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Figure 17: Displacement of QCM mass with FIS controlled actuator and without any actuator 

Under FIS the system was damping vibration generated by sudden bump, but in scenario 

with bump with larger disturbance which is out of preset parameter of fuzzy set; the force was 

inadequate to control the damping. Also, we can see controller fails to make adjustment when the 

larger disturbance that is out of range was applied. There was no controlling force (Figure 18) 

between 10-12 sec, this is due to disturbance is out of range for fuzzy set and the controller fails 

to adjust accordingly. Also, even though system was able to control the continuous disturbance of 

high frequency, to a degree the result was not good enough.  
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Figure 18: Force under FIS system 

ANFIS performance: 

With new rule base generated with Neural learning, the dampened vibration has 

comparatively lower amplitude and overall improved performance as shown in Figure 18. In 

Figure 19, it can be seen that the force applied is comparatively lower with ANFIS model, the only 

exception is when there is larger disturbance that is out of our specified limit. Consequently, the 

ANFIS model can adapt and apply a higher force gain to control the vibration more effectively in 

this scenario. This can be seen in Figure 19 that even when vertical displacement is out of range 

between 10-12 sec, ANFIS model can infer higher force (Figure 20) and by applying that force, 

vibration is getting damped better compared to FIS model.   
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Figure 19: Comparison of Displacement with ANFIS and with FIS 

 

Figure 20: Comparison of Force applied with ANFIS and with FIS 
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ANFIS with Optimized with Genetic Algorithm (GA) Parameter: 

The GA used an initial population of 50, and the optimization was set to run for 100 

generations with stalling criteria set at 5 generations.  With multiple run the solution always 

converged between 12-14 generation, example from the best run is shown in Figure 21.   

 

Figure 21: Convergence of Optimization 

Even the solution was set to run for 100 generations, stalling criteria with function tolerance of 1e-

6, which triggered an early termination as shown in Figure 22. 

 

Figure 22: Stopping criteria for GA optimization 
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The result from three different runs are shown in Table 7. All the results are close in magnitude. 

The results shown are from the best optimization run.  

Table 7: Results from GA Optimizations 

Run No of generation b1 k1 fitness 

1 13 812.602 12168.59 1.01506 

2 12 845.49 12346.79 1.0338 

3 14 822.961 12297.37 1.01325 
 

From random run of 100 different samples of b1 and k1, the best value was b1= 1062.95 

and k1=12372.408, resulting in Fitness = 1.12911. The fitness values for 100 random runs is shown 

in Figure 23 (all the data of random run is in appendix B). The fitness values from all 100 radomly 

generated systems (set of b and k) were worse (higher) than every GA run. From Table 7 and 

Figure 23, it is evident that genetic algorithm optimization provided an improved fitness value by  

11.4% compared to best result from random run. The optimization tended to converge within 13 

generations, ending with the stall criteria (one exception was 22 generation). For all the 

optimization runs the final fitness value was always comparable, highest and lowest valued best 

fitness was within 2% of each other. 
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Figure 23: Fitness value from 100 random run 

 

Figure 24: Displacement comparison between GA optimized ANFIS and ANFIS 

Figure 24 shows that the relative performance of the system after the optimization of the 

spring and damper. It can be seen that optimized damper and spring value perform better in bump, 
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but everywhere else damping performance of regular damper and spring under ANFIS is 

unchanged.  

 

Figure 25: Force comparison between GA ANFIS and ANFIS 

Figure 25 shows a comparison of the force used by the actuator before and after the 

optimization. The force required for the optimized ANFIS is consistently lower during rough road 

period.  To better show the performance difference Figure 26 focusses on the results from 5 to 12 

seconds; the amplitude of displacement under optimized physical parameter is clearly lower than 

the displacement with the original parameters.  
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Figure 26: Displacement comparison between GA ANFIS and ANFIS time 5 to 12 sec 

 

Figure 27: Force comparison between GA optimized ANFIS and FIS 

Finally, the force utilization of FIS system and ANFIS system with GA optimization is 

compared in Figure 27. It can be seen that the optimized ANFIS system utilizes much less force, 

which is beneficial for actuator health, performance, and energy usage. It can be concluded that 
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the FIS system with actuator control improved performance of the basic spring damper system, 

but basic FIS system design methods have limitations which can be overcome by using a neural 

network to train the membership function. Finally using GA optimization for spring and dampner 

can further improve the response of the system to a forced vibration with lower force required for 

the actuator.  
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5. Conclusion 

In this thesis, an active vibration control method was developed for automotive suspension. 

The model was tested against a quarter car model that was represented using a state-space model. 

The force required to control the vibration actively was calculated using FIS model. The result was 

inadequate for few cases, so the system was further improved by the development of an adaptive 

neuro fuzzy model. The ANFIS model was trained with a hybrid of least square and the gradient 

method. The training with the hybrid approach converged very fast within few epochs and error 

was within the order of 1/1000. When only training with regular back propagation, the 

convergence was slow, and error was high. For example, at 1000 epoch the error was about at 872 

with back propagation.  

To further improve results, a genetic algorithm was used to optimize the model parameters 

of the system. A bounded, continuous search space was defined for the critical parameters of 

damping coefficient and spring constant of the suspension. The fitness function was based on 

actuator energy and frequency of vibration. Finally, the optimization result was compared with a 

random search space to verify the effectiveness of GA. It is found that result from GA yielded a 

better fitness compared to best result of random runs. That indicates GA optimization was 

successful in finding a solution.  

In future work, instead of a quarter car model, a whole car model can be used to test more 

accurately and to reflect the complexity of a whole car suspension. Additionally, optimizing the 

basic spring damper system before using actuator with either of FIS or ANFIS controller may 

produce different results. The GA optimization population sample can be increased along with 

stall criteria to run the GA optimization longer and see if there is further improvement of result. 
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The GA could also be used to optimize additional variables, including the fuzzy controller.  The 

system was simulated using Simulink to determine the fitness; this is computationally heavy. 

Alternative methods of calculating the fitness can be explored. Additionally, rather than using the 

generated disturbances used in testing, real road data can be used as an alternative to more 

accurately reflect real-life road conditions. Finally, whole model can be experimentally tested for 

further improvement, main challenge there will be the actuator, even though comparable actuator 

with required weight and force capacity is already available, their reaction time is slow for an 

effective active vibration control; however, it can be inferred from the results that the proposed 

ANFIS model for vibration control is effective and GA optimization provides further control 

performance within practical search space for physical parameters.  

To summarize, an active vibration control for suspension was studied using a quarter car 

model.  Intially FIS controller is used to calculate force required for actuator, which improved the 

performance for a road bump, but struggled in continuous rough road disturbances. Then ANFIS 

was used to train and modify the membership functions, leading to substantial increase in 

performance with both rough road and bump disturbances. Finally, the basic suspension was 

optimized using GA, which led to additional performance gains.  
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Appendices 

Appendices A: Sample calculation of a Fuzzy Inference system 

Let’s a consider the FIS system used in this thesis. The system has 2 input: 

Distance (5 level): NL, N, Z, P, PL ; Speed (5 level): NL, N, Z, P, PL 

1 output: 

Force (7 level): NLL, NL, N, Z, P, PL, PLL 

Few examples of rules: 

 If (Velocity is Z) and (Displacement is Z) then (Force is Z) 

 If (Velocity is Z) and (Displacement is NL) then (Force is PL) 

Now For a single test case of velocity (V) of -0.2 m/s and displacement (D) of -4 cm first the 

input V and D are fuzzified. 

Fuzzification:  

Here, by definition and according to figure 28, V is subset of both N and Z ; D is subset of both 

NL and N.  

 

Figure 28: Fuzzy Input and outputs 
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Rule base:  

Now for fuzzy values of V and D 4 different rule is triggered and each results a different fuzzy 

output.  

Rule triggered in this case are: 

 If (Velocity is Z) and (Displacement is NL) then (Force is PL) 

 If (Velocity is N) and (Displacement is NL) then (Force is PLL) 

 If (Velocity is Z) and (Displacement is N) then (Force is P)  

 If (Velocity is N) and (Displacement is N) then (Force is PL)  

It can be seen in last blue column of figure 11. 

Defuzzification:  

Defuzzifications first combines all the fuzzy actions into one action. Then transform said action 

into a crisp vale. As can be seen in figure 29.   

 
(a) 

 
(b) 

Figure 29: Surface Plot for (a) Combined output area, (b) Combined output with COG (red mark) 

In this work center of gravity (COG) is used to calculate the crisp value. the resultant crisp force 

is 1366 N.  
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Appendices B:  

Table 8: Fitness data from 100 randomly generated damping co-efficient and spring constant 

Sample No Damping coefficient, b1 Spring constant, k1 Fitness value 

1 1307.349 14941.703 1.95361 

2 1241.608 13283.9 1.63453 

3 1279.535 12238.746 1.52045 

4 957.692 12346.285 1.39405 

5 822.849 18175.934 1.66977 

6 1271.121 14378.246 1.45121 

7 1462.667 12258.346 1.91437 

8 1079.058 14861.688 1.75343 

9 1324.138 17963.999 2.49711 

10 890.154 15673.233 2.17602 

11 1084.19 16847.348 1.8603 

12 1282.024 17660.15 2.46784 

13 957.019 17097.77 1.90256 

14 1241.324 13219.588 1.59165 

15 839.248 15737.73 2.2137 

16 1469.808 14552.893 2.29201 

17 1188.951 13678.59 1.68399 

18 1313.45 13913.213 1.7723 

19 1129.468 17243.075 1.94396 

20 1418.177 19194.686 2.66134 

21 1160.412 13039.683 1.56551 

22 861.971 13931.312 1.73081 

23 1380.538 13907.116 2.14873 

24 1360.714 13826.437 2.11868 

25 1446.948 14624.878 2.29214 

26 897.446 13883.129 1.69174 

27 1212.034 15549.666 1.64254 

28 1013.745 18231.215 2.14921 

29 1188.948 16122.927 1.74654 

30 1437.895 14143.793 2.22237 

31 1317.9 17652.968 2.42623 

32 1035.334 16258.662 1.72754 

33 806.891 12404.626 1.28575 

34 1148.098 17843.754 2.03894 

35 1450.508 12974.297 2.01244 

36 1176.618 15520.43 1.63649 

37 758.927 14528.42 1.90432 
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38 871.637 17957.134 1.58871 

39 983.411 15963.999 1.99483 

40 874.237 16514.865 1.64241 

41 947.228 16905.593 1.83604 

42 1266.911 17611.137 2.47218 

43 1087.906 12628.66 1.46228 

44 921.733 18850.03 2.3783 

45 864.284 18193.627 1.64653 

46 1153.757 19471.01 2.88902 

47 808.632 15320.087 2.07156 

48 829.99 19214.236 1.90974 

49 753.476 17811.828 2.1766 

50 1362.977 18515.21 2.57118 

51 813.327 14998.37 1.99625 

52 944.903 18000.514 2.11909 

53 1073.56 18829.857 2.25746 

54 886.385 13978.522 1.80245 

55 859.154 13020.514 1.67709 

56 1401.969 16347.784 2.62882 

57 1162.395 13087.161 1.58856 

58 1389.773 16665.413 2.71153 

59 1013.214 15849.372 2.0493 

60 1051.356 12569.75 1.4207 

61 929.937 12924.892 1.69166 

62 887.931 13799.644 1.72984 

63 1062.95 12372.408 1.12911 

64 1427.037 19085.904 2.63508 

65 1118.148 15669.395 1.6358 

66 1003.29 18750.404 2.28589 

67 1026.935 12834.021 1.96021 

68 1335.189 14923.041 1.93281 

69 931.268 15029.341 2.2648 

70 822.341 12989.8 1.34096 

71 1456.538 19171.009 2.62999 

72 1181.406 12448.347 1.50154 

73 926.085 14648.689 2.35638 

74 1365.896 12115.526 1.78855 

75 782.268 13267.425 1.59915 

76 1236.837 17487.918 2.43018 

77 1235.809 15381.928 1.60796 

78 1160.257 14222.406 1.73239 

79 1308.52 13417.163 1.34156 

80 1265.082 13376.334 1.54591 
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81 1026.363 16692.139 1.82575 

82 1335.171 12608.443 1.8647 

83 1447.039 17817.845 2.89585 

84 1115.094 15268.939 1.56367 

85 1085.088 14297.621 2.32937 

86 1131.381 15830.787 1.66328 

87 1363.221 17961.236 2.4854 

88 1233.239 14839.57 1.53767 

89 1358.685 15996.192 2.12198 

90 1013.045 19042.512 2.36616 

91 1406.957 16126.173 2.59157 

92 1216.856 16402.835 1.78004 

93 905.807 14259.347 1.8194 

94 1103.193 13728.661 1.65614 

95 1383.232 13460.732 2.06519 

96 919.441 13280.31 1.93904 

97 920.748 15267.74 2.39168 

98 983.327 18925.347 2.34186 

99 1072.656 13386.122 1.89297 

100 1428.661 19348.113 2.66395 

Best 
(Fitness) 1062.95 12372.408 1.12911 

Worst 
(Fitness) 1447.039 17817.85 2.89585 

Median 
(Fitness) 829.99 19214.24 1.90974 
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