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Classification of seven-dimensional solvable Lie algebras with A5,2 and A5,3

nilradicals

R. Dolan
dolanro@mail.gvsu.edu

F. Hindeleh
hindelef@gvsu.edu

Abstract

This paper provides a classification of seven-dimensional indecomposable solvable Lie algebras over R for which the
nilradical is isomorphic to A5,2 and A5,3. We follow a technique that was first introduced by Mubarakzyanov.

1. Introduction
For the elementary theory of Lie algebras refer to [4, 6, 7]. It has to be understood that classifying solvable Lie algebras

is a different exercise from studying the semisimple algebras. The problem of classifying all semisimple Lie algebras over
the field of complex numbers was solved by Cartan in 1894 [1], and over the field of real numbers by Gantmacher in
1939 [2]. For solvable indecomposable Lie algebras the problem is much more difficult. The classification of solvable Lie
algebras only exists for low dimensions and was performed by, amongst others, Mubarakzyanov for solvable Lie algebras of
dimension n ≤ 5 over the field of real and partially over the field of complex numbers in [11] and [12]. Mubarakzyanov’s
results are summarized in [17]. Mubarakzyanov also considered dimension six and classified solvable Lie algebras with a
co-dimension one nilradical [13]. Shabanskaya and Thompson refined his results and found some missing cases in [19, 20].
Then Turkowski classified six-dimensional solvable Lie algebras with a co-dimension two nilradical in [21]. Nilpotent Lie
algebras in dimension six were studied as far back as Umlauf [22], and later by Morozov [9].

It is probably impossible to classify solvable Lie algebras in general in arbitrary dimension. The first step in classifying
solvable Lie algebras in a specific dimension is to find the possible nilradicals. A general theorem asserts that if g is an
n−dimensional solvable Lie algebra, the dimension of its nilradical nil(g) is at least

n

2
[13]. So for n = 7, the possible

dimensions of the nilradical are seven, six, five, or four. The seven-dimensional nilradicals, called the nilpotents, were
studied by Seely over R [18] and by Gong over C [3]. The four-dimensional nilradical case was studied by Hindeleh
and Thompson [5]. The six-dimensional nilradical case was studied by Parry [16]. The five-dimensional nilradical case is
still an open problem. A complete classification consists of all possible five-dimensional nilpotent algebras, including the
decomposable ones.

We note that Ndogmo and Winternitz outlined methods for classifying solvable Lie algebras with abelian nilradical for a
general dimension in [14, 15]. Also, Le, Vu A, et al. [8] posted in arXiv methods for the classification of seven-dimensional
Lie algebras with five-dimensional nilradical. They conclude with the number of possible sub-classes without explicitly
finding them. This paper provides a complete list of the seven-dimensional solvable Lie algebras with a nilradical isomorphic
to the second and third nilpotent algebra of dimension five, denoted by A5,2 and A5,3 respectively.

In section 2, we recall basic definitions and properties related to the classification of solvable Lie algebras. Then in
section 3, we use Turkowski’s method [21] for classifying solvable Lie algebras with abelian nilradical, that is also outlined
by Ndogmo and Winternitz [14, 15]. Finally, we list the adjoint matrices corresponding to our algebras with trivial and
one-dimensional centers in sections 3 and 4.



2. A METHOD TO OBTAIN THE SOLVABLE ALGEBRAS
2.1. General Concepts

A Lie algebra g is solvable if its derived series DS terminates, i.e.

DS = {g0 = g, g1 = [g, g], . . . , gk = [gk−1, gk−1] = 0}

for some k ≥ 1.
A Lie algebra g is nilpotent if its central series CS terminates, i.e.

CS = {g(0) = g, g(1) = [g, g], . . . , g(k) = [g, g(k−1)] = 0}

for some k ≥ 1.
A solvable algebra g has a decomposition of the form

g = nil(g)⊕X,

satisfying

[nil(g), nil(g)] ⊂ nil(g),

[nil(g), X] ⊆ nil(g), (1)
[X,X] ⊂ nil(g),

where nil(g) denotes the nilradical of g, the vector space X is spanned by the remaining generators, and ⊕ denotes the direct
sum of vector spaces.

An element n of g is nilpotent if it satisfies

[. . . [[x, n], n] . . . n] = 0

for all x ∈ g when the commutator is taken sufficiently many times.
A set of elements {x1, . . . , xk} of g is called nilindependent if no non-trivial linear combination of them is nilpotent.
For x ∈ g, the adjoint transformation of x is a linear transformation adx : g → g defined by

adx(y) = [x, y],

for all y ∈ g. In this paper, the restriction of adx to the nilradical of g denoted adx|nil(g) is realized by matrices A ∈ gl(5,R).
Notice that if n is a nilpotent element of g, then adn|nil(g) is a nilpotent matrix.

A set of matrices in gl(n,R) will be called linearly nilindependent if no non-trivial linear combination of them is nilpotent.

2.2. Basic Structural Theorems

We shall choose a basis for g = ⟨e1, e2, . . . , e5, x1, x2⟩ where ei ∈ nil(g), xα ∈ X , for i = 1, . . . , 5, and α = 1, 2.
To classify the seven-dimensional solvable Lie algebras with five-dimensional nilradical, one must start with a five-

dimensional nilpotent algebra that will form nil(g), and add X = ⟨x1, x2⟩ satisfying the properties in (1). The following are
all the nilpotent Lie algebras up to isomorphism in dimension five: R5, A3,1 ⊕ R2, A4,1 ⊕ R, and A5,1 − A5,6, where Rn

denotes the n−dimensional abelian algebra, and An,k denotes the kth algebra of dimension n from Patera’s list [17]. The
case where the nilradical is isomorphic to R5, called the abelian nilradical case, was classified in a recently accepted work
by Bakeberg, Blaine and Hindeleh. The focus of this article is on the second and third indecomposable nilpotent algebras of
dimension 5, namely the A5,2 and A5,3 case.

Since the nilradical is A5,2 or A5,3 and basis elements must satisfy the relations in (1), we have [xα, e1]
...

[xα, e5]

 =
(
e1 . . . e5

)
Aα (2a)

[x1, x2] = Riei (2b)



where Aα = adxα |nil(g), α = 1, 2 and i = 1, . . . , 5 and we use the Einstein summation notation, as well as

[e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3

and
[e3, e4] = e2, [e3, e5] = e1, [e4, e5] = e3

for the structure equations of A5,2 and A5,3 respectively. The classification of our Lie algebras thus amounts to classification
of the matrices Aα and the constants Ri.

By the Jacobi identity involving x1, x2, and an ei,

[[x1, x2], ei] + [[x2, ei], x1] + [[ei, x1], x2] = 0.

Thus

ad[x1,x2](ei) = [x1, [x2, ei]]− [x2, [x1, ei]]

= adx1([x2, ei])− adx2([x1, e1])

= adx1(adx2(ei))− adx2(adx1(ei))

= [adx1 , adx2 ](ei).

Hence [adx1
, adx2

] is an inner derivation of the nilradical.
We perform a combination of changes of basis until we reach our desired form. For i = 1, . . . , 5, and α = 1, 2, the

following changes of basis preserve the nilradical:

1. Absorbtion-type change of basis
x̄α = xα + riαei riα ∈ R.

2. A change of basis in X
x̄α = Gβ

αxβ G ∈ GL(2,R).

3. A change of basis in nil(g)
ēi = Sj

i ej S ∈ GL(5,R),

where S = (Sj
i ) is the automorphism that will change every Aα to a similar matrix SAαS−1.

Thus our classification problem reduces to finding the derivations of the nilradical that are not nilpotent and that satisfy the
conditions above.

3. CLASSES OF SOLVABLE ALGEBRAS FOR A5,2

We will determine all real solvable algebras N = A5,2 ⊕X such that the dimX = 2. The dimension of the center of g is

dimZ(g) ≤ 2 dim nil(g)− dim g = 3

(see Ref. [10]). The algebras that possess a center of dimension at least two are decomposable into a direct sum of lower-
dimensional algebras [10]. Therefore, in the following, the classification problem is solved for the cases dimZ(g) = 0, 1.

First, twenty Jacobi identities involving (xα, ei, ej) and with additional transformations give

A1 =



3 p55 + p44 p12 p13 p14 p15

0 2 p55 + p44 p12 p13 p25

0 0 p55 + p44 p12 p35

0 0 0 p44 p45

0 0 0 0 p55





,

A2 =



3 q55 + q44 q12 q13 q14 q15

0 2 q55 + q44 q12 q13 q25

0 0 q55 + q44 q12 q35

0 0 0 q44 q45

0 0 0 0 q55


Next, five Jacobi identities involving (x1, x2, ei) give

From the last equation we can separate out two distinct cases with sub cases

1. q55 ̸= 0

(a) q44 ̸= q55

(b) q44 = q55 : from the conditions that the adjoint matrices cannot be nilpotent, q45 = 0 is the only allowed
subcase.

2. q55 = 0

(a) p55 = 0 : from nilpotent conditions p44 ̸= 0 and q44 ̸= 0

(b) p55 ̸= 0 . Then q13 = 0 and q14 = 0 and q44 ̸= 0 .

3.1. Case 1

From case 1a we have

A1 =



3 p55 + p44 0 q13 p55
q55

q14 p55
q55 0

0 2 p55 + p44 0 q13 p55
q55 0

0 0 p55 + p44 0 0

0 0 0 p44 q45 (p44−p55)
q44−q55

0 0 0 0 p55


and

A2 =



3 q55 + q44 0 q13 q14 0

0 2 q55 + q44 0 q13 0

0 0 q55 + q44 0 0

0 0 0 q44 q45

0 0 0 0 q55


with

[x1, x2] = −q14 q45 (p44 q55 − p55 q44 )

q55 (q44 − q55 )
e2− q13 q45 (p44 q55 − p55 q44 )

q55 (q44 − q55 )
e3.

From case 1b we have



A1 =



3 p55 + p44 0 q13 p55
q55

q14 p55
q55 0

0 2 p55 + p44 0 q13 p55
q55 0

0 0 p55 + p44 0 0

0 0 0 p44 p45

0 0 0 0 p55


and

A2 =



4 q55 0 q13 q14 0

0 3 q55 0 q13 0

0 0 2 q55 0 0

0 0 0 q55 0

0 0 0 0 q55


with

[x1, x2] = −(p45 · q14 ) · e2 − (p45 · q13 ) · e3 .

3.2. Case 2

From case 2a we have a violation of the linear nilindependence of the adjoint matrices. Thus case 2a is invalid. From case
2b we have

A1 =



3 p55 + p44 0 p13 p14 0

0 2 p55 + p44 0 p13 0

0 0 p55 + p44 0 0

0 0 0 p44 q45 (p44−p55)
q44

0 0 0 0 p55


and

A2 =



q44 0 0 0 0

0 q44 0 0 0

0 0 q44 0 0

0 0 0 q44 q45

0 0 0 0 0


with

[x1, x2] = −(p14 · q45 ) · e2 − (p13 · q45 ) · e3 .

4. CLASSES OF SOLVABLE ALGEBRAS FOR A5,3

First, twenty Jacobi identities involving (xα, ei, ej) with additional transformations give

A1 =



2 p55 + p44 p54 p34 p14 p15

p45 p55 + 2 p44 −p35 p24 p25

0 0 p55 + p44 p34 p35

0 0 0 p44 p45

0 0 0 p54 p55





,

A2 =



2 q55 + q44 q54 q34 q14 q15

q45 q55 + 2 q44 −q35 q24 q25

0 0 q55 + q44 q34 q35

0 0 0 q44 q45

0 0 0 q54 q55


.

Next, five Jacobi identities involving (x1, x2, ei) give

−p14q45 − p24q44 − p24q55 + p34q35 + p44q24 − p54q25 + p25q54 − p35q34 + p45q14 + p55q24 = R3
p34q45 + p44q35− p35q44− p45q34 = R4
p34q55 + p54q35− p35q54− p55q34 = R5
p54q45− p45q54 = 0
p44q54− p54q44 + p54q55− p55q54 = 0
−p44q45 + p45q44− p45q55 + p55q45 = 0
2p14q55 + p24q54− p54q24 + p54q15− p15q54− 2p55q14 = 0
−p24q45− 2p44q25 + p15q45 + 2p25q44 + p45q24− p45q15 = 0
−2p14q45− p24q44− p24q55 + p44q24− p44q15− 2p54q25 + p15q44 + p15q55 + 2p25q54 + 2p45q14 + p55q24− p55q15 = 0

Put C =

(
2p55 + p44 p54

p45 p55+2p44

)
and D =

(
2q55 + q44 q54

q45 q55+2q44

)
. The above equations show these blocks

commute. Thus there exists a change of basis which will change these blocks to their Jordan form C ′ and D′. There are then
three cases:

1. C ′ =

(
λ1 0
0 λ2

)
and D′ =

(
µ1 0
0 µ2

)
with λ1 ̸= λ2 and µ1 ̸= µ2,

2. C ′ =

(
λ 1
0 λ

)
and D′ =

(
µ µ1

0 µ

)
, and

3. the case of complex eigenvalues where C ′ =

(
λ1 λ2

λ2 λ1

)
and D′ =

(
µ1 µ2

µ2 µ1

)
with λ1 ̸= λ2 and µ1 ̸= µ2.

Note that in each case, with appropriate changes of basis we obtain the relation [x1, x2] = R1e1 + R2e2 for arbitrary
constants R1 and R2. Thus in characterizing each case, we give only the forms of A1 and A2.

4.1. Case 1

In the first case we find to preserve the linear nilindependence of the adjoint matrices, we have the additional restriction

rank
(

λ1 λ2

µ1 µ2

)
= 2.

We then have four viable subcases which emerge from the Jacobi conditions above:

1. λ2 = 2λ1

2. λ1 = 2λ2

3. λ1 = −λ2

4. None of conditions 1-3 are true.

In the case where none of conditions 1-3 are true, we have two possible forms of solution which satisfy the Jacobi identity.
The first is µ1 ̸= 0 and the second is that µ1 = 0. In both cases we have λ1 ̸= 0 and λ2 ̸= 0 or case four degenerates to some
other case.



In subcase 1 we have

A1



λ1 0 0 0 p15 − p24

0 2λ1 0 0 p25

0 0 λ1 0 0

0 0 0 λ1 0

0 0 0 0 0


and

A2 =



3µ1 0 0 3 q14 −p24 µ1+p24 µ2−p15 µ1−p15 µ2
λ1

0 3µ2 0 0 −p25 (−2µ2+µ1)
λ1

0 0 µ1 + µ2 0 0

0 0 0 2µ2− µ1 0

0 0 0 0 −µ2 + 2µ1


.

In subcase 2 we have

A1 =



2λ1 0 0 2 p14 2 p15 − 2 p24

0 λ1 0 0 0

0 0 λ1 0 0

0 0 0 0 0

0 0 0 0 λ1


and

A2 =



3µ1 0 0 2 p14 (2µ1−µ2)
λ1 −2 p24 µ1+p24 µ2−p15 µ1−p15 µ2

λ1

0 3µ2 0 0 3 q25

0 0 µ2 + µ1 0 0

0 0 0 2µ2− µ1 0

0 0 0 0 2µ1− µ2


.

In subcase 3 we have

A1 =



λ1 0 0 p14 0

0 −λ1 0 0 p25

0 0 0 0 0

0 0 0 −λ1 0

0 0 0 0 λ1


and

A2 =



3µ1 0 0 p14 (−µ2+2µ1)
λ1 3 q15 − 3 q24

0 3µ2 0 0 p25 (−2µ2+µ1)
λ1

0 0 µ2 + µ1 0 0

0 0 0 2µ2− µ1 0

0 0 0 0 −µ2 + 2µ1


.



In subcase 4 note again that λ1 ̸= 0 and λ2 ̸= 0 or the case is degenerate. Then we have

A1 =



3λ1 0 0 3 p14 0

0 3λ2 0 3 p24 − 3 p15 3 p25

0 0 λ2 + λ1 0 0

0 0 0 2λ2− λ1 0

0 0 0 0 −λ2 + 2λ1


and

A2 =



3µ1 0 0 3 p14 (−µ2+2µ1)
−λ2+2λ1 0

0 3µ2 0 3 p24 µ1+p24 µ2−p15 µ1−p15 µ2
λ2+λ1 3 p25 (−2µ2+µ1)

−2λ2+λ1

0 0 µ2 + µ1 0 0

0 0 0 2µ2− µ1 0

0 0 0 0 −µ2 + 2µ1


.

4.2. Case 2

In the second case there is no combinations of values λ, µ, and µ1 such that the adjoint matrices remain linearly nilinde-
pendent. Thus case 2 is an invalid case.

4.3. Case 3

To satisfy the Jacobi identity in the third case we find that either µ2 = 0 or λ2 = 0. However the cases are isomorphic to
one another, thus we describe the case where µ2 = 0 without loss of generality. Similarly to the first case we must have

rank
(

λ1 λ2

µ1 µ2

)
= 2.

Then we have λ2 ̸= 0 as well as µ1 ̸= 0 to preserve the linear nilindependence of the adjoint matrices. We then find,

A1 =



3λ1 −3λ2 0 3 p14 2 p14 λ1µ1−3 p24 λ2µ1+3 p15 λ2µ1−2 q14 λ12

2λ2µ1

−3λ2 3λ1 0 2 p14 λ1µ1+3 p24 λ2µ1−3 p15 λ2µ1−2 q14 λ12

2λ2µ1 β

0 0 2λ1 0 0

0 0 0 λ1 −3λ2

0 0 0 −3λ2 λ1


and

A2 =



3µ1 0 0 3 q14 2 p14 µ1−q14 λ1
λ2

0 3µ1 0 0 2 p14 λ1µ1+3 p24 λ2µ1−3 p15 λ2µ1−2 q14 λ12+9 q14 λ22

3λ22

0 0 2µ1 0 0

0 0 0 µ1 0

0 0 0 0 µ1


where β = 2 p14 λ12µ1−9 p14 µ1λ22+3 p24 λ1λ2µ1−3 p15 λ1λ2µ1−2 q14 λ13+18 q14 λ1λ22

3µ1λ22
.
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(5)):161–171, 1958. 1

[10] G. M. Mubarakzjanov. Certain theorems on solvable Lie algebras. Izv. Vysš. Učebn. Zaved. Matematika, 1966(6
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