeng Li et al. [12] elaborated on the coupling of fuzzy logic and sliding mode controller where 

they designed an adaptive fuzzy system for a semi-active suspension system.  

Implementation of online and different machine learning is also becoming common in 

vibration studies. M Soleymani et al. [13] used online learning to make the suspension system 

react with not only road conditions but also traffic conditions. Various machine learning and 

genetic algorithm are also being used to design robust fuzzy logic control systems. Wei-Yen Wang 

et al. [14] used neuro-fuzzy logic, and Tomonori Hashiyama et al. [15] used the genetic algorithm 

with fuzzy logic to control an active or semi-active suspension. 

Neuro-fuzzy and genetic fuzzy algorithm-based suspension is more robust and efficient 

compared to the traditional fuzzy algorithms, but they are more computation heavy to train. In 
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either case, the fuzzy logic itself is computationally light and can be implemented on low-end 

suspension with little cost increase for application. In a complex non-linear system, the rule base 

often gets very convoluted. In this study, a sequential fuzzy set approach is explored instead of 

one monolithic fuzzy set; this provided scope to focus rules to specific conditions and allowed for 

an easy to comprehend and editable rule-base for the fuzzy set. However, after development, the 

sequential fuzzy set could be changed to a monolithic fuzzy set with no significant performance 

change. 

2.1. Fuzzy Inference System (FIS) 

In this work, a quarter car model was used as the plant to study fuzzy logic based active 

vibration control. Mamdani model for the fuzzy set was selected as it provides a simpler rule 

interface. Rules in a Mamdani set can be developed over human experience. This is in comparison 

to the mathematical rule base in Takagi-Sugeno among other fuzzy approaches. For membership 

functions, simplicity and effectiveness of isosceles triangles were used by Manu Sharma et al. [16]. 

They have studied the effect of the right-angled and isosceles triangle on Mamdani type Fuzzy 

control system. Grzegorz Filo [17] showed ways to use MATLAB/Simulink’s fuzzy logic 

developer to model fuzzy control effectively [17]. For work in this thesis, triangular membership 

functions were chosen for the fuzzy sets and implemented in MATLAB  

The FIS process can be broken into three main steps. Fuzzification, rule generation, and 

defuzzification.  

2.1.1. Fuzzification 

Fuzzification is at the beginning of the FIS. It is where the system takes a crisp value (real 

scaler number) and converts it into a fuzzy linguistic value. For any certain crisp value, a 
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corresponding fuzzy value can be created as part of different classes of fuzzy membership 

functions. These membership functions are what define how the crisp value is converted.    

There have been a variety of proposed fuzzy membership functions proposed, but 

according to Zadeh [2] they can all be classified as one of two types: one type consisting of straight 

lines and one made of curves. Curved membership functions are computationally heavier but 

perform well for non-linear systems; however, the advantages are limited. Consequently, straight 

or linear membership functions are more widely used, as they are easy to develop and 

computationally light.  

Triangular fuzzy membership functions are the simplest to develop. Witold Pedrycz [18] 

and Manu Sharma et al. [16] showed that satisfactory results can often be achieved using triangular 

membership functions. So initially, this study used triangular membership functions to develop 

fuzzy set for both a larger and smaller FIS.  

As seen in Figure 2, triangular membership functions are defined by two limits and a mode. 

The lower limit is shown as a, the upper limit is b, and the peak of the triangular membership 

function is at the mode m. The function is defined over the range a < m < b with a maximum value 

of one.  
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Figure 2: Triangular membership function of fuzzy set 

2.1.2. Fuzzy Rule Base  

The rule base for a fuzzy system is designed with the experience and reasoning of humans. 

When the relationship between input and output can be defined through basic logic, one can 

express these relationships as rules in the form of if-then statements (e.g. “if the input is positive 

and large, then the output is negative and large”). “Positive and large” from the example would be 

defined by a membership function. The term is not represented by a precise value, but rather it is 

defined as a range over which an input can be characterized as having partial membership (0-

1[100%]) to the term. 

Other examples of rules are  

 If input 1 is P and input 2 is Z, then output is N   

 If input 1 is N and input 2 is N, then output is PL  

 If input 1 is Z and input 2 is Z, then output is Z   

where zero, positive, negative, and positive-large are abbreviated as Z, P, N, and PL respectively. 
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2.1.3. Defuzzification 

Defuzzification is the process by which a crisp output value is derived from fuzzy 

parameters. Mitsuishi & Shidama [19] described defuzzification process as converting 

membership degrees of fuzzy sets to a specific value. There are quite few defuzzification methods 

available. The most popular methods are the center of gravity method, the center of area method, 

and the center-average method. For initial fuzzy sets, center of gravity method is used for 

defuzzification. A crisp value is extracted based on the center of gravity of fuzzy set. Using the 

center of gravity method, the crisp value 𝑧∗ is expressed as: 

𝑧∗ =
∫µ(𝑧). 𝑧𝑑𝑧

∫ µ(𝑧). 𝑑𝑧
 

where 𝑧∗ is a fuzzy variable, µ(𝑧) is the area of membership value and z is centroid of the area. 

The resultant action is divided or distributed into multiple sub areas from different membership 

function. The resultant area and center of gravity is calculated to find the final  

Effectively the equation becomes 

  

𝐶𝑟𝑖𝑠𝑝 𝑣𝑎𝑙𝑢𝑒 =
𝛴𝑎𝑟𝑒𝑎 ∗ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝑎𝑟𝑒𝑎

𝛴𝑎𝑟𝑒𝑎
 

 

 

  



20 
 

2.2. Adaptive Neuro Fuzzy Inference System (ANFIS) 

A fuzzy logic controller is useful for designing an intelligent and robust controller and 

works well on non-linear processes; however, the design process of fuzzy logic controllers is not 

formalized [20]. Neural networks can be used to tune fuzzy logic set and improve the rule base of 

a fuzzy controller. This is done with the use of training data [2]. ANFIS utilizes Takagi-Sugeno 

fuzzy inference system, which is generated and then improved by neural network training. [21] 

[22] 

The ANFIS is one of many methods known as neuro-fuzzy. Adaptive neuro-fuzzy 

inference system (ANFIS), was first proposed by Jang (1993) [22] and is based on the first-order 

Takagi-Sugeno fuzzy model. Generally, ANFIS uses either back-propagation or a combination of 

least square estimation and back-propagation for membership function parameter estimation (Jang 

and Sun, 1997 [24]). The most important goal of combining fuzzy systems with neural learning 

capabilities is to implement the robust learning ability of neural networks, which is not part of a 

regular FIS system. This combination of neural network and FIS allows for the system to learn, 

improving the performance of the controller. In ANFIS, a Takagi–Sugeno type fuzzy inference 

system is used to model the system. In Takagi-Sugeno inference systems, the output of each rule 

is either a linear combination of input variables plus a constant term or only a constant term. The 

output then consists of a weighted average of every rule’s output. This integrated approach, makes 

ANFIS a universal estimator [25].  

Figure 3 shows an ANFIS architecture that was proposed by (Ahmed et al. [26]) that has 

two inputs x and y and one output f. The rule base contains two Takagi–Sugeno if-then rules as 

follows: 
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Figure 3: (a) ANFIS Fuzzy reasoning (b)  structure (c) Gaussian membership function [39] 
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Rule 1: If x is A1 and y is B1, then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1; Rule 2: If x is A2 and y is B2, then 𝑓2 =

𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 [22]. Figure 3(a) shows the representative fuzzy sets, and Figure 3(b) depicts the 

training methodology used to change membership functions. Layer 1 is the node function. Layer 

2 calculates the product of the node function signals. Layer 3 normalizes the results of Layer 2 by 

calculating the ratio of each activated rule strength to all activated rules strengths. In layer 4, the 

output for each node function is calculated, and layer 5 calculates the overall output.  

2.2.1. Hybrid Training Method 

Hybrid method of training an ANFIS is a combination of least square estimation and 

back-propagation for membership function parameter estimation [24]. An adaptive network is a 

multilayer feedforward network where every node performs a particular function referred to as a 

node function. The node function can vary on each individual node. If a given adaptive network 

consists of L layers and kth layer has #(k) nodes. The node in ith position and kth layer can be 

denoted by (k,i) and node output can be expressed as 𝑂𝑖
𝑘 . A node output is a summation of 

incoming signals and can be expressed as  

𝑂𝑖
𝑘 = 𝑂𝑖

𝑘(𝑂𝑖
𝑘−1, …𝑂#(𝑘−1)

𝑘−1 , 𝑎, 𝑏, 𝑐, … ) (1) 

where a,b,c… are parameters related to each node.  

If a training data has P entries, the error measure Ep, for the pth  (1 ≤ 𝑝 ≤ 𝑃) entry can be 

presented as a sum of squared errors, yielding  

𝐸𝑝 = ∑(𝑇𝑚,𝑝 − 𝑂𝑚,𝑝
𝐿 )

2

#(𝐿)

𝑚=1

 

(2) 

where 𝑇𝑚,𝑝 is the mth component of pth  target output vector, and 𝑂𝑚,𝑝
𝐿  is the actual output of mth  

component. To use the gradient decent method for neural network learning, the error 

rate/gradient is required. The error rate of node (L, i) can be derived from equation (2) as 
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𝜕𝐸𝑝

𝜕𝑂𝑖,𝑝
𝐿 = −2(𝑇𝑖,𝑝 − 𝑂𝑖,𝑝

𝐿 ) 

 

(3) 

The error rate at the internal node (k,i) can be similarly derived using chain rule: 

𝜕𝐸𝑝

𝜕𝑂𝑖,𝑝
𝑘 = ∑

𝜕𝐸𝑝

𝜕𝑂𝑚,𝑝
𝑘+1

𝜕𝑂𝑚,𝑝
𝑘+1

𝜕𝑂𝑖,𝑝
𝑘

#(𝑘+1)

𝑚=1

 

(4) 

Assuming 𝛼 is a parameter of the network, equation (4) can be expressed as 

𝜕𝐸𝑝

𝜕𝛼
= ∑

𝜕𝐸𝑝

𝜕𝑂∗

𝜕𝑂∗

𝜕𝛼
0∗𝜖𝑆

 
(5) 

where S is the set of nodes whose output is dependent on 𝛼. Taking the derivative of E with 

respect to 𝛼 yields  

𝜕𝐸

𝜕𝛼
= ∑

𝜕𝐸𝑝

𝜕𝛼

𝑃

𝑝=1

 

 

(6) 

Now Δ𝛼 can be expressed as 

𝛥𝛼 = −𝜂
𝜕𝐸

𝜕𝛼
 

(7) 

where η is the learning rate and can be expressed as 

η = 
𝑘

√∑(
𝛿𝐸

𝛿α
)2 

 (8) 

with k as the step size (length of parameter space gradient transition). The k parameter can be 

used to affect the speed of convergence.  

There is two type of hybrid learning: off-line and on-line. In online learning, parameters 

are updated after each epoch. In this research, off-line batch learning was implemented. This 

method combines a gradient method and least square estimate (LSE) to identify system 

parameters.  
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Assuming the adaptive network has a single output 

Output = F (𝐼, S) 

where I is input variables set (for this problem only 2 variable), S is parameter set, and F is function 

implemented by ANFIS. If there exists a composite function, then H ○ F is linear for all values of 

S, then these values of S can be identified by LSE. If S is decomposed such way that S1 ⊕ S2 = S, 

then 

                                                     H(output) = H ○ F (𝐼, S)                                                          (9) 

The training data set contains P data pairs. To successfully train the system, P must be greater than 

than number of linear parameters M. Assuming H(output) will be linear under the elements of S2, 

the equation can be simplified by putting P into (1), yielding 

Ax = b ,        (10) 

where x is an unknown vector and S2 is represented by the elements of x. Let |S2| = M, then the 

dimensions of A, x, and b will be equal to P × M, M × 1 and P × 1. If P > M, equation (10) does 

not have an exact solution, instead to minimize the squared error of  ||𝐀𝐱 –  𝐛||𝟐 , x*, the least 

squares estimate (LSE) of x, is calculated. 

The formula used for x* is 

x* = (ATA)-1ATb      (11) 

where (ATA)-1AT is the pseudo-inverse of A. 

Finally, the results from the gradient method and the least square estimate are  used to 

update the adaptive network parameters. Each epoch/iteration of neural learning consists of a 
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forward pass and a backward pass. The main goal of the forward pass is to calculate A and b for 

each epoch using input data. Subsequently, the parameters in S2, which are represented by x, are 

calculated using LSE. With the calculated parameters, the inputs from the training data set are 

passed through the system to calculate an output. This output is compared with the desired output 

from the training data set, which is then used for the backward pass using the gradient method to 

calculate the S1 parameters. Paremeter of S1 are related to membership function shape. For this 

thesis gaussian membership function (Figure 3c) was used, equation for that is 

µ𝐴𝑖(𝑥) =  𝑒
(

−(𝑐𝑖−𝑥)
2

2𝜎𝑖
2 )

` 

So 𝑐𝑖 and 𝜎𝑖 are the parameter in S1 

As S1 converges, the calculated values of S2 converges to the global optimum point in the 

S2 parameter space. This in turn leads to a decrease the search space dimension in gradient method 

and results in a faster convergence of the neural training of the fuzzy set.   

2.3. Genetic Algorithm  

Genetic algorithms are a tool for optimization. Optimization approaches can be classified 

into two major categories: Classical and Evolutionary. Evolutionary algorithms are based on 

biological evolution, mainly survival of fittest principle. According to Thomas Back (1996) There 

are three main types of evolutionary algorithms: Genetic Algorithms (GA), Evolution Strategies, 

and Evolutionary Programming [27].  

Genetic algorithms were developed in the early nineties; Goldberg and Holland were 

pioneers in introducing GA for use in optimization problems [28]. GA is based on the survival of 

the fittest phenomena in natural evolution. Here, from a set of random population, a new generation 
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or child population is generated based on the fitness score of the parent’s generation. Meaning, the 

higher the fitness of an individual, the more likely their genes are to be picked for the next 

generation based on a roulette wheel parent selection. A higher fitness results in a better chance to 

be picked, but all the members still have a chance to be picked due to the randomness of selection, 

including the worst (though less likely). For each subsequent generation, the current generation 

plus some random mutation and crossover are the source of potential genes.  

Genetic algorithms are very popular in multi objective optimization problems (MOOP). 

MOOP deals with a problem that has more than one objective. In the real world, most design 

problems have multiple objectives. For multi objective problems, the solution is often complex to 

comprehend with conflicting objectives that require compromises and balance in the solution. In 

engineering many solutions depend on multiple conflicting objective like improve ride stability 

and ride safety. Analysis of qualitative and experimental information to find the preferred vector 

is critical part of finding solution of MOOP. GA is very efficient in searching for the best solution 

that satisfies all design objectives [29]. 

2.3.1. GA Operators Initialization 

The solution of a genetic algorithm is dependent on the size and variety of the initial 

population. A random number generator can be used to generate the initial population with an 

optimal constraint. Use of constraints is not universal in GA, but according to James Baker (1985) 

an effective initialization approach is to initialize the population close to a known global accepted 

optimal value for the variable [30]. There are two popular methods for representing the population 

and gene chromosome. One is to store as binary string and each binary number is a chromosome. 

Alternatively, one could use real numbers as a chomosome. Although binary representation is 

computationally light, sometimes it is difficult to comprehend the nature of problem with binary 
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representation [31]. To make it easiest to implement constraints and work with fitness models, this 

work used real number representation for the population set.  

2.3.2. Fitness Functions and Selection 

Fitness function is used to determine the fitness of each design in a given population to 

facilitate the selection for the next generation in a GA optimization. Fitness function is used to 

measure the fitness of everyone. A generalized fitness function can be expressed as 

𝐹(𝑥) = 𝑔(𝑓1(𝑥), 𝑓2(𝑥),⋯ , 𝑓𝑛(𝑥)) 

, where x is a variable that is to be optimized, fi(x) is an objective function, g(x) is a function to 

combine the values of the objective functions, and F is the resulting fitness value. 

In this thesis, a rank-based approach was used for fitness, where rank of individual 

population is used to determine the relative fitness, in addition to the actual fitness value. 

According to research by James E. Baker, the rank-based approach helps to improve convergence 

[30].  

Selection is the process that decided scope of reproduction for each individual population. 

Selection is comprised of two different steps. First, a fitness value for each individual is converted 

into the probability that an individual is selected for reproduction. Second, sampling is performed, 

where individuals are picked for reproduction based on comparative probability with other 

members of population pool. Bias, spread, and efficiency are three key parameter that determines 

the performance of algorithm. Bias is the absolute difference between the actual and expected 

probability of getting selected for reproduction. Spread is the range of time one can be picked, 

efficiency is the execution time for the algoritm.  
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Roulette wheel mechanism and stochastic uniform sampling are the two most popular 

methods for selection. Prior to both methods, the probability of being chosen is calculated based 

on the fitness values of the polulation. The probability is then used to map all members of the 

parent population to ranges of values from 0-1. Using the rank-based approach, the members are 

arranged such that the member with the highest probability has a range that begins at the start of 

the 0-1 mapping. All members of the population are then mapped in descending order ending with 

the least fit member with a range that ends at the value of 1. During roulette wheel sampling, a 

uniform random variable from 0 to 1 is generated and used to select individuals based on the rank-

based mapping. In this method, it is possible to select the same parent member twice. With 

stochastic uniform sampling (SUS) uses a linearly distributed set of values from 0-1 to choose. 

SUS is a recombination technique and is used to pass and recombine a potentially useful solution 

from one generation to the next; according to Jayabal et al [32] with stochastic uniform sampling, 

the algorithm moves linearly, and each parent gets equal importance. This reduces the chance of 

having many copies of the fittest member, and guarantees that at least one copy of the fittest 

member will be copied. For these reasons, stochastic uniform sampling was used in this thesis. 

2.3.3. Crossover  

Crossover is the main method of producing a new generation offspring in a genetic 

optimization. Under crossover new offspring are created where they inherit some chromosome 

features from both parents. Single point crossover is the most popular crossover method. In single 

point crossover, a point is randomly selected from a list of pre-specified points on the chromosome; 

all information prior to that point comes from the first parent and all remaining information is 

provided by the second parent, creating an offspring chromosome. In the multipoint method 

randomly, multiple crossover points are picked and sorted in ascending order. Figure 4 shows the 
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use of two successive crossover points, where the parent source of the chomosome switches when 

the offspring is created. In this research, the multipoint crossover method was used. 

Parents  

 

  Crossover points  

Children    

   

 

Figure 4: Scattered Crossover 

2.3.4. Mutation 

Mutation in a genetic algorithm allows for small random changes to individuals. Mutation 

generally improves diversity and broadens the search space of GA beyond the traits that were 

present in the initial population.  

The natural theory of evolution accepts that organisms will diversify in order to survive, 

and mutation is the method to achieve additional diversity. The most common form of mutation is 

completely random, but a better method is to have mutation occur in response to specific stresses. 

The mutation will be more beneficial to direct offspring and be specific to the given stress. To this 

aim, John cairns pioneered the idea of adaptive mutation [33]. 

Adaptive feasible mutation is a process in a generic algorithm where more successful genes 

are less likely to be mutated and least significant bits are more likely to be mutated to increase the 

fitness and accuracy. Under this method of mutation, the chance of changing high fitness 

chromosomes is decreased and low fitness chromosomes are more likely to be altered as shown in 

Lebelli et el [34]. Given the additional benefits, adaptive feasible mutation was used in this thesis.   
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3. Methodology  

3.1. Mathematical Model for System  

 

Figure 5: Process flow for suspension model 

Figure 5 illustrates the model of the suspension system and control system. For the 

purposes of this thesis, a quarter car model was used. The design goal for this system is to stabilize 

and improve the response of the suspension. This is accomplished by measuring the velocity and 

position of the quarter-car mass, using them as inputs to a sequential fuzzy logic set to calculate 

the force used to dampen the suspension. Overall, the system is modeled as a second-order 

differential equation of forced damped vibration. The equation for current quarter car model can 

be written as shown in equations (12) and (13). 

𝑚1�̈�1 = −𝑏1(�̇�1 − �̇�2) − 𝑘1(𝑥1 − 𝑥2) + 𝑢      (12) 

𝑚2�̈�2 = 𝑏1(�̇�1 − �̇�2) + 𝑘1(𝑥1 − 𝑥2) + 𝑏2(�̇� − �̇�2) + 𝑘2(𝑤 − 𝑥2) − 𝑢  (13) 
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As per Dorf, Richard C., and Robert H. Bishop [35], equation (12) and (13) can be transformed 

into state-space equations shown in equations (14) and (15). A state-space model gives easier 

accessibility to multiple variables and is easily modelled in Simulink. 

�̇� = Ax + Bu……………………………………………………    (14) 

y = Cx + Du……………………………………………………………   (15) 

Here, 

State Vector, x =  [

𝑥1

𝑥2

𝑥3

𝑥4

] 

Input signals, u =[
𝑤
�̇�
𝑢
]  

where, 

𝑥1 = 𝑥1 

𝑥2 = �̇�1 

𝑥3 = 𝑥2 

𝑥4 = �̇�2 

 

 

Now arranging the equation of �̇�1, 𝑥1, �̇�2, �̈�2 in terms of 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑢, 𝑤 and �̇� yields: 

�̇�1 = 𝑥2                      (16) 

�̇�3 = 𝑥4                      (17) 

�̇�2 = �̈�1 =
−𝑏1(�̇�1−�̇�2)−𝐾1(𝑥1−𝑥2)+𝑢

𝑚1
 

So,  �̇�2 = −
𝑏1

𝑚1
(𝑥2 − 𝑥4) −

𝑘1

𝑚1
(𝑥1 − 𝑥3) + 

𝑢

𝑚1
      (18) 

�̇�4 = �̈�2= 
𝑏1(�̇�1−�̇�2)+𝐾1(𝑥1−𝑥2)+𝑏2(�̇�−�̇�2)+𝐾2(𝑤−𝑥2)−𝑢

𝑚2
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Then, �̇�4 =
𝑏1

𝑚2
(𝑥2 − 𝑥4) +

𝑘1

𝑚2
(𝑥1 − 𝑥3) +

𝑏2

𝑚2
(�̇� − 𝑥4) +

𝑘2

𝑚2
(𝑤 − 𝑥3) −

𝑢

𝑚2
           (19) 

From equation (16) to (19),  

A = 

[
 
 
 
 

0 1 0 0

−
𝑘1

𝑚1
−

𝑏1

𝑚1

𝑘1

𝑚1

𝑏1

𝑚1

0 0 0 1
𝑘1

𝑚1

𝑏1

𝑚1

−𝑘1−𝑘2

𝑚2

−𝑏1−𝑏2

𝑚2 ]
 
 
 
 

 

 

B =  

[
 
 
 
 
0 0 0

0 0
1

𝑚1

0 0 0
𝑘2

𝑚2

𝑏2

𝑚2

−1

𝑚2]
 
 
 
 

 

 

C =  [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 

 

D = [

0 0 0
0 0 0
0 0 0
0 0 0

] 

 

Sequential Fuzzy Logic is used to calculate the commanded force in the model. The model 

uses vertical velocity and displacement of suspension as inputs to calculate actuator force. For 

fuzzy logic, a Mamdani Type Fuzzy Interference set was used [36], because Mamdani set rules 

can be developed from human experience in an easy to use linguistic form. 

3.1.1. Quarter Car Model 

The modeling parameters for the quarter car are similar to those in the work of Alleyne, 

Andrew, and Rui Liu[37] and modified within practical limits. Initially, the data was as shown in 

Table 1. 

Table 1: Quarter Car Properties 

Quarter Car  Tire and Wheel 

m1 = 250 kg m2 = 25 kg 

b1 = 1,500 N/ms b2 = 600 N/ms 

K1 = 15,000 N/m K2 = 200,000 N/m 
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The system was simulated using Matlab and Simulink. The Simulink model consists of a 

quarter-car model and a fuzzy logic controller. The input for the fuzzy logic system’s rule set is 

the suspension deflection and the velocity. The main goal of the system is to minimize the vibration 

by controlling the rate of change in the suspension deflection.  

To test the controller effectiveness, it was simulated with a disturbance input of a regular 

bump in the road, a large pothole, and a rough road profile. Each condition was tested 

independently and were combined for a final test.  

The bumps in the road were simulated using two-different step functions, each lasting one 

second. The peak of the first step function was 6 cm and the second one was 10 cm (Figure 6a). 

For a large pothole, a sinewave of 6 cm amplitude and 1 rad/sec frequency was used, that lasted 

for 5.13 seconds (Figure 6b). To simulate the continuous disturbance of a rough road, a sine wave 

of 2 cm amplitude and frequency of 15 rad/sec was present throughout the simulation runtime 

(Figure 7a).  

To accommodate various disturbances, the input fuzzy logic set was adjusted to give an 

appropriate range based on the movement range and limitations of the physical system. The output 

corresponding to the applicator force was selected with the goals of stability and practicality. Based 

upon the expected disturbances from the road, physical parameters of the system (spring and 

dampening coefficients) were adjusted.  
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Figure 6 (a): Road Bumps Figure 6 (b): Bump and Pothole 

A road bump is simulated by a step function (Figure 6a) to represent a sudden obstacle and 

associated rise and fall vertically. Figure 6b depicts the disturbance of a pothole, which is simulated 

with a portion of a high-amplitude sine wave. A continuous sine wave with low amplitude was 

picked to model a rough road as shown in Figure 7a. Finally, a combined disturbance was used 

(Figure 7b) as the worst scenario for tuning the initial fuzzy system.   

  

Figure 7 (a): Rough Road Figure 7 (b): Combined Road Disturbance 

Figure 7b shows the combined disturbance, which is simulated for a duration of 35 seconds. 

In this combined disturbance, the rough road signal was present for the entire 35 seconds, the road 
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bump signal was present for 1 second starting at 6 and 10 seconds of simulation time, and the 

pothole signal was present between 20 to 25 seconds of simulation time.   

3.2. Fuzzy Inference System (FIS) Development  

 

Figure 8: Steps in development of system 

Fuzzy inference systems (FIS) are also known as fuzzy-rule-based systems, fuzzy models, 

or fuzzy controllers when used as controllers. An FIS consists of five parts as seen in Figure 9a 

[22]: 

i. Rule Base - contains fuzzy rules in if-then format 

ii. Database - contains membership function information including shape and value 

iii. Decision Making Unit - performs the rule inference operation 

iv. Fuzzification Inference Unit - converts crisp input into fuzzy linguistic parameter 

Find the solution using Mamdani Fuzzy System 

Improve the result of  Fuzzy System using ANFIS

Use genetic algoritm to optimize the value from damping coefficient 
and spring constant

Run ANFIS model using optimized value 
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v. Defuzzification Inference Unit - converts fuzzy value into crisp output 

 

Figure 9 (a): Block diagram of Fuzzy Inference System

 

Figure 9 (b): Block diagram for sequential fuzzy decision  
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Figure 9a shows a block diagram of an FIS, and Figure 9b shows a system comprised of two 

sequential FIS. 

3.2.1. Development of Sequential Fuzzy Logic  

For the fuzzy logic controller, two different fuzzy sets were used to form a sequential fuzzy 

system. The first fuzzy set covered most cases and worked for a large range. The second fuzzy set 

worked when the magnitude of vibration attenuated to a lower range. This improved control of the 

system at important phases, allowing rules to be more compartmentalized and easier to work with. 

Both fuzzy sets take vertical velocity and displacement of the car as inputs and output the desired 

actuator force to control the vibration. Triangular membership functions were used for velocity, 

displacement, and force.  For larger primary fuzzy set, five input membership functions were used 

for velocity and displacement and seven-output membership function were used for force. This 

gave the system sufficient freedom in controlling the vibration. The range for the parameters is 

shown in Table 2 and the rule matrix is shown in Table 3. 

Table 2: Larger Range Fuzzy Set Parameters 

 Maximum Value Minimum value 

Vertical velocity of CAR 2 m/s -2 m/s 

Vertical displacement 5 cm -5 cm 

Actuator force 2500 N -2500 N 

 

The parameter values used for velocity and displacement are based on Sharma et al [16] 

but the parameter for the actuator is based on an industrial linear actuator with push load of 2500N 

[38], the reason for picking this actuator parameter is size and force capability. An actuator with a 

higher force capability would have been better to control the vibration but too bulky to use in a 

standard car suspension. The rule matrix for the larger fuzzy set is shown in Table 3. 
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Table 3: Larger fuzzy membership table 

Disp              
Vel NL N Z P PL 

NL PLL PLL PL P Z 

N PLL PL P Z N 

Z PL P Z N NL 

P P Z N NL NLL 

PL Z N NL NLL NLL 

 

The smaller fuzzy set was used to provide finer control in the central portion of larger fuzzy set 

and have a smaller range of parameters as seen in Table 4. The design of the smaller fuzzy set 

was more focused and decision about the parameters were made using trial and error method, 

observing which values performed best. The chosen rule matrix for the smaller fuzzy set is 

shown in Table 5.  

Table 4: Smaller Range Fuzzy set parameters 

 Maximum Value Minimum value 

Vertical velocity of CAR 0.5 m/s -0.5 m/s 

Vertical displacement 1 cm 1 cm 

Actuator force 800 N -800 N 

 

Table 5: Smaller fuzzy membership table 

   Disp             
Vel N Z P 

N PL P Z 

Z P Z N 

P Z N NL 
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The resultant surface plots for both fuzzy sets are shown in Figure 9. It can be seen that 

the the larger is less linear, which allows it to compensate for different type of disturbance in 

ranges near the limits of the actuator. The smaller fuzzy set is more linear in nature but still 

applies a higher gain for small imputs. 

 

a 

 

b 

Figure 10: Surface Plot for (a) Larger Fuzzy Set, (b) Smaller Fuzzy Set 
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3.3. Adaptive Neuro Fuzzy Inference System (ANFIS) Development  

For an ANFIS, offline training is performed using the same data that used to develop 

Mamdani FIS and is used to compare the performance change between FIS and ANFIS system. 

and were tuned using Neural learning. Given the difficult in designing with gaussian membership 

functions, they are often not chosen; however, given the advantages of using a neural network, the 

shape of the membership functions were changed from triangular to gaussian prior to being tuned 

by the neural network. 

Table 6 shows the training data used, providing both the input and and the desired output . This 

data was used by the Neuro-Fuzzy Design tool in MATLAB to tune the membership functions.  

Table 6: Training data for Neuro-Fuzzy System. 

Velocity 

(m/s) 

Displacement 

(m) 

Force 

(N) 

-2 -0.05 1200 

-0.6 -0.05 1000 

-2 -0.0125 1000 

-0.6 -0.0125 800 

0 -0.0125 700 

-0.6 0 700 

0 0 0 

0.6 0 -700 

0 0.0125 -700 

0.6 0.0125 -800 

2 0.0125 -1000 

0.6 0.05 -1000 

2 0.05 -1200 
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For this study a combined hybrid model using both LSE and gradient descent methods (as 

described earlier) was used to train the fuzzy system. The resultant rule set increased the system 

performance within the restriction of parameters. Below in Figure 11, the change of membership 

function due to neural learning is shown. The training error for each epoch/iteration of the training 

is shown in Figure 12. It can be seen that the system converged after 3 epochs using the hybrid 

method compared to back-propogation method, which failed to converge after 1000 epochs. 

Clearly, the Hybrid Neural Learning method converged faster resulting in a low error of 0.0013 

after 10 epoch whereas with back propagation method maintained a high error of 872.61 after 1000 

epochs. 

 

  

Figure 11 (a): Membership function for 

displacement before Neural Training 

Figure 11 (b): Membership function for 

displacement after Neural Training 
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Figure 12 (a): Training error using Hybrid Neural Learning  

 
Figure 12(b): Training error using back-propagation neural learning  

 

Figure 13 shows a comparison of membership functions between regular FIS and ANFIS. 

In addition to changes in the membership function shape, there were also changes to the range. 

The changes in the membership finctions can also be seen in Figure 14, which depicts the FIS 
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surface before and after training with a neural network. The main difference between the two is 

the high gain (shown as a steep surface) in the middle associated with the displacement input.  

Fuzzy Neuro Fuzzy 

 

a 

 

d 

 

b 

 

e 

 

c 

Figure 13: Membership function for Fuzzy 

and Neuro Fuzzy System. 

a) Input displacement (Fuzzy) 

b) Input velocity (Fuzzy) 

c) Output force (Fuzzy) 

d) Input displacement (Neuro Fuzzy) 

e) Input velocity (Neuro Fuzzy) 
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a 

 

b 

Figure 14: (a) Surface Picture of regular FIS (b) Surface of FIS trained with Neural Learning 
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3.4. Optimization Through Genetic Algorithms  

To further improve the system, the damper and spring combinations were modified to 

provide improved performance for the car. This was done using a genetic algorithm. For this 

optimization problem, the damping co-efficient the limited to a range of 750-1800 and the spring 

constant was limited to a range of 12,000-18,000. 

To begin, an initial random population was created within the limits. The size of the 

population was 50, and each member of the population is defined with two variables. For fitness 

function squared sum of force, F and displacement, X1 was taken at every 0.01 sec. So, for total 

15 sec the data point was n=15/0.01=1500 . Total number of peaks, p was calculated from dampned 

displacement as shown in Figure 15 . 

‘  

Figure 15: Number of Peaks, p 
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The fitness function used is 

F = 
1

𝑛
√∑ (𝐹𝑘 ∗ 𝑋𝑘)2𝑛

𝑘=1 ∗ (𝑝 − 𝐶)    

where 
1

𝑛
√∑ (𝐹𝑘 ∗ 𝑋𝑘)2𝑛

𝑘=1  is the RMS (Root Mean Square) of the work on the quarter-car mass, p 

is the number of peaks in the vibration, and C is a constant chosen based on the number of expected 

oscilations. For ride stability, three parameters were considered: the amount of displacement, force 

applied, and frequency. Force and displacement is combined into actuator work. Works done is 

related to the performance of the actuator, which in turns is related to stability of ride and logivity 

of suspension system. So, one main goal was to minimize the work done by the actuator but keep 

the vibration dampened. Additionally, the frequency of vibration is also related to ride comfort, so 

lower frequency was preferred to higher, and it was seen that the number of waves in different 

scenario varies between 36-48. To penalize the high frequency vibration, a constant value (C=35) 

was used and subtracted from the number of waves and the difference was multiplied with RMS 

value of work done. With this fitness function, all criteria which contribute to the desired 

performace are accounted for and the genetic algorithm will work to minimize the value, finding 

the best balance.   

In the genetic algorithm optimization, the crossover rate for the new generation was 0.8 

and Mutation rate was 0.01. For crossover scattered function was used. This is a built in Matlab 

function where the child is created by taking a random part form each parent. Scattered creates a 

random binary vector. Scatter crossover select gene from first parent when binary value of random 

crossover vector 1 and gene from second parent if binary value is 0.  For example: Lets take two 

individual with values of (1500, 15000) and (1200, 17000). If considering the first variable 

(dampening coeficiente) of the two individuals, 1500 and 1200, they can be presented in binary as  
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parent1(1500) = [10111011100] 

parent2(1200) = [10010110000] 

If the given random crossover vector is  [1 1 0 0 1 0 0 0 1 1 0] the resultant child value would be 

child = [10011110100], which is decimal 1268. 

For mutation, the adaptive feasible function is used to keep the resultant child within the 

range specified. The adaptive feasible function randomly generates directions that are adaptive 

with respect to the last successful or unsuccessful generation. A built-in Matlab function is used 

for the adaptive mutation, where a step length was chosen to progress the evolution in each 

direction so that bounds are satisfied.  
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4. Results & Discussion  

FIS system: 

Initially, a sequential FIS model was used to calculate the force for the actuator. As seen 

in Figure 16, the overall response of the system against high frequency low amplitude wave (rough 

road ) was not satisfactory as the displacement remains attenuated to a large extent; however, the 

actuator with FIS controller did perform well with the road bump at 6 seconds. Further comparison 

of the system performance can be seen in Figure 17, which compares the performance of the 

system with and without the actuator. The figure shows that the system with the actuator performed 

better than the basic spring damper system without an actuator.  

 

Figure 16: Disturbance vs displacement of quarter car mass with FIS controlled actuator 
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Figure 17: Displacement of QCM mass with FIS controlled actuator and without any actuator 

Under FIS the system was damping vibration generated by sudden bump, but in scenario 

with bump with larger disturbance which is out of preset parameter of fuzzy set; the force was 

inadequate to control the damping. Also, we can see controller fails to make adjustment when the 

larger disturbance that is out of range was applied. There was no controlling force (Figure 18) 

between 10-12 sec, this is due to disturbance is out of range for fuzzy set and the controller fails 

to adjust accordingly. Also, even though system was able to control the continuous disturbance of 

high frequency, to a degree the result was not good enough.  
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Figure 18: Force under FIS system 

ANFIS performance: 

With new rule base generated with Neural learning, the dampened vibration has 

comparatively lower amplitude and overall improved performance as shown in Figure 18. In 

Figure 19, it can be seen that the force applied is comparatively lower with ANFIS model, the only 

exception is when there is larger disturbance that is out of our specified limit. Consequently, the 

ANFIS model can adapt and apply a higher force gain to control the vibration more effectively in 

this scenario. This can be seen in Figure 19 that even when vertical displacement is out of range 

between 10-12 sec, ANFIS model can infer higher force (Figure 20) and by applying that force, 

vibration is getting damped better compared to FIS model.   
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Figure 19: Comparison of Displacement with ANFIS and with FIS 

 

Figure 20: Comparison of Force applied with ANFIS and with FIS 
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ANFIS with Optimized with Genetic Algorithm (GA) Parameter: 

The GA used an initial population of 50, and the optimization was set to run for 100 

generations with stalling criteria set at 5 generations.  With multiple run the solution always 

converged between 12-14 generation, example from the best run is shown in Figure 21.   

 

Figure 21: Convergence of Optimization 

Even the solution was set to run for 100 generations, stalling criteria with function tolerance of 1e-

6, which triggered an early termination as shown in Figure 22. 

 

Figure 22: Stopping criteria for GA optimization 
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The result from three different runs are shown in Table 7. All the results are close in magnitude. 

The results shown are from the best optimization run.  

Table 7: Results from GA Optimizations 

Run No of generation b1 k1 fitness 

1 13 812.602 12168.59 1.01506 

2 12 845.49 12346.79 1.0338 

3 14 822.961 12297.37 1.01325 
 

From random run of 100 different samples of b1 and k1, the best value was b1= 1062.95 

and k1=12372.408, resulting in Fitness = 1.12911. The fitness values for 100 random runs is shown 

in Figure 23 (all the data of random run is in appendix B). The fitness values from all 100 radomly 

generated systems (set of b and k) were worse (higher) than every GA run. From Table 7 and 

Figure 23, it is evident that genetic algorithm optimization provided an improved fitness value by  

11.4% compared to best result from random run. The optimization tended to converge within 13 

generations, ending with the stall criteria (one exception was 22 generation). For all the 

optimization runs the final fitness value was always comparable, highest and lowest valued best 

fitness was within 2% of each other. 
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Figure 23: Fitness value from 100 random run 

 

Figure 24: Displacement comparison between GA optimized ANFIS and ANFIS 

Figure 24 shows that the relative performance of the system after the optimization of the 

spring and damper. It can be seen that optimized damper and spring value perform better in bump, 
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but everywhere else damping performance of regular damper and spring under ANFIS is 

unchanged.  

 

Figure 25: Force comparison between GA ANFIS and ANFIS 

Figure 25 shows a comparison of the force used by the actuator before and after the 

optimization. The force required for the optimized ANFIS is consistently lower during rough road 

period.  To better show the performance difference Figure 26 focusses on the results from 5 to 12 

seconds; the amplitude of displacement under optimized physical parameter is clearly lower than 

the displacement with the original parameters.  
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Figure 26: Displacement comparison between GA ANFIS and ANFIS time 5 to 12 sec 

 

Figure 27: Force comparison between GA optimized ANFIS and FIS 

Finally, the force utilization of FIS system and ANFIS system with GA optimization is 

compared in Figure 27. It can be seen that the optimized ANFIS system utilizes much less force, 

which is beneficial for actuator health, performance, and energy usage. It can be concluded that 
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the FIS system with actuator control improved performance of the basic spring damper system, 

but basic FIS system design methods have limitations which can be overcome by using a neural 

network to train the membership function. Finally using GA optimization for spring and dampner 

can further improve the response of the system to a forced vibration with lower force required for 

the actuator.  
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5. Conclusion 

In this thesis, an active vibration control method was developed for automotive suspension. 

The model was tested against a quarter car model that was represented using a state-space model. 

The force required to control the vibration actively was calculated using FIS model. The result was 

inadequate for few cases, so the system was further improved by the development of an adaptive 

neuro fuzzy model. The ANFIS model was trained with a hybrid of least square and the gradient 

method. The training with the hybrid approach converged very fast within few epochs and error 

was within the order of 1/1000. When only training with regular back propagation, the 

convergence was slow, and error was high. For example, at 1000 epoch the error was about at 872 

with back propagation.  

To further improve results, a genetic algorithm was used to optimize the model parameters 

of the system. A bounded, continuous search space was defined for the critical parameters of 

damping coefficient and spring constant of the suspension. The fitness function was based on 

actuator energy and frequency of vibration. Finally, the optimization result was compared with a 

random search space to verify the effectiveness of GA. It is found that result from GA yielded a 

better fitness compared to best result of random runs. That indicates GA optimization was 

successful in finding a solution.  

In future work, instead of a quarter car model, a whole car model can be used to test more 

accurately and to reflect the complexity of a whole car suspension. Additionally, optimizing the 

basic spring damper system before using actuator with either of FIS or ANFIS controller may 

produce different results. The GA optimization population sample can be increased along with 

stall criteria to run the GA optimization longer and see if there is further improvement of result. 
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The GA could also be used to optimize additional variables, including the fuzzy controller.  The 

system was simulated using Simulink to determine the fitness; this is computationally heavy. 

Alternative methods of calculating the fitness can be explored. Additionally, rather than using the 

generated disturbances used in testing, real road data can be used as an alternative to more 

accurately reflect real-life road conditions. Finally, whole model can be experimentally tested for 

further improvement, main challenge there will be the actuator, even though comparable actuator 

with required weight and force capacity is already available, their reaction time is slow for an 

effective active vibration control; however, it can be inferred from the results that the proposed 

ANFIS model for vibration control is effective and GA optimization provides further control 

performance within practical search space for physical parameters.  

To summarize, an active vibration control for suspension was studied using a quarter car 

model.  Intially FIS controller is used to calculate force required for actuator, which improved the 

performance for a road bump, but struggled in continuous rough road disturbances. Then ANFIS 

was used to train and modify the membership functions, leading to substantial increase in 

performance with both rough road and bump disturbances. Finally, the basic suspension was 

optimized using GA, which led to additional performance gains.  
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Appendices 

Appendices A: Sample calculation of a Fuzzy Inference system 

Let’s a consider the FIS system used in this thesis. The system has 2 input: 

Distance (5 level): NL, N, Z, P, PL ; Speed (5 level): NL, N, Z, P, PL 

1 output: 

Force (7 level): NLL, NL, N, Z, P, PL, PLL 

Few examples of rules: 

 If (Velocity is Z) and (Displacement is Z) then (Force is Z) 

 If (Velocity is Z) and (Displacement is NL) then (Force is PL) 

Now For a single test case of velocity (V) of -0.2 m/s and displacement (D) of -4 cm first the 

input V and D are fuzzified. 

Fuzzification:  

Here, by definition and according to figure 28, V is subset of both N and Z ; D is subset of both 

NL and N.  

 

Figure 28: Fuzzy Input and outputs 
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Rule base:  

Now for fuzzy values of V and D 4 different rule is triggered and each results a different fuzzy 

output.  

Rule triggered in this case are: 

 If (Velocity is Z) and (Displacement is NL) then (Force is PL) 

 If (Velocity is N) and (Displacement is NL) then (Force is PLL) 

 If (Velocity is Z) and (Displacement is N) then (Force is P)  

 If (Velocity is N) and (Displacement is N) then (Force is PL)  

It can be seen in last blue column of figure 11. 

Defuzzification:  

Defuzzifications first combines all the fuzzy actions into one action. Then transform said action 

into a crisp vale. As can be seen in figure 29.   

 
(a) 

 
(b) 

Figure 29: Surface Plot for (a) Combined output area, (b) Combined output with COG (red mark) 

In this work center of gravity (COG) is used to calculate the crisp value. the resultant crisp force 

is 1366 N.  
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Appendices B:  

Table 8: Fitness data from 100 randomly generated damping co-efficient and spring constant 

Sample No Damping coefficient, b1 Spring constant, k1 Fitness value 

1 1307.349 14941.703 1.95361 

2 1241.608 13283.9 1.63453 

3 1279.535 12238.746 1.52045 

4 957.692 12346.285 1.39405 

5 822.849 18175.934 1.66977 

6 1271.121 14378.246 1.45121 

7 1462.667 12258.346 1.91437 

8 1079.058 14861.688 1.75343 

9 1324.138 17963.999 2.49711 

10 890.154 15673.233 2.17602 

11 1084.19 16847.348 1.8603 

12 1282.024 17660.15 2.46784 

13 957.019 17097.77 1.90256 

14 1241.324 13219.588 1.59165 

15 839.248 15737.73 2.2137 

16 1469.808 14552.893 2.29201 

17 1188.951 13678.59 1.68399 

18 1313.45 13913.213 1.7723 

19 1129.468 17243.075 1.94396 

20 1418.177 19194.686 2.66134 

21 1160.412 13039.683 1.56551 

22 861.971 13931.312 1.73081 

23 1380.538 13907.116 2.14873 

24 1360.714 13826.437 2.11868 

25 1446.948 14624.878 2.29214 

26 897.446 13883.129 1.69174 

27 1212.034 15549.666 1.64254 

28 1013.745 18231.215 2.14921 

29 1188.948 16122.927 1.74654 

30 1437.895 14143.793 2.22237 

31 1317.9 17652.968 2.42623 

32 1035.334 16258.662 1.72754 

33 806.891 12404.626 1.28575 

34 1148.098 17843.754 2.03894 

35 1450.508 12974.297 2.01244 

36 1176.618 15520.43 1.63649 

37 758.927 14528.42 1.90432 
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38 871.637 17957.134 1.58871 

39 983.411 15963.999 1.99483 

40 874.237 16514.865 1.64241 

41 947.228 16905.593 1.83604 

42 1266.911 17611.137 2.47218 

43 1087.906 12628.66 1.46228 

44 921.733 18850.03 2.3783 

45 864.284 18193.627 1.64653 

46 1153.757 19471.01 2.88902 

47 808.632 15320.087 2.07156 

48 829.99 19214.236 1.90974 

49 753.476 17811.828 2.1766 

50 1362.977 18515.21 2.57118 

51 813.327 14998.37 1.99625 

52 944.903 18000.514 2.11909 

53 1073.56 18829.857 2.25746 

54 886.385 13978.522 1.80245 

55 859.154 13020.514 1.67709 

56 1401.969 16347.784 2.62882 

57 1162.395 13087.161 1.58856 

58 1389.773 16665.413 2.71153 

59 1013.214 15849.372 2.0493 

60 1051.356 12569.75 1.4207 

61 929.937 12924.892 1.69166 

62 887.931 13799.644 1.72984 

63 1062.95 12372.408 1.12911 

64 1427.037 19085.904 2.63508 

65 1118.148 15669.395 1.6358 

66 1003.29 18750.404 2.28589 

67 1026.935 12834.021 1.96021 

68 1335.189 14923.041 1.93281 

69 931.268 15029.341 2.2648 

70 822.341 12989.8 1.34096 

71 1456.538 19171.009 2.62999 

72 1181.406 12448.347 1.50154 

73 926.085 14648.689 2.35638 

74 1365.896 12115.526 1.78855 

75 782.268 13267.425 1.59915 

76 1236.837 17487.918 2.43018 

77 1235.809 15381.928 1.60796 

78 1160.257 14222.406 1.73239 

79 1308.52 13417.163 1.34156 

80 1265.082 13376.334 1.54591 
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81 1026.363 16692.139 1.82575 

82 1335.171 12608.443 1.8647 

83 1447.039 17817.845 2.89585 

84 1115.094 15268.939 1.56367 

85 1085.088 14297.621 2.32937 

86 1131.381 15830.787 1.66328 

87 1363.221 17961.236 2.4854 

88 1233.239 14839.57 1.53767 

89 1358.685 15996.192 2.12198 

90 1013.045 19042.512 2.36616 

91 1406.957 16126.173 2.59157 

92 1216.856 16402.835 1.78004 

93 905.807 14259.347 1.8194 

94 1103.193 13728.661 1.65614 

95 1383.232 13460.732 2.06519 

96 919.441 13280.31 1.93904 

97 920.748 15267.74 2.39168 

98 983.327 18925.347 2.34186 

99 1072.656 13386.122 1.89297 

100 1428.661 19348.113 2.66395 

Best 
(Fitness) 1062.95 12372.408 1.12911 

Worst 
(Fitness) 1447.039 17817.85 2.89585 

Median 
(Fitness) 829.99 19214.24 1.90974 
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