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Abstract 

Mammalian dental anatomy has evolved in accordance with the physical 

properties of its diet, and multiple features on each tooth have specific functions related 

to the breakdown of food during mastication and ingestion. Tooth structure is under tight 

genetic control and much of the anatomical variation in dentition across species is 

related to adaptation to a specific dietary regime. This diet-dentition relationship can be 

exploited to reconstruct mammalian diets from fossil specimens through calculation of 

dental topographic metrics. To date, most studies of dietary reconstruction using dental 

topography have focused on mandibular molars; thus, this study seeks to test whether 

the dietary signal from maxillary molars is congruent with that of the mandibular 

dentition.    

As a test case, an extant sample of maxillary and mandibular phyllostomid bat 

dentitions from Balta, Peru were collected and classified by dietary regime: frugivore, 

frugivore-nectarivore, insectivore-frugivore, and insectivore. The specimens were cast 

using epoxy material, after which second molars were excised, mounted on discs, and 

microCT-scanned at 13µm resolution. The resulting images were compiled to create a 

3D surface model of the anatomical tooth crown, and topographic metrics were then 

calculated. 

Paired t-tests of relief index (RFI), Dirichlet normal energy (DNE), and orientation 

patch count-rotated (OPCR) values of maxillary and mandibular molars within each 

dietary group demonstrated that there is a significant difference between maxillary and 

mandibular dental topographies across diets (P<0.05). Additionally, discriminant 

function analysis of maxillary and mandibular dental topography indicated that maxillary 
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second molars are as effective at predicting a species’ diet as mandibular molars, and a 

combination of maxillary and mandibular dental topographic values predicts diet more 

effectively with an 65% success rate. Results from this study increase the dietary 

prediction accuracy for complete fossil specimens, expand paleontological dental 

topographic analysis to include maxillary molars, and demonstrate the potential of 

incorporating an occlusal approach to dental topography. 
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Chapter 1: Introduction 

 Molars are the key to understanding what mammals eat, the environment in 

which they live, and also give clues about the evolution of species. Mammalian dental 

anatomy has evolved over time in accordance with the physical properties of its diet, 

and multiple features on each tooth have specific functions related to the breakdown of 

food during mastication and ingestion (Anderson and LaBarbera, 2008; Czarnecki and 

Kallen, 1980; Lucas, 2004; Rosenberger and Kinzey, 1976; Strait, 1993; Winchester et 

al., 2014). There are strong selective pressures among mammals to be efficient at both 

acquiring nutrients and pre-processing food in order to maximize the surface area upon 

which enzymes can act during digestion (Lucas, 2004; Santana et al., 2011; Ungar, 

2016). For example, cows and horses exhibit relatively flat molars, which are suited for 

grinding plant cellulose for easier digestion. In contrast, mammals that eat hard-bodied 

insects exhibit tall, tapered cusps that break through the chitinous exoskeleton and 

propagate a crack in order to expose the soft insides for digestion (Strait, 1993). The 

advantage of tall cusps in these species lies in their ability to apply a large amount of 

masticatory force to a small area of exoskeleton in order to break through it, thus 

increasing an organism’s chewing efficiency for a diet of hard-bodied insects (Evans 

and Sanson, 2006). All of these adaptations share the common feature of maximizing 

digestive efficiency for metabolic use in mammals.  

 Tooth enamel is the densest, hardest component in the mammal body (Cuy et 

al., 2002), and as a result, teeth are commonly preserved in fossil collections. Since 

tooth morphology is considered to be under tight genetic control, analyzing tooth 

structure is directly related to evolutionary adaptation (Anthony and Kay, 1993; Bunn et 
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al., 2011; Lucas, 2004; Seligsohn and Szalay, 1978). Molariform teeth are 

predominantly used for mastication and breakdown of food for further digestion, and 

“diversity in functional demands on molar molars is roughly equivalent to diversity in 

material properties of different food items processed” (Boyer et al., 2010; Bunn and 

Ungar, 2009; Butler, 1972; Freeman, 1988; Kay, 1975; Lucas, 2004; Marshall and 

Butler, 1966). Studying extant mammalian dental topography expands our 

understanding of the molar form-function relationship, allowing for dietary (and thus 

ecological) reconstructions of related fossil mammals. The current research project is 

significant because it has the potential to infer the specific diets and subsequent 

ecologies of extinct mammals using isolated maxillary molars, whereas past studies 

have predominantly shown success using mandibular molars. In the field of 

paleontology, fossil specimens are often incomplete, so testing the efficacy of maxillary 

molars at predicting diet will be of great benefit to the field when mandibular molars are 

unavailable. A combined metric of maxillary and mandibular molar topography could 

also provide greater dietary prediction accuracy of complete fossil specimens.  

Purpose 

 The purpose of this study is to determine the efficacy of maxillary second molar 

topography and combined maxillary and mandibular second molar topography at dietary 

prediction in a sample of phyllostomid bat dentitions. 

Scope 

 Dental topography can include a number of different metrics such as shearing 

quotient, shearing ratio, molar length, relief index (RFI), Dirichlet normal energy (DNE), 

and orientation patch count-rotated (OPCR), all of which have been employed in dietary 



12 

 

predictive analyses though mostly using mandibular second molars. This study aims to 

utilize RFI, DNE, and OPCR to determine dietary predictive success in a sample of 

phyllostomid bat dentitions using both maxillary and mandibular second molars. 

Assumptions 

1. Dental anatomy is under tight genetic regulation and is the result of selection 

for specific dietary regimes. 

2. The anatomic variation in this sample can be attributed to dietary adaptation. 

Hypothesis 

Hypothesis 1: Dental topographic metrics will be similar between maxillary and 

mandibular second molars.  

Hypothesis 2A: Maxillary second molar topography will predict species’ diet as 

effectively as mandibular second molar topography. 

Hypothesis 2B: Combined maxillary and mandibular second molar topography will have 

greater dietary predictive success than those of either maxillary or mandibular 

topographies alone. 

Significance 

 In the field of paleontology, fossil specimen acquisition is highly variable. Thus, 

increasing the number and types of molars available to researchers to use in dietary 

prediction would be beneficial for reconstructing dietary regimes in the fossil record. In 

the event of discovering a complete specimen, researchers would be able to more 

accurately predict a species’ diet using combined maxillary and mandibular dental 

topography in the fossil record. 
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Chapter 2: Review of Literature 

Many techniques have been developed over time to quantify tooth structure 

within the field of mammalian paleontology, and they have been useful in reconstructing 

the dietary niches of fossil mammal species. Identification of the molar form-function 

relationship began with the utilization of linear dental metrics such as cusp height, 

buccal notch angle, and shearing ratios in conjunction with study of the physical 

properties of species’ diets (Rosenberger and Kinzey, 1976; Strait, 1993). Shearing 

ratios have been employed in many different studies of molar form and have shown to 

be resilient to different methodological approaches to its calculation; it still appears to be 

an accurate predictor of species diet (Boyer et al., 2015; Allen et al., 2015). In recent 

years, dental topographic analysis has been the standard in quantifying tooth structure 

in mammals.  

Most dental topographic studies utilize three specific metrics to determine 

topography: relief index (RFI), Dirichlet normal energy (DNE), and orientation patch 

count-rotated (OPCR). RFI was first proposed in a preliminary study of topographical 

analysis by Ungar and Williamson (2000) and is comprised of “a ratio of the three-

dimensional surface area to the two-dimensional x-y area” of a tooth crown. Relief index 

allows for the inclusion of morphologically diverse taxa and is a sensitive and accurate 

predictor of diet (Boyer, 2008). Overall, the three-dimensional surface area of a tooth 

increases when the number of features on a given tooth increases, or individual cusps 

become more prominent on the tooth surface. In general, one would expect an 

insectivore to have greater relief than a frugivore since the tall, tapered cusps of the 

insectivore increase the three-dimensional surface area of the tooth crown compared to 



14 

 

the flatter anatomy of a frugivore tooth crown. DNE was first introduced in 2011, and in 

short “measures the deviation of a surface from being planar” (Bunn et al., 2011). DNE 

correlates strongly with relief index but is less sensitive to the cropping process of three-

dimensional topographic measurement. The peaked cusps of insectivorous molars 

would exhibit high DNE values due to their deviation from being planar. DNE provides 

insight into the potential for a given tooth structure to do work. One would anticipate that 

frugivore molars would exhibit lower DNE values since the work of mastication is spread 

across the entire occlusal surface rather than a few key areas as in insectivore molars. 

OPCR is a measure of tooth surface complexity calculated by grid points on the 

occlusal surface as they relate to eight compass directions (Evans and Jernvall, 2009). 

Groups of grid points on the tooth surface that lie in the same compass direction 

constitute a patch, and OPCR increases as the number of patches increases. OPCR 

differs from the other two metrics in that it measures surface complexity rather than 

topographic relief, meaning that molars with surface crenulations and microscopic 

ridges will have a higher OPCR value (Bunn et al., 2011). The more directional changes 

on a tooth surface, the higher the OPCR. Since frugivores have more complex surfaces 

than insectivores, it is anticipated that frugivores will have higher OPCR values than 

insectivores. On the other hand, DNE and RFI values increase with the presence of 

larger tooth features such as cusps and crests. Dental topographic analysis may also be 

used to compare morphology among similarly worn individuals from different species 

(Dennis et al., 2004). A computer program developed by Winchester et al. (2016) called 

MorphoTester calculates each of these metrics readily from a processed microCT 

image of a three-dimensional dental specimen. 
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This study intends to demonstrate that dental topography of maxillary second 

molars can add to the greater picture of molar occlusion and could allow for dietary 

predictions based on isolated maxillary molar specimens in the fossil record. Rather 

than narrowing the analysis to the anatomy of a single tooth, observing aspects of the 

molar occlusion of small mammals can paint a larger picture of how efficiently an animal 

is able to break down food and maximize its caloric potential. A study by Santana et al. 

(2011) observed maxillary and mandibular molar complexity (OPC-orientation patch 

count) of microbats. Overall, the topography of maxillary and mandibular second molars 

was relatively simplistic for insectivores and omnivores and more complex for the 

puncture-crush tooth function of frugivores. Maxillary molars tended to be more complex 

than mandibulars but did not vary amongst dietary groups (Santana et al., 2011). 

Additionally, a study by Allen et al. (2015) observed maxillary and mandibular first molar 

relief (RFI) and shearing quotient (SQ) of a sample of platyrrhine primates. They 

concluded that maxillary and mandibular relief were significantly different among 

species, and the dietary predictive success was similar between maxillary and 

mandibular relief. Combined maxillary and mandibular relief index did increase the 

dietary predictive success compared to individual first molars. This research project 

builds on the work of Allen et al. (2015) and Santana et al. (2011) by including more 

specimens with higher dietary variation as well as using a more complete topographic 

analysis that includes DNE in addition to relief index (RFI) and complexity (OPCR). 

Among mammals that can be used for dental topographic analysis, 

microchiropterans are ideal for inferring diet from maxillary and mandibular molar 

morphology. Chiropterans (bats) are an ideal study sample due to their high degree of 
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species diversity and dental morphological variation within small geographic areas 

(Dumont, 1999; Freeman, 2000; Gutzwiller and Hunter, 2015). Phyllostomidae, or New 

World leaf-nosed bats are one of the most ecologically diverse mammalian families 

ranging from southern North America to South America, reaching as far south as 

Argentina. Phyllostomid species can have diets categorized as frugivorous, 

nectarivorous, insectivorous, omnivorous, and even carnivorous. Fossil evidence 

suggests that this chiropteran family can be traced back to the Oligocene, and 

phylogenetic analysis estimates the family to be roughly 30 million years old (Rojas et 

al., 2016). Phyllostomids forage at night, relying on smell and echolocation for 

identifying food sources. Since most phyllostomid species echolocate nasally, their leaf-

shaped noses are thought to provide amplification and direction to their calls. 

Echolocation is especially important for insectivorous species that need to rapidly locate 

flying prey, whereas frugivorous species rely more heavily on smell to locate food 

sources (Bogdanowicz et al., 1997). 

Applying dental topographic analysis to microbats has the potential to provide 

further insight into dietary categorization using dental morphology, and past studies 

have shown that analysis of mammalian mandibular second molars can provide 

valuable insight to diet prediction in the fossil record (Boyer, 2008; Bunn et al., 2011; 

Ledogar et al., 2013; Pampush et al., 2016; Prufrock et al., 2016; Ungar, 2004). 

However, few studies have examined dental topography of both maxillary and 

mandibular molars. Occlusion allows for a dramatic increase in the level of oral 

processing in early tetrapods, and it develops independently in each species according 

to evolutionary pressure and diet (Reisz, 2006; Terhune et al., 2015). As such, dental 
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topographical analysis of solely mandibular second molars demonstrate only half the 

evidence when it comes to topographical analysis. 
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Chapter 3: Methodology 

Specimen Acquisition 

This study was conducted on a phyllostomid museum sample (LSU Museum of 

Natural Science) from the Balta community of Peru. Balta lies deep in the Peruvian 

rainforest and is home to many different species of microbat. Figure 1 depicts examples 

of maxillary and mandibular second molars of specimens included in each dietary 

category analyzed in this study. This sample of paired maxillary and mandibular 

dentitions (N=99 individuals, 198 (99 maxillary, 99 mandibular) isolated molars) was 

collected by Dr. Laura Stroik in May 2012 and is detailed in Table 1. Figure 2 depicts 

the phylogenetic tree containing each species included in this study and is derived from 

the phylogeny of Rojas et al., 2016. Although not ideal for all statistical analyses, the 

sample size proposed here is the best available, and like all similar studies of dental 

material, this research acknowledges the limitations and assumptions built into the 

analysis of small samples.  
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Figure 1. Frugivore Artibeus obscurus maxillary (A) and mandibular (E) second molars, 

frugivore-nectarivore Anoura caudifer maxillary (B) and mandibular (F) second molars, 

insectivore-frugivore Lophostoma silvicolum maxillary (C) and mandibular (G) second 

molars, insectivore Macrophyllum macrophyllum maxillary (D) and mandibular (H) 

second molars. M=mesial, D=distal, B=buccal, L=lingual. 
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Table 1. Balta, Peru specimens included in this study. Dietary group assignments are 

as follows: F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-frugivore, 

I=Insectivore. N=number of individuals (2 molars (1 maxillary, 1 mandibular) per 

individual).  

 

 

 

 

Species Subfamily
Dietary 

Group
N

Artibeus cinereus Stenodermatinae F 4

Artibeus obscurus Stenodermatinae F 5

Artibeus planirostris Stenodermatinae F 4

Carollia brevicauda Carolliinae F 3

Carollia castanea Carolliinae F 4

Chiroderma villosum Stenodermatinae F 5

Mesophylla macconnelli Stenodermatinae F 3

Platyrrhinus brachycephalus Stenodermatinae F 3

Platyrrhinus helleri Stenodermatinae F 3

Rhinophylla pumilio Rhinophyllinae F 5

Uroderma bilobatum Stenodermatinae F 3

Uroderma magnirostrum Stenodermatinae F 5

Anoura caudifer Glossophaginae FN 4

Anoura geoffroyi Glossophaginae FN 1

Choeroniscus minor Glossophaginae FN 2

Glossophaga soricina Glossophaginae FN 4

Hsunycteris thomasi Lonchophyllinae FN 4

Sturnira lilium Stenodermatinae FN 3

Sturnira tildae Stenodermatinae FN 4

Lophostoma silvicolum Phyllostominae IF 4

Micronycteris megalotis Micronycterinae IF 3

Trinycteris nicefori Glyphonycterinae IF 1

Phyllostomus elongatus Phyllostominae IF 5

Tonatia saurophila Phyllostominae IF 4

Macrophyllum macrophyllum Phyllostominae I 4

Mimon crenulatum Phyllostominae I 4

Trachops cirrhosus Phyllostominae I 5

TOTAL 99
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Figure 2. Phylogeny of species (N=27) included in this study, derived from cytb gene. 

Data was sourced from the phylogeny of Rojas et al., 2016. 
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Specimen Preparation 

 Dental impressions were taken of both maxillary and mandibular dentitions of 

each museum specimen by Dr. Laura Stroik. Each mold was used to create a cast of 

each tooth row using an epoxy material (EPO-TEK 301-1). Maxillary and mandibular 

second molars were excised from the cast rows of molars using a Buffalo Dental 4-

speed micro-motor handpiece and diamond cutting disk. The casts were arranged on 1 

in. diameter wafers in groups to save costs during the µCT scan process. 

µCT-Scanning 

Each of the wafers containing the specimens were shipped out to the Duke 

University Shared Materials Instrumentation Facility (SMiF) to be scanned using a Nikon 

XT H 225 ST micro x-ray computed tomography scanner (µCT). µCT-scanning is 

necessary to produce three-dimensional images of microbat molars due to their small 

size, which requires scanning at a high resolution (13µm). This scanner provides high 

resolution images of the interior and exterior surfaces of an object by projecting an x-ray 

beam onto the sample and creating a radiographic image of the interaction. It has been 

used for surface studies on small dental specimens due to its ability to create precise, 

high resolution topographic images. 

Scan Processing and MorphoTester 

Using the Amira software (version 5.2.0), the µCT scan files were rendered, 

cropped, and smoothed into a series of three-dimensional Tiff files that were used to 

reconstruct the three-dimensional surface of each tooth (Figure 3). These surface files 

(one for each molar) were then analyzed by the MorphoTester software (Winchester et 

al., 2016), which output DNE, RFI, and OPCR values for each molar specimen. 
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Figure 3. Artibeus cinereus maxillary (A,B) and mandibular (C,D) molars in Amira (A,C) 

and MorphoTester (B,D). Areas of higher relief are depicted in Morphotester by warm 

colors, and areas of lower relief are depicted by cool colors. M=mesial, D=distal, 

B=buccal, L=lingual. 

 

Statistical Analyses 

All statistical analyses were performed using the statistical package for the social 

sciences (SPSS) software. Before each statistical analysis was conducted, the data 

values for maxillary and mandibular molars were tested for normality for each 

topographic metric. The Shapiro-Wilk test of normality determined that RFI, DNE, and 

OPCR across all dietary categories were non-normal, thus a non-parametric Wilcoxon 

matched-pairs signed-ranks test was conducted on each topographic metric separately 

wherein the maxillary and mandibular molars of each individual forms a pair (N=99 

pairs). The purpose of this analysis was to determine if each topographic measure 
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results in similar values in occluding (paired) maxillary and mandibular second molars in 

microbats, and thus is the most appropriate analysis for directly testing Hypothesis 1.  

 Using the dental topographic values and known species diet categories collected 

from the literature, the topographical results of each measure (DNE, RFI, and OPCR) 

and all measures combined (DNE+RFI+OPCR) of maxillary and mandibular molars 

separately (Hypothesis 2A) and together (Hypothesis 2B) were tested for their efficacy 

at predicting species dietary niche, resulting in 12 total analyses: 4 analyses (DNE, RFI, 

OPCR, DNE+RFI+OPCR) each for maxillary molars, mandibular molars, and both 

maxillary and mandibular molars combined. The ability of the dental topographic 

variables to predict diet (using the dietary categories given in Table 1) was assessed 

using discriminant function analysis with cross-validation using jack-knifing, which has 

been employed by many researchers in this field testing similar hypotheses (i.e., the 

ability of dental metrics to predict diet): e.g., Boyer et al., 2008, Bunn et al., 2011, Stroik, 

2014, Winchester et al., 2014. This analysis assigns groups based on discriminant 

functions and allows misclassification rates (in this case, percent of specimens 

misassigned to each dietary category) to be calculated to test the accuracy of the 

classification rules (in this case, the dietary predictive success based on the dental 

topographic input variables) (Khattree and Naik, 2000). Assessing the predictive value 

of each dental topographic measure is directly applicable to the accuracy of dietary 

reconstructions using molar morphology in the fossil record, the ultimate goal of studies 

of extant species. 
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Chapter 4: Results 

Maxillary and Mandibular Topographic Similarity (Hypothesis 1) 

 Relief index was significantly different (p<0.05) between maxillary and 

mandibular second molars across all dietary categories. DNE and OPCR values of 

maxillary and mandibular molars were significantly different for the frugivore-nectarivore 

and insectivore dietary categories (p<0.05), whereas they were similar for the frugivore 

and insectivore-frugivore groups (p>0.05) (Table 2). Across the entire sample (N=99) 

with all dietary categories included, the RFI, DNE, and OPCR values for maxillary and 

mandibular molars were significantly different for each topographic metric evaluated 

(Table 2). 

Comparison boxplots were created to illustrate the difference between maxillary 

and mandibular second molars for each topographic measure. Across all dietary 

categories (F=frugivore, FN=frugivore-nectarivore, IF=insectivore-frugivore, 

I=insectivore), mandibular second molars appeared to have higher RFI than maxillary 

second molars, which reinforces the significant difference found between maxillary and 

mandibular RFI in Table 2 (Figure 4). Similarity between maxillary and mandibular 

frugivore and insectivore-frugivore DNE values is evident based on their closely 

associated means (maxillary F=301.5, mandibular F=301.1, maxillary IF=383.7, 

mandibular IF=391.4) in Figure 5. A similar trend was present in frugivore and 

insectivore-frugivore maxillary and mandibular OPCR values (maxillary F=145.8, 

mandibular F=146.0, maxillary IF=137.8, mandibular IF=132.2), which further supports 

the lack of significant difference between the maxillary and mandibular values of those 

two dietary categories (Table 2; Figure 6). Maxillary and mandibular OPCR values had 
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the greatest range in the frugivore group (maxillary=252.4, mandibular=157.125) when 

compared to the other three dietary categories (Figure 6), and this difference in variation 

between the frugivore and non-frugivore dietary categories will be further evaluated 

below. 

 

 

Table 2. Results of Wilcoxon matched-pairs signed-ranks test for similarity between 

maxillary and mandibular second molars. F=Frugivore, FN=Frugivore-nectarivore, 

IF=Insectivore-frugivore, I=Insectivore. Topography was found to be similar in frugivore 

and insectivore-frugivore DNE and OPCR (p>0.05). 
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Figure 4. Boxplots of maxillary and mandibular relief index (RFI) values for each dietary 

group: F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-frugivore, I=Insectivore. 
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Figure 5. Boxplots of maxillary and mandibular Dirichlet normal energy (DNE) values 

for each dietary group: F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-

frugivore, I=Insectivore. 
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Figure 6. Boxplots of maxillary and mandibular orientation patch count-rotated (OPCR) 

values for each dietary group: F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-

frugivore, I=Insectivore. 
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Maxillary and Mandibular Topography and Diet Prediction (Hypothesis 2A) 

 

Table 3. Success of classification (%) for the total sample (N=99) from discriminant 

function analysis across all metrics.  

 

 

Table 4. Success of classification into dietary groups using cross-validated discriminant 

function analysis using relief index (RFI) for maxillary second molars. Number (N) and 

percent (%) of species classified into each dietary group are listed. F=Frugivore, 

FN=Frugivore-nectarivore, IF=Insectivore-frugivore, I=Insectivore. Correct 

classifications are highlighted in blue.  

 

 

 

 

 

Maxillary Mandibular

RFI 47.5 50.5

DNE 52.5 49.5

OPCR 47.5 47.5

RFI, DNE, OPCR 55.6 52.5

F FN IF I

N 44 0 0 3

% 93.6 0.0 0.0 6.4

N 21 0 0 1

% 95.5 0.0 0.0 4.5

N 10 0 0 3

% 88.2 0.0 0.0 11.8

N 15 0 0 2

% 76.9 0.0 0.0 23.1

Maxillary
Classified Group

O
ri

gi
n

al
 G

ro
u

p

F

FN

IF

I
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Table 5. Success of classification into dietary groups using cross-validated discriminant 

function analysis using relief index (RFI) for mandibular second molars. Number (N) and 

percent (%) of species classified into each dietary group are listed. F=Frugivore, 

FN=Frugivore-nectarivore, IF=Insectivore-frugivore, I=Insectivore. Correct 

classifications are highlighted in blue. 

 

 With an overall predictive success of 47.5% (Table 3), the likelihood of 

successful classification using maxillary RFI alone isn’t an ideal success rate for 

accurate dietary prediction. Predictive success of maxillary second molar RFI was 

extremely low across each dietary category, save frugivores (93.6%) (Table 4). 

Mandibular second molar RFI dietary predictive success was also quite low across all 

dietary categories with the exception of frugivores; however, mandibular second molar 

RFI did show greater discriminatory capability in the insectivore-frugivore group (47.1% 

success) when compared to maxillary insectivore-frugivore RFI (0.0%) (Table 5), 

indicating that mandibular second molar RFI is more effective at insectivore-frugivore 

discrimination than maxillary second molar RFI. Maxillary RFI did exhibit greater 

discriminatory capability in the frugivore and insectivore categories than mandibular 

RFI, though only by 4.2% and 23.1%, respectively. 

 

F FN IF I

N 42 0 5 0

% 89.4 0.0 10.6 0.0

N 20 0 2 0

% 90.9 0.0 9.1 0.0

N 9 0 8 0

% 52.9 0.0 47.1 0.0

N 8 0 5 0

% 61.5 0.0 38.5 0.0

Mandibular
Classified Group

O
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gi
n

al
 G

ro
u

p

F

FN

IF

I
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Table 6. Success of classification into dietary groups using cross-validated discriminant 

function analysis using Dirichlet normal energy (DNE) for maxillary second molars. 

Number (N) and percent (%) of species classified into each dietary group are listed. 

F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-frugivore, I=Insectivore. Correct 

classifications are highlighted in blue. 

 

 

 

Table 7. Success of classification into dietary groups using cross-validated discriminant 

function analysis using Dirichlet normal energy (DNE) for mandibular second molars. 

Number (N) and percent (%) of species classified into each dietary group are listed. 

F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-frugivore, I=Insectivore. Correct 

classifications are highlighted in blue. 

 

F FN IF I

N 47 0 0 0

% 100.0 0.0 0.0 0.0

N 19 0 0 3

% 86.4 0.0 0.0 13.6

N 17 0 0 0

% 100.0 0.0 0.0 0.0

N 8 0 0 5

% 61.5 0.0 0.0 38.5

Maxillary
Classified Group
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al
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p

F
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IF

I

F FN IF I

N 37 5 5 0

% 78.7 10.6 10.6 0.0

N 16 6 0 0

% 72.7 27.3 0.0 0.0

N 11 0 6 0

% 64.7 0.0 35.3 0.0

N 10 0 3 0

% 76.9 0.0 23.1 0.0

Mandibular
Classified Group

O
ri

gi
n

al
 G

ro
u

p

F

FN

IF

I
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 Discriminant function analysis using Dirichlet normal energy for maxillary second 

molars yielded classification success rates at 0% for frugivore-nectarivores and 

insectivore-frugivores, while frugivore and insectivore classification success was 100% 

and 38.5%, respectively (Table 6). The overall predictive success was 52.5%, which 

was the highest achieved for an individual metric on an individual tooth in this sample 

(Table 3). Mandibular second molar DNE had an overall predictive success of 49.5%, 

but had greater discriminatory capability for categorizing frugivore-nectarivores and 

insectivore-frugivores compared to maxillary second molar DNE (Tables 7,3).  

 

Table 8. Success of classification into dietary groups using cross-validated discriminant 

function analysis using orientation patch count-rotated (OPCR) for maxillary second 

molars. Number (N) and percent (%) of species classified into each dietary group are 

listed. F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-frugivore, I=Insectivore. 

Correct classifications are highlighted in blue. 

 

 

 

 

 

F FN IF I

N 46 0 0 1

% 97.9 0.0 0 2.1

N 22 0 0 0

% 100.0 0.0 0.0 0.0

N 17 0 0 0

% 100.0 0.0 0.0 0.0

N 12 0 0 1

% 92.3 0.0 0.0 7.7

Maxillary
Classified Group
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n

al
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p

F
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Table 9. Success of classification into dietary groups using cross-validated discriminant 

function analysis using orientation patch count-rotated (OPCR) for mandibular second 

molars. Number (N) and percent (%) of species classified into each dietary group are 

listed. F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-frugivore, I=Insectivore. 

Correct classifications are highlighted in blue. 

 

 

 Discriminant function analysis using maxillary OPCR exhibited the least amount 

of discriminatory capability among the three topographic metrics used. Maxillary OPCR 

had a 97.9% classification success rate for the frugivore group, and the other three 

categories were at or near 0.0% predictive success (Table 8). Mandibular second molar 

OPCR exhibited a lower predictive success rate for frugivores but higher predictive 

success for the frugivore-nectarivore group compared to maxillary OPCR (Tables 8,9). 

Overall predictive success for both maxillary and mandibular OPCR was 47.5% (Table 

3).  

 

 

 

 

F FN IF I

N 36 11 0 0

% 76.6 23.4 0.0 0.0

N 11 11 0 0

% 50.0 50.0 0.0 0.0

N 17 0 0 0

% 100.0 0.0 0.0 0.0

N 9 4 0 0

% 69.2 30.8 0.0 0.0

Mandibular
Classified Group
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Table 10. Success of classification into dietary groups using cross-validated 

discriminant function analysis for all topographic variables together (total topography) 

for maxillary second molars. Number (N) and percent (%) of species classified into each 

dietary group are listed. F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-

frugivore, I=Insectivore. Correct classifications highlighted in blue. 

 

 

Discriminant function analysis (DFA) of maxillary molar topography had a near 

50% overall classification success rate for each topographic metric individually, and a 

near 56% overall success rate using all three topographic metrics together (total 

topography) (Table 3). In the total topography (RFI+DNE+OPCR) DFA for maxillary 

second molars, frugivore specimens had the highest classification success in the entire 

sample at 97.9%, followed by insectivores at 53.8%. Predictive success for the 

frugivore-nectarivore and insectivore-frugivore dietary categories were much lower at 

9.1% and 0.0%, respectively (Table 10). 
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Table 11. Success of classification into dietary groups using cross-validated 

discriminant function analysis for all topographic variables combined for mandibular 

second molars. Number (N) and percent (%) of species classified into each dietary 

group are listed. F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-frugivore, 

I=Insectivore. Correct classifications are highlighted in blue. 

 

 

Classification success for total topography (RFI+DNE+OPCR) of mandibular 

molars was greatest in the frugivore and insectivore-frugivore groups at 70.2% and 

52.9%, respectively, and success was greater for the frugivore-nectarivore and 

insectivore-frugivore groups in mandibular molars than maxillary total topography 

(Tables 10,11). Mandibular second molar topography dietary predictive success was 

also near 50% for each individual metric and approximately 53% for total topography 

(Table 3) indicating that a combination of topographic metrics can more accurately 

predict diet than individual metrics alone. 
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Combined Maxillary and Mandibular Topography and Diet Prediction (Hypothesis 

2B) 

Table 12. Success of classification (%) for the total sample (N=99) from discriminant 

function analysis across all metrics. 

 

 Discriminant function analysis was utilized to assess the dietary category 

predictive success of each topographic metric for maxillary and mandibular molars 

combined. Dietary predictive success for maxillary and mandibular second molar 

topography was greater using all 3 analyses combined rather than each metric 

individually (Tables 3,12). 

Table 13. Success of classification into dietary groups using cross-validated 

discriminant function analysis using relief index (RFI) for maxillary and mandibular 

second molars combined. Number (N) and percent (%) of species classified into each 

dietary group are listed. F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-

frugivore, I=Insectivore. Correct classifications are highlighted in blue. 

 

 

Combined

RFI 53.5

DNE 56.6

OPCR 49.5

RFI, DNE, OPCR 64.6

F FN IF I

N 41 1 3 2

% 87.2 2.1 6.4 4.3

N 19 1 2 0

% 86.4 4.5 9.1 0.0

N 8 0 7 2

% 47.1 0.0 41.2 11.8

N 7 0 2 4

% 53.8 0.0 15.4 30.8
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n
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p

F

FN
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I

Combined
Classified Group
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Table 14. Success of classification into dietary groups using cross-validated 

discriminant function analysis using Dirichlet normal energy (DNE) for maxillary and 

mandibular second molars combined. Number (N) and percent (%) of species classified 

into each dietary group are listed. F=Frugivore, FN=Frugivore-nectarivore, 

IF=Insectivore-frugivore, I=Insectivore. Correct classifications are highlighted in blue. 

 

Table 15. Success of classification into dietary groups using cross-validated 

discriminant function analysis using orientation patch count-rotated (OPCR) for 

maxillary and mandibular molars combined. Number (N) and percent (%) of species 

classified into each dietary group listed. F=Frugivore, FN=Frugivore-nectarivore, 

IF=Insectivore-frugivore, I=Insectivore. Correct classifications are highlighted in blue. 

 

 

 

F FN IF I

N 38 3 6 0

% 80.9 6.4 0.0 12.8

N 13 7 0 2

% 59.1 31.8 0.0 9.1

N 11 0 6 0

% 64.7 0.0 35.3 0.0

N 6 0 2 5

% 46.2 0.0 15.4 38.5

Combined
Classified Group
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I

F FN IF I

N 37 9 0 1

% 78.7 19.1 0.0 2.1

N 11 11 0 0

% 50.0 50.0 0.0 0.0

N 17 0 0 0

% 100.0 0.0 0.0 0.0

N 8 4 0 1

% 61.5 30.8 0.0 7.7

Combined
Classified Group
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Combined maxillary and mandibular RFI did confer greater discriminatory 

capability than maxillary or mandibular RFI alone in the discriminant function analyses 

(DFA), and predictive successes were greater within each dietary category in the 

combined maxillary-mandibular DFA than they were for either maxillary or mandibular 

DFAs (Tables 4,5,13). Overall predictive success using combined maxillary and 

mandibular RFI increased by 6.0% and 3.0%, respectively, compared to individual 

maxillary and mandibular second molar RFI predictive success (Tables 3,12). 

Combined maxillary and mandibular DNE increased overall dietary classification 

success by 4.1% for maxillary DNE and 7.1% for mandibular DNE. Combined DNE also 

showed greater dietary category discrimination with increased and more evenly 

distributed predictive successes across all dietary categories when compared to 

individual second molar DNE discriminant function analyses (Table 14). Using a 

combined maxillary and mandibular OPCR discriminant function analysis, overall 

predictive success increased by 2.0% compared to both maxillary and mandibular 

individual second molar OPCR DFAs (Tables 3,12). The combined OPCR DFA showed 

a similar trend of predictive success to mandibular second molars alone in that 

predictive success was higher in the frugivore and frugivore-nectarivore groups (Table 

15). 
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Table 16. Success of classification into dietary groups using cross-validated 

discriminant function analysis for all topographic variables of maxillary and mandibular 

second molars combined. Number (N) and percent (%) of species classified into each 

dietary group are listed. F=Frugivore, FN=Frugivore-nectarivore, IF=Insectivore-

frugivore, I=Insectivore. Correct classifications are highlighted in blue. 

 

 

Table 17. Success of classification into dietary groups using cross-validated 

discriminant function analysis for all topographic variables of maxillary and mandibular 

second molars – excluding frugivores. Number (N) and percent (%) of species classified 

into each dietary group are listed. F=Frugivore, FN=Frugivore-nectarivore, 

IF=Insectivore-frugivore, I=Insectivore. Correct classifications are highlighted in blue. 

 

FN IF I

N 21 0 1

% 95.5 0.0 4.5

N 2 13 2

% 11.8 76.5 11.8

N 3 2 8

% 23.1 15.4 61.5

Combined
Classified Group
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Combined maxillary and mandibular classification success was also analyzed 

using discriminant function analysis of all 6 topographic variables for each individual: 

maxillary and mandibular RFI, DNE, and OPCR. Across each topographic metric, 

analyzing maxillary and mandibular molars together resulted in greater predictive 

success than individual molar topography (Table 3,12). Predictive success within the 

discriminant function analysis for the combined total topography was 65%, and the 

highest predictive success was in the frugivore and frugivore-nectarivore categories at 

78.7% and 54.5%, respectively. The combined analysis showed the most evenly 

distributed predictive success rates across all dietary categories when compared to the 

individual second molar analyses (Table 16). 

Table 18. Success of classification (%) for the total sample (N=99) from discriminant 

function analysis using combined RFI, DNE, and OPCR, excluding frugivores(F). 

 

 The largest overlap of a single dietary category of the DFA plot of this sample 

was exhibited by the frugivore group (Figure 7). To assess the extent which frugivore 

diversity was affecting the discriminatory ability of the sample, a DFA was performed on 

the remaining three dietary categories alone. Predictive success increased sharply for 

the remaining three categories (frugivore-nectarivore, insectivore-frugivore, insectivore) 

when compared to the analyses including frugivores (Table 17). Overall predictive 

success decreased by 5.6% for maxillary, increased by 18.7% for mandibular, and 

increased by 16.2% for maxillary and mandibular combined when frugivores were 

excluded from the DFA (Table 18). This could be attributed to highly variable dental 

RFI, DNE, OPCR - No F

Maxillary 50.0

Mandibular 71.2

Combined 80.8



42 

 

morphologies of fruit-eating bats used in this sample.  

  

 

 

Figure 7. Plot of discriminant functions for maxillary and mandibular second molar 

topography (RFI, DNE, and OPCR) combined. F=Frugivore, FN=Frugivore-nectarivore, 

IF=Insectivore-frugivore, I=Insectivore. 
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Figure 8. Plot of discriminant functions for maxillary and mandibular second molar 

topography (RFI, DNE, and OPCR) combined, excluding frugivores. FN=Frugivore-

nectarivore, IF=Insectivore-frugivore, I=Insectivore. 

 

 Plots of the first two discriminant functions for maxillary and mandibular 

combined topography were created to visualize the dietary category grouping within this 

sample. In Figure 7, the green frugivore category is quite large compared to the other 3 

dietary categories and has a lot of overlap with the other categories included in this 

study. The plot of the first two discriminant functions excluding the frugivore category 

shows increased separation among the remaining dietary groups (Figure 8). Increased 

separation among dietary groups confers greater predictive accuracy in the discriminant 

function analysis. 
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Table 19. Success of classification into dietary groups using cross-validated 

discriminant function analysis for all topographic variables of maxillary and mandibular 

second molars combined with equal dietary group sizes. Number (N) and percent (%) of 

species classified into each dietary group are listed. F=Frugivore, FN=Frugivore-

nectarivore, IF=Insectivore-frugivore, I=Insectivore. Correct classifications are 

highlighted in blue. 

 

 Since the number of frugivorous species in this sample is greater than each of 

the other dietary categories, a final DFA was run to assess whether utilizing equal group 

sizes would have a marked effect on the discriminatory capability of maxillary and 

mandibular combined RFI, DNE, and OPCR. Using 13 individuals from each group 

selected at random (N=52 individuals, 104 molars), predictive success increased for the 

frugivore-nectarivore and insectivore dietary categories when compared to the maxillary 

and mandibular RFI, DNE, and OPCR discriminant function analysis for the total sample 

(Tables 16,19). Overall predictive success for the equal group size DFA was 69.2%, 

compared to 64.6% for the total sample DFA, indicating a 4.6% increase. This is an 

improvement but still not a drastic change in overall predictive success for this sample. 

 

 

F FN IF I

N 9 3 0 1

% 69.2 23.1 0.0 7.7

N 1 11 1 0

% 7.7 84.6 7.7 0.0

N 3 2 6 2

% 23.1 15.4 46.2 15.4

N 1 2 0 10

% 7.7 15.4 0.0 76.9

Combined
Classified Group
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Figure 9. Histogram of K statistic for estimating phylogenetic signal within this sample. 

The arrow indicates the K statistic value for this sample. 

 

To assess whether there might be phylogenetic patterning within the data 

obscuring dental variation based on diet, a K-statistic was employed. High-dimensional 

multivariate traits such as those used in dental topographic analysis can be analyzed 

along with the sample phylogeny to expound the phylogenetic relationships contained 

therein (Adams, 2014). The phylogeny for this sample was adapted from Rojas et al. 

(2016) via cytb sequencing (see Fig. 2). Results from this analysis showed there was no 

significant phylogenetic signal detected within the data (K=0.6957, p=0.157) (Figure 9). 

These results indicate that any variation in topographic values for both maxillary and 

mandibular second molars are most likely the result of adaptation to specific dietary 

regimes and not carryover from shared evolutionary history. 
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Chapter 5: Discussion and Conclusion 

Observing and analyzing the form-function relationship of dental morphology and 

diet in extant species allows one to interpret the function from the form in extinct 

species. The overarching purpose of this study was to investigate the efficacy of 

maxillary second molar topography at dietary prediction in this sample, and by proxy, 

the fossil record. 

In this study, it was hypothesized that maxillary second molar topography would 

be similar to mandibular second molar topography, but results indicated that maxillary 

and mandibular topographies were significantly different across most metrics and 

dietary categories. Visually, the maxillary molars of the species in this study are quite 

different from the matching mandibular molars, though this does not indicate that they 

couldn’t have similar topographic values. Both maxillary and mandibular second molars 

could confer similar topographic values if there are areas of similar relief on different 

areas of the tooth crown. The topography of maxillary and mandibular second molars in 

this sample of phyllostomid bats were significantly different from each other, indicating 

that there are not similar areas of relief on the tooth crown for these species. This could 

be due to maxillary and mandibular teeth having specialized, independent functions and 

thus different molar surface morphologies where both assist in the breakdown of a 

specific diet. This variation between maxillary and mandibular second molar topography 

indicates that maxillary and mandibular molars each have unique structural features that 

play a specific role in the breakdown of food that are independent of each other but 

work commensally in the mastication and breakdown of particular diets. The geometry 

of blade shape for molariform teeth is different for maxillary and mandibular teeth since 
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they do not directly occlude with each other as two blocks coming into contact might. 

Molar occlusion is offset, and blades or shearing crests on one margin of a mandibular 

molar could come into contact with complementary shearing crests on the opposite 

margin of an occluding molar in some cases (Evans, 2003). More specifically, if one half 

of a mandibular molar occludes with only half of a maxillary molar, the other halves of 

both the maxillary and mandibular molar would occlude with different molars and have 

different molar topographies. Molar occlusion is not always a direct relationship so 

differences in occluding dental topography are plausible.  

The task of bringing the mandibular molars into occlusion with the maxillary 

molars is not a simple up and down motion. The mandible is hinged at the 

temporomandibular joint (TMJ) so the act of biting brings the mandible into occlusion 

with the maxilla in an upward swing motion. This motion could affect the dental 

topography of tooth crowns, resulting in the variation between maxillary and mandibular 

second molar topography within this study. Although the maxillary and mandibular 

second molar dental topographies are different, they still convey the same predictive 

success in this sample. Maxillary and mandibular second molars may have different 

roles in the process of mastication within this sample, but the same foodstuffs are being 

consumed and broken down between the two molars. The variation between maxillary 

and mandibular second molars was relatively proportional in each metric and dietary 

category. There are some variations between maxillary and mandibular second molars, 

which have been studied previously. 

Maxillary second molars exhibit a talon that is present in many different dietary 

categories and serves as a basin for the crushing function of mastication. The presence 
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of the upper molar talon has been previously shown to decrease maxillary relief index 

due to its low, flat molar area on the tooth crown (Gutzwiller and Hunter, 2015). This 

could have had a negative impact on dietary category discrimination especially in the 

insectivore group, resulting in the low predictive success for maxillary RFI in the 

insectivore-frugivore and insectivore groups specifically within this sample. Crushing 

aspects of mastication are not as important in insectivores as the puncture-shear 

mechanisms of their molar morphology (Lucas, 2004), so the presence and inclusion of 

the talon on the insectivore teeth could have adversely impacted the discriminatory 

capability of maxillary RFI. The other metrics included in this study are not as sensitive 

to molar area as relief index. 

The results from hypothesis one show that the two molar topographies are not 

interchangeable, and maxillary molars cannot be assumed to be effective dietary 

predictors based on similarity to mandibular topography alone. However, these results 

did show that frugivore and insectivore-frugivore maxillary and mandibular DNE and 

OPCR were similar. This is at odds with the results of Santana et al. (2011), which 

found that maxillary and mandibular OPCR were significantly different across the dietary 

categories they assessed (frugivory, insectivory, omnivory) in their sample of 

phyllostomid bats. These differences could be attributed to the fact that Santana et al. 

(2011) used complete molar tooth rows (first through second or third molars when 

available), and this sample utilized second molars exclusively. Additionally, Santana et 

al. (2011) used orientation patch count (OPC), whereas orientation patch count-rotated 

(OPCR) was employed in this study. The two metrics differ in that OPCR accounts for 

orientation in three-dimensional space by averaging the patch counts taken in five to six 
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degree rotations of the patch boundaries (Bunn et al., 2011).  

Given that the maxillary and mandibular second molars have significantly 

different topographies, predictive models were employed to test their efficacy at dietary 

niche prediction. The classification success rates for relief index (RFI) in this sample are 

consistent with the results of Allen et al. (2015) in that maxillary and mandibular second 

molar RFI values confer similar overall predictive success rates of around 50%. RFI 

depends largely on molar surface area, which makes it especially sensitive to the 

cementoenamel junction cropping process, and it must be noted that variations in 

cropping could increase the variation of RFI within each dietary category and result in 

less than favorable predictive success rates using a discriminant function analysis 

(Bunn et al., 2011). Consistent cropping techniques must be employed within a sample 

in order to mitigate this source of variation, as was done in this study. In all, maxillary 

RFI was just as effective at dietary prediction as mandibular RFI. 

Dirichlet normal energy (DNE) was the most effective topographic metric for 

dietary prediction in this sample for individual maxillary and mandibular second molars 

among the three topographic metrics analyzed. Before DNE was available as a viable 

indicator of diet in molariform teeth, researchers had difficulty differentiating insectivores 

from folivores (Kay, 1975; Boyer, 2008). DNE correlates strongly with other topographic 

metrics and can accurately distinguish among multiple dietary categories (Bunn et al., 

2011). DNE is less dependent on molar surface area than RFI and is more affected by 

surface angularity than both of the other topographic methods tested. As such, DNE is 

less sensitive to the virtual cropping process at the cementoenamel junction than RFI 

(Bunn et al., 2011). DNE increases with sharp angles on a tooth surface where surface 
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energy is high. Surface angularity increases in areas such as the interproximal space 

where virtual cropping takes place to isolate the anatomical tooth crown. It is possible 

that second molars that required significant cropping at the interproximal space could 

exhibit greater DNE values than would normally be expected. It is highly recommended 

that second molar isolation be completed prior to scanning the specimens to avoid 

laborious interproximal cropping methods in any surface rendering software. Abnormally 

high DNE values for second molars in this sample, which required a lot of isolation 

within the interproximal space could have had a negative impact on variation within the 

dietary categories, causing lower than expected predictive success rates. Despite these 

limitations, overall predictive success rates for individual maxillary and mandibular DNE 

were similar, indicating that maxillary second molar DNE is as effective at dietary 

prediction as mandibular second molar DNE in this sample. 

 Orientation patch count-rotated (OPCR) had the least amount of discriminatory 

capability within this sample compared to the predictive success of RFI and DNE for 

individual second molars. Surface complexity is predominantly high on phyllostomid 

frugivorous teeth since they require channels and crenulations for adequate processing 

of fruit pulp (Santana et al., 2011). Predictive success rates were highest in the 

frugivore and frugivore-nectarivore categories for both maxillary and mandibular second 

molar OPCR in this sample. Since frugivores differed significantly from both insectivores 

and omnivores within the analyses of Santana et al. (2011), and insectivores and 

omnivores did not differ from each other, it follows that the highest predictive success 

rates in this sample would be in differentiating frugivorous species from the other dietary 

categories analyzed. The results of this study follow the results of Santana et al. (2011). 
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Overall predictive success for individual maxillary and mandibular second molar OPCR 

were identical, adding to the indication that maxillary second molar topography is just as 

effective at dietary prediction as mandibular second molar topography. 

Thus, maxillary second molar topography was able to predict species diet just as 

effectively as mandibular second molar topography in the majority of analyses in this 

study. Even though maxillary and mandibular topography differed significantly, they both 

conferred a similar dietary signal in the majority of discriminant function analyses. This 

could indicate that maxillary second molars have different dental topography compared 

to mandibular second molars which have inverse areas of relief and complexity on 

mandibular second molars that additively contribute to the trituration of specific diets. 

Maxillary second molars aside, the predictive success rates for individual and combined 

metrics in this sample for mandibular second molars follow the same trend as Bunn et 

al. (2011) in that individual metrics confer predictive successes at around 45-55%, and 

all metrics together (RFI+DNE+OPCR) resulted in higher predictive success rates than 

individual metric DFAs.  

Further analyses utilizing maxillary and mandibular topographic metrics 

combined were conducted to assess dietary prediction accuracy for complete (maxillary 

+ mandibular) specimens. This analysis achieved dietary predictive success similar to 

Allen et al. (2015) for maxillary and mandibular RFI combined at around 54%, though 

Allen et al. (2015) achieved greater combined predictive success when incorporating 

other linear aspects of molar morphology such as shearing quotient and molar length in 

addition to relief index. Shearing quotients are beneficial to include in studies of molar 

morphology since they represent a more specific feature on the tooth crown that is 
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directly involved in food processing, whereas other metrics of dental topography include 

the “unimportant” areas such as sidewall curvature which do not directly participate in 

food trituration (Allen et al., 2015). Molar length is beneficial to include in these types of 

analyses since it confers size information for each specimen and can potentially 

enhance predictive success rates (Allen et al., 2015, Boyer, 2008). The analysis of Allen 

et al. (2015) builds on the results of Boyer (2008) by including more linear metrics in the 

dietary predictive analysis in addition to relief index, as well as including maxillary 

second molars topography. Assessing linear metrics such as shearing quotient and 

molar length in addition to dental topography on these specimens would be a logical 

next step in attempting to increase the dietary predictive success for these four 

categories. 

Maxillary and mandibular combined DNE more accurately predicted species diet 

within this sample than individual second molar DNE alone, further supporting the 

prediction that combined maxillary and mandibular topography would confer greater 

predictive success than individual topography. Similar to DNE and RFI, combined 

maxillary and mandibular OPCR increased overall predictive success of this sample 

compared to individual second molar OPCR predictive success. These combined 

maxillary and mandibular DNE and OPCR results are the first tested for efficacy in 

dietary prediction within an extant mammalian community, and results indicate that 

combining maxillary and mandibular topography grants increased dietary predictive 

success. Utilizing these metrics, one can perform analyses of extinct species and 

determine properties of their ancient diets. In this sample, overall dietary predictive 

success was greatest when utilizing all three topographic metrics for maxillary and 
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mandibular molars combined, which is recommended for use when complete 

specimens are available. Maxillary and mandibular combined RFI, DNE, and OPCR 

predictive success was greater than individual second molar RFI, DNE, and OPCR, 

indicating that maxillary and mandibular teeth, which form an occlusal unit, give a more 

accurate picture of diet than individual teeth. This is also the first known study to offer a 

complete topographic analysis using occluding maxillary and mandibular second 

molars, and combined maxillary and mandibular RFI, DNE, and OPCR resulted in the 

highest overall dietary prediction accuracy within this sample. 

Due to the high level of variation within the frugivore category and increased 

misclassification rates for the frugivore group, it was hypothesized that the high number 

of frugivorous species within this sample were confounding the discriminant function 

analysis by creating the majority of the prediction rules. A separate DFA using the same 

sample sizes for each dietary category yielded a nominal improvement upon the original 

analysis using every individual in the sample. In future studies, it is recommended that 

equal sample sizes for each discriminatory category are used for a more accurate 

prediction model. Similar dental morphological traits between species resulting from 

carry-over from a shared evolutionary history could be causing a lack of separation 

among species of different dietary categories. The K-statistic for phylogenetic signal 

within this sample yielded no patterning within this data, indicating that the dietary signal 

is trumping the phylogenetic signal. However, although the Stenodermatinae and 

Carolliinae subfamilies have a shared evolutionary background and have only 

undergone adaptive radiation in recent evolutionary history (Freeman, 2000), they have 

significant differences in both maxillary and mandibular dental topography, which seems 
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to be increasing the variation within the frugivore dietary category. The most plausible 

explanation for variation between these two subfamilies is adaptation to different fruit 

diets. Different fruits have different physical properties, and adaptation to a particular 

type of fruit may not confer the same topographic values as a specimen adapted to a 

different type of fruit. Exclusion of the frugivore group resulted in increased classification 

success when compared to discriminant function analysis including frugivores, 

suggesting that frugivore topographic variation was a limiting factor in the discriminatory 

power of the discriminant function analysis for maxillary and mandibular combined DNE, 

RFI, and OPCR. 

Alternatively, overall predictive accuracy in this sample could be helped through 

subcategorization of the frugivore group into hard- and soft-fruit feeding bats in order to 

increase the separation of discriminant function category centroids. Species adapt to 

the physical properties of specific dietary regimes, and there are many diverse fruits 

available within the Balta rainforest. An experimental study by Dumont (1999) analyzed 

dietary preference of frugivorous phyllostomid bats and fruit hardness preference on two 

of the subfamilies that are included in this sample. Evidence indicated that 

Stenodermatinae species more efficiently processed the hard figs than the soft 

papayas, whereas the Carolliinae species exhibited the opposite behavior. Thus, 

subdivision of the frugivore category into hard- and soft-fruit feeding bats could have a 

positive impact on dietary discrimination by reducing variation within the broad frugivore 

category. Future research should also be targeted to increase dietary prediction 

accuracy by including more frugivore-nectarivore, insectivore-frugivore, and insectivore 

specimens to increase the sample size and statistical power of analyses utilizing those 
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dietary categories. 

 Increasing the number of molars available for dietary predictive analyses in the 

field of paleontology is beneficial due to the scarcity of complete specimens. Many 

researchers discover isolated mandibles and maxillae, which is limiting for performing 

classification analyses, so including maxillary second molars in these analyses 

increases the range of data that is useful for dietary prediction. The study of extant 

mammalian dental morphology from observed morphology and function allows one to 

determine the function from the form in extinct species where observed function has 

never been recorded. In the event that complete specimens are discovered, combined 

maxillary and mandibular topography results in more accurate dietary classification and 

offers a more complete analysis through the inclusion of occluding maxillary and 

mandibular second molars. 
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