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Abstract 

The caudate putamen is a sub region of the basal ganglia, containing neural tracts important for 

cognition, reward learning, and voluntary motor function. Dopamine (DA) signaling received 

from the dopaminergic neurons of the substantia nigra pars compacta mediate locomotion, 

degradation of which is the characteristic neuropathology for Parkinson’s disease (PD). PD is an 

initially neurovegetative motor disorder but can progress to include cognitive impairments as 

well. Sundowner’s syndrome (SS) has been observed in patient populations with 

neurodegenerative diseases, characterized by the decline of cognition into evening hours. Due 

to the circadian influence which the hormone melatonin has on the sleep-wake cycle, attention 

has been drawn to its relationship with SS. While melatonin has been observed to decrease DA 

release, the real-time measurement of acute melatonin exposure on DA release within the 

caudate has yet to be studied. Utilizing various techniques of fast scan cyclic voltammetry (FSCV) 

in an ex vivo mouse model, we observed a decrease in DA release upon exposure to 

supraphysiological concentrations of melatonin. Results from this experiment support previous 

literature suggesting that activation of presynaptically expressed melatonin receptor 1 (MT1) 

plays an important physiological role in downregulating DA release. Additionally, results suggest 

that 1-hour of MT1 activation is a sufficient time-frame for significant downregulation of DA 

availability. This research seeks to deepen understanding of the complex roles melatonin has on 

neurotransmission.  
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Chapter 1 

Early Zebrafish Trials 

The Technique 

Fast scan cyclic voltammetry (FSCV) has the ability to record the release of 

neurotransmitters from neurons in real time. FSCV works on the principle that some 

compounds, like dopamine (DA), are electroactive and capable of losing or gaining 

electrons given the right electrochemical conditions. By delivering a constant or cyclic 

voltage potential via a carbon fiber micro-electrode (CFme) inserted into nervous tissue 

we can create conditions to influence DA when to lose or gain its electrons while also 

simultaneously reading the movements they make. By measuring the magnitude of 

alternating current produced by these electron movements, we can quantify the 

concentration change of DA over time (Wassum & Phillips, 2015; Zachek, Hermans, 

Wightman, & McCarty, 2008).  

 DA belongs to a class of organic compounds called the catecholamines. 

containing a benzene ring with one side chain amine and two hydroxyl groups at the 

first and second carbon. As outlined in Figure 1, one electron is taken from each 

hydroxyl group when the oxidation potential is reached by the CFme, converting 

dopamine to dopamine-o-quinone and back into DA via oxidation-reduction reactions. 

Utilizing Demon Voltammetry Software (Wake Forest Innovations), the CFme is typically 

programmed to increase and decrease in voltage (V) in a linear and repeated fashion 

from the holding potential of -0.4V to the switching potential of +1.3V. DA experiences 

oxidation and reduction at voltage potentials of +0.6V and -0.2V, respectively compared 
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to a silver/silver chloride reference electrode. Utilizing software, the background current 

can be subtracted from what is read at the CFme, highlighting the difference in current 

across voltages and time allowing for the visualization of data as a background-

subtracted color plot as shown in Figure 2. Historically, FSCV has proven itself to be a 

powerful electrochemical technique for measuring neurotransmitter release and 

reuptake in real time due to the sub-second temporal resolution of data collection. 

 DA is well documented as being a critical component in both physiological and 

cognitive processes (Marsden, 2006). FSCV is often used to deepen understanding of 

neurophysiological changes caused by environmental factors. Examples of this include 

observing the acute effects of certain psychoactive drugs on the release and uptake of 

neurotransmitters that play pivotal roles in the central nervous system (Ramsson, 

Howard, Covey, & Garris, 2011). However, FSCV can be used to observe the effects of 

learning as well. Demonstrated by previous studies, recording DA release can provide 

insight of what behavioral changes look like at the neurophysiological level.  
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Figure 1. Basic FSCV principles: A cyclic voltage waveform is applied to the CFme (A), 

causing dopamine to lose and gain electrons (B). The current generated from these 

electron movements is then recorded and subtracted from the background current to 

produce a cyclic voltammogram (C). 
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Figure 2. Background-subtracted color plot of stimulated DA release: A) 2D color plot 

of electrically evoked DA release. B) 3D representation of color plot in figure A. C) 

Current versus time graph at DA’s oxidation potential, representative of the blue line 

which transects the color plots of figures A and B. D) Background-subtracted 

voltammogram just after tissue stimulation, representative of the red line which 

transects the color plots of figures A and B. Note DA’s characteristic oxidation and 

reduction peaks. Time of stimulation occurs at 5 seconds, illustrated as the green 

dashed line in figure C. 
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Properties of Dopamine as a Neuromodulator 

 DA is one of several neurotransmitters that have secondary roles as 

neuromodulators, capable of effecting synaptic strength and membrane protein 

expression of individual neurons (Marder & Thirumalai, 2002). This modulatory property 

of DA and associated membrane proteins is essential to why it has been observed to 

have roles involved with the process of learning and memory. Synaptic strength can be 

upregulated or downregulated by many pre- and post-synaptic mechanisms resulting in 

physiological changes such as the amount of neurotransmitter released or rate of 

uptake (Owen & Brenner, 2012; Tellez, Gómez-Víquez, & Meneses, 2012). Measurement 

of DA release profiles utilizing FSCV allows for the indication that neuromodulation has 

occurred.  

Flagel et al. (2011) explored reward learning in rats by observing phasic DA 

release in the mesolimbic system during operant conditioning. Upon receiving what the 

body deems as a desired stimulus such as food in this case (unconditioned stimulus, US), 

DA is released as a reward. Presenting rats with a push-lever (conditioned stimulus, CS) 

which provided the rat with food upon activation will lead to a shift in DA release from 

the US to the CS upon repetition. This reward learning process is fundamental for the 

reinforcement of actions and an organism’s prediction of positive stimuli. FSCV was used 

to observe DA release in the nucleus accumbens core of rats during a Pavlovian training 

routine as described above. Repeated training sessions observed peak DA release to 

gradually shift from the US to the CS (Doya, 2002; Flagel et al., 2011; Ilango, Shumake, 
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Wetzel, Scheich, & Ohl, 2012). This experiment demonstrates the modulation of DA 

release in response to factors presented by the environment. 

While studies such as Flagel et al. (2011) sought to observe changing DA profiles 

over a conditioning period, we hypothesized that we could compare the DA profiles of a 

conditioned animal versus an unconditioned animal. Through a training paradigm, we 

questioned if it was possible to promote learning to an extent that which the 

measurable DA release profile becomes significantly different than a control. With that 

research goal in mind we promptly began to seek out possible model organisms. 

The Proposed Experiment 

 The methods for experimentation were inspired by a publication from a research 

group which was one of the first to explore the use of FSCV in Danio rerio, more 

commonly known as zebrafish (Jones, McCutcheon, Young, & Norton, 2015). Zebrafish 

are an appealing model organism since they possess a high degree of neurophysiological 

similarity to their mammalian counterparts. In addition to the physiological aspects, 

over 70% of human genes have an orthologue in zebrafish which together provide a 

foundation for effective human neurobehavioral disorder and disease modeling (Howe 

et al., 2013). Moreover, the lower costs of housing, feeding, and maintenance compared 

to popular mammalian model organisms was ideal. 

Zebrafish are prominent model organisms used for studying learning and 

memory by displaying a capacity to learn avoidance and spatial paradigms under lab 

conditions (Naderi, Jamwal, Chivers, & Niyogi, 2016). Some conditioning studies may 
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administer a mild electric shock to the zebrafish as an US. Mitogen Activated Protein-

mapping has indicated that the region of the brain which undergoes the most activity 

while being exposed to shock stimuli is the telencephalon (Randlett et al., 2015). 

Additionally, the dorsolateral and dorsomedial subsections of the telencephalon have 

been suggested to be the regions of the brain responsible for spatial learning and 

avoidance learning, respectively (Xu et al., 2012). Studies which have conducted 

anatomical imaging such as confocal microscopy and immunolabeling techniques have 

helped elucidate specific dopaminergic pathway locations within the zebrafish 

telencephalon which are suspected to be involved with avoidance learning and memory 

(Kaslin & Panula, 2001; Tay, Ronneberger, Ryu, Nitschke, & Driever, 2011). 

We proposed that through experimentation we could measure evoked DA 

release in the dorsomedial telencephalon of control zebrafish utilizing FSCV. Then, after 

being subjected to an avoidance paradigm, test-group zebrafish would also have the 

same brain region analyzed. We hypothesized that the fish which were put through 

avoidance training would have a significantly greater DA profile than their control 

counterparts. However, simply the task to collect control data became an extended 

exercise in creativity and patience. 

Data collection 

We had hoped that the process of collecting voltammetry data would be straight 

forward. The framework for our methods of ex vivo data collection was initially very 

similar to Jones et al. (2015) as they appeared to be reasonably repeatable. Primarily 
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using Kaslin & Panula (2001) as an atlas for dopaminergic regions, many attempts were 

made to match location and depth of these regions. However, even placing the CFme in 

DA rich areas like the olfactory bulbs yielded no viable data.  

Iontophoresis in tissue 

Without any clear indication of DA release, the question arose if we were simply 

not administering a strong enough electrical pulse to elicit DA release or if our 

equipment was not sensitive enough to detect release events. Considering alternative 

methods brought us to the possibility of introducing DA into the system and then 

measuring the reuptake as a means to quantify change in synaptic strength. This is the 

fundamental basis of iontophoresis, i.e. discrete and controlled injection of drugs into 

tissue alongside a CFme for FSCV recording. 

 Electroactive compounds are dissolved in solution and injected into a capillary 

which has been pulled to create a type of pipette needle. A wire is inserted into the 

exposed and wider end allowing for the application of an electric current. The applied 

current by the wire will cause electrical migration of compounds out of the capillary and 

into the target environment (Herr, Daniel, Belle, Carelli, & Wightman, 2010). While 

preliminary buffer work showed some promising results, most attempts were 

inconsistent with DA having the tendency to leak out of the capillary uncontrollably. We 

concluded that the diameter of our manufactured pipettes was simply too wide for 

proper iontophoresis work. Without the means for more precise pipette manufacturing 

we sought alternative options. 
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Olfactory Stimulation 

Upon referring to the literature we found a paper demonstrating use of olfactory 

stimulation to elicit DA release through the zebrafish’s own neuronal circuitry. As 

mentioned previously, the olfactory bulb of the zebrafish is a region which is highly 

dopaminergic. Zebrafish receive olfactory input from a pair of nasal florets, akin to the 

olfactory epithelium in humans. By grinding fish food into a fine powder and mixing it 

into water we could create a solution which could be pipetted onto the fish’s florets and 

cause an excitatory response within the olfactory bulb of the fish (Shang et al., 2015). 

We adjusted our methods slightly so that we could accurately pipette food 

particles. The zebrafish was pinned in place within a 3D printed chamber which could be 

filled with artificial cerebral spinal fluid (aCSF) to nourish brain tissue through a reflected 

scalp. With the electrode inserted into the olfactory bulb we would begin recording and 

pipette food particles to the florets. Unfortunately, while the electrode did sometimes 

experience activity, we determined later that it was likely caused by pH changes in the 

environment, fish food reacting with the electrode, or the physical forces applied to the 

fish from food particle pipetting. Once again, we found ourselves without a viable 

option for collecting control data. 

Inverted Microscopy  

 To eliminate possible cause of error, we began to reason that perhaps we simply 

did not possess the precision to accurately place the electrode. Through the university, 

our lab came to acquire an inverted microscope (Zeiss Microscopy) from another 
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department. With this inverted microscope we now had the ability to place a CFme with 

the spatial precision of single micrometers. In addition to our new equipment, we 

decided to explore evoking DA release through chemical stimulation as opposed to 

electrical. Flooding a tissue slice with aCSF containing a high concentration of potassium 

chloride (KCl) will create a strong ion imbalance across neuronal membranes which will 

in turn cause exocytotic release of neurotransmitters from axon terminals. This method 

has been used widely in the literature to elicit strong and continuous release of 

neurotransmitters (Heaulme, Leyris, Le Fur, & Soubrie, 1997).  

Unfortunately, KCl proved difficult to work with and did not provide data of 

acceptable quality. Among other issues, introduction of a separate aCSF to our tissue 

flow chamber produced a pH change which affected our background signal and data 

recording. Additionally, we discovered the inverted microscope itself introduced 

electrical noise into our data recordings which made the interpretation of results 

difficult. Though we did produce a single data set which vaguely displays the redox 

profile of DA, the lack of repeatability questions its legitimacy as valid data. Eventually 

we decided that this too was unlikely to produce fruitful results. 

Conclusions 

 Though much time was invested in searching for DA release throughout the 

zebrafish brain, all methods we tried were not viable. Whether it be issues with 

repeatability, manufacturing of materials, or simply lack of data, we concluded that we 

had truly exhausted our options. While it was difficult to accept defeat, the foundational 
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skills in voltammetry I had acquired allowed me to tackle the new techniques that were 

to come. I soon came to discover the excitement of scientific research in the project that 

followed and eventually became the main subject of this thesis.  
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Chapter 2 

Introduction to Mouse Slice Work 

Background 

The catecholaminergic neurotransmitter DA has been well-documented to have 

important roles within the central nervous system. The basal ganglia of vertebrate 

species, including humans, is a group of subcortical nuclei within the forebrain 

containing neural tracts involved with voluntary motor function, cognition, and reward-

learning pathways associated with habit formation. Classified as a subregion of the 

dorsal striatum within the basal ganglia, the caudate putamen receives signaling 

responsible for coordinating locomotion (Budygin et al., 2007; Hashemi et al., 2012). 

Studying DA insufficiencies within the striatum has become a particularly important 

topic among medical researchers due to its association with serious disorders such as 

Parkinson’s disease (PD), primarily characterized by neuronal loss in the substantia nigra 

with dopaminergic denervation of the dorsolateral striatum (Dagher & Robbins, 2009; 

Mack et al., 2016). In the early stages of PD, the disease manifests itself as a motor 

disorder often causing bradykinesia, tremors, rigidity, and postural instability. However, 

later stages of PD sees patients experience cognitive dysfunction as well with up to 80% 

developing Parkinson’s disease dementia (PDD),  (Gratwicke, Jahanshahi, & Foltynie, 

2015; Irwin et al., 2012; Mack et al., 2016). The physiological mechanisms of the non-

motor symptoms of PD remain poorly understood (Mack et al., 2016). 
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A phenomenon which has been widely observed in the elderly with 

neurodegenerative disorders is the acute worsening of symptoms in the late evening 

and into the night. Increased confusion, hallucinations, agitation, aggression, anxiety, 

repetitive or disruptive vocalization, restlessness, and pacing or wandering have become 

characteristic of what is known as sundown syndrome (SS) (Cipriani, Lucetti, Carlesi, 

Danti, & Nuti, 2015; Hazelton, 2006; Silva, Sousa-Muñoz, Frade, Fernandes, & 

Magalhães, 2017). While neuropsychiatric symptoms for the syndrome have been well-

documented, it lacks a clear definition and remains a descriptive term rather than a 

diagnosis (Canevelli et al., 2016; Silva et al., 2017). Although the precise neuropathology 

is still widely debated, much attention is drawn to the circadian nature which has been 

observed with SS.  

Circadian rhythms are physiological cycles which occur in mammals roughly over 

a 24-hour period governed by the suprachiasmatic nucleus (SCN) of the brainstem. One 

of several biological processes under circadian control is the release of hormones in 

response to environmental lighting conditions to influence the sleep-wake cycle (Stone 

& Tranah, 2017). Via the retinohypothalamic tract, intrinsically photosensitive retinal 

ganglion cells within the retina convey light information directly to the SCN of the 

hypothalamus. From the SCN, projections carry circadian signaling to numerous brain 

regions, some of which mediate signaling further to endocrine tissues such as the pineal 

gland (Moore, 1995). While it has been discovered to be synthesized in small amounts 

among several tissues, the hormone melatonin is released most prominently by the 

pineal gland as part of the sleep-wake circadian rhythm. Its release is influenced by 
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environmental lighting conditions, with release generally being suppressed during the 

day and peak release being seen in the middle of the night (Kozaki, Kubokawa, 

Taketomi, & Hatae, 2015; Valdés‐Tovar et al., 2018). The release of melatonin is most 

widely known to promote sleep, but studies in recent decades have begun to uncover 

the breadth of interaction melatonin has on various brain regions. 

Melatonin Effects on Neurotransmission 

 The two major subclasses governing the receptor mediated communication 

between neurons upon DA release are the D1-like and D2-like (D1R and D2R) receptor 

families. The distinction is based on their downstream physiological effects upon 

activation. Both D1R and D2R belong to the family of seven transmembrane domain G-

protein coupled receptors (GPCR) whose signal transduction pathways generally work in 

opposition of each other. D1R is exclusively expressed post-synapse, with ligand binding 

resulting in activation of adenylyl cyclase (AC). AC acts to convert adenosine tri-

phosphate (ATP) into cyclic adenosine mono-phosphate (cAMP). High levels of cAMP 

allow for the activation of protein kinase A (PKA) which will go on to phosphorylate 

numerous proteins involved with metabolism, transcription, and ion channel function 

often directly relating to transduction of action potentials. The effects of D1R are 

viewed as excitatory in nature, as opposed to the effects of D2R activation (Vallone, 

Picetti, & Borrelli, 2000).  

 Though D2R has been observed to have heterogeneous post-synaptic expression 

in the striatum, we will be primarily discussing its more common role as a presynaptic 
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autoreceptor to focus on regulatory aspects of DA release. Acute activation of D2R 

primarily causes feedback inhibition of exocytotic release of DA from axon terminals. 

This response is mediated through G-protein βɣ-subunits which inhibit functionality of 

voltage-gated calcium channels (VGCC). Depreciation of calcium influx to the axon 

terminal inhibits the fusion of DA containing synaptic vesicles to the plasma membrane 

residing within the synaptic cleft. In other words, successive activation of D2R will 

reduce likelihood of continuous DA release from action potentials for a period lasting up 

to several seconds. Sustained activation of D2R will result in downregulation of AC, 

inhibiting intracellular cAMP levels and decreasing the abundance of PKA. The 

downstream effects of this include inactivation of tyrosine hydroxylase (TH), a rate 

limiting enzyme pivotal to the formation of DA precursor L-DOPA. Inhibition of DA 

synthesis will subsequently decrease DA availability for neurotransmission (De Mei, 

Ramos, Iitaka, & Borrelli, 2009; Ford, 2014; Vallone et al., 2000; Yapo et al., 2017).  

 Inhibitory effects of melatonin on mammalian dopaminergic release have been 

observed since the 1980’s. Though the structure and function of melatonin receptors 

have been studied for decades, research uncovering melatonin’s role in 

neurotransmission is more recent. Melatonin has been known to exert its physiological 

effects on the body through melatonin receptors 1 and 2 (MT1 and MT2). Like DA 

receptors, MT1 and MT2 belong to the extensive family of seven transmembrane 

GPCRs. Similar to D2R activation, the most well-defined signaling pathway for MT1 is the 

inhibition of intracellular cAMP accumulation via inactivation of AC (Dubocovich et al., 

2010). These similarities suggest MT1 could produce similar downregulatory effects as 
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D2R depending on localized expression. Chronic activation of the MT1 receptor by 

circadian melatonin levels could possibly contribute to the known diurnal variation of 

DA availability (Ferris et al., 2014). 

Past immunolabeling and cellular expression studies have established that the 

dopaminergic systems within the caudate putamen of both human and rodents express 

the melatonin receptor MT1. Moreover, MT1 and D2R are colocalized on the 

presynaptic Dopaminergic axon terminals which communicate within the caudate 

putamen (Uz et al., 2005). A recent study by Benleulmi-Chaachoua et al. (2015) sought 

to explain the mechanisms of action  MT1 uses to attenuate VGCC activity which has 

been previously observed in the literature (Zisapel, 2001). It was confirmed that 

activation of striatal pre-synaptic MT1 receptors physically interact with VGCC of axon 

terminals to downregulate activity. As described above, inhibition of calcium influx will 

result in decreased DA release. Other striatal melatonin-mediated changes that have 

been reported include increased D2 receptor affinity (Hamdi, 1998). Function of the 

D1R, D2R, and MT1 receptors have been illustrated in Figure 3. 

With this basis of knowledge, we should expect to see decreased stimulated DA 

release in the striatum of a mouse model upon melatonin exposure. However, real-time 

data on the time dependent effects which melatonin has on striatal DA release is yet to 

be observed. We propose the employment of FSCV as a tool to provide insight on the 

progressive decrease in DA release upon prolonged exposure to melatonin.  
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Figure 3. Receptor role in striatal DA release: The red arrows and green arrows 

represent a downregulatory and upregulatory response, respectively. (1) Acute 

activation of the D2R autoreceptor and MT1 receptor will result in inhibited function of 

the voltage gated calcium channel (VGCC). (2) Chronic activation of the D2R auto 

receptor and MT1 receptor will result in inhibited function of adenylyl cyclase (AC), 

decreasing cAMP accumulation and downregulating downstream enzymes important to 

DA synthesis. (3) D1R activation will upregulate AC, increasing cAMP accumulation 

allowing for an excitatory response altering cellular metabolism and ion channel 

function. 
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FSCV 

As previously described in chapter 1, background-subtracted FSCV has shown to 

be an effective electrochemical technique for measuring neurotransmitter release and 

reuptake. Application of this technique is well-suited to the task at hand due to the high 

temporal resolution of real-time sub-second data collection (Hermans, Keithley, Kita, 

Sombers, & Wightman, 2008). Current is recorded in the order of nano-amps (nA); the 

amplitude of which correlates with the change in concentration of reactive analytes. 

Due to the diversity of oxidation potentials among organic compounds, the cyclic 

voltammogram for each electroactive neurochemical is unique. DA, for example, has 

become one of the most well-defined analytes in the field with known oxidation and 

reduction potentials being -0.2V and +0.6V, respectively. 

FSCV can be utilized to detect DA concentrations upon electrically evoked axonal 

release within ex vivo tissue slices. Work with ex vivo tissue slices allow for simplified 

access to brain regions of interest and faster diffusion of drugs into tissue. However, 

there are some factors to consider when utilizing voltammetry. Complications in 

collection technique can arise when the drug of choice is also an electroactive 

compound. 

Challenges of ex vivo FSCV 

Melatonin is classified as an indolamine, a subclass of the monoamine 

neurotransmitters which include DA. Due to similar functional groups, melatonin is 

electroactive and capable of adsorbing to the CFme. It has been observed to cause 
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impedance, or fouling, of the CFme surface which results in decreased sensitivity to 

analytes (Hensley, Colley, & Ross, 2018). In order to reduce the confounding effects of 

fouling, three different voltammetry techniques will be employed. Consistency among 

the collection techniques will support the argument that what we observe is a biological 

effect and not misrepresented due to fouling. 

The first method to be utilized will be a waveform used in fast-scan controlled-

adsorption voltammetry (FSCAV). Developed by Atcherley et al. (2013), it is a technique 

originally designed to minimize DA adsorption to the CFme surface by increasing both 

the scan rate and frequency of the voltage waveform. We believe that by decreasing 

adsorption of DA we will also decrease adsorption of other analytes which would 

otherwise cause impedance of the CFme surface, like melatonin. One drawback to be 

expected from this waveform will be a decreased sensitivity to DA due to the decreased 

time available for adsorption between scans.  

The second method will be the incorporation of a modified waveform designed 

specifically to eliminate fouling caused by melatonin developed by Hensley et al. (2018). 

This waveform increases both the holding potential and scan rate of typical values in 

order to minimize the effects of fouling of the CFme. While these modifications have 

proven to reduce the fouling effects of melatonin, a drawback which has been observed 

is the decreased sensitivity to DA. Even with this knowledge, the melatonin-specific 

waveform should still prove useful for observing any trends in DA release. 
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The final method to be explored will be the use of amperometry. Under specific 

conditions amperometry has certain advantages and limitations. As opposed to applying 

a cyclic voltage potential, amperometry operates by maintaining a constant voltage 

potential. Previous work has shown that melatonin reacts with the electrode at +0.8V. 

Therefore, by maintaining a constant voltage of +0.6V we can observe the oxidation of 

DA and eliminate the possibility of fouling. It should be noted that the lack of cyclic 

voltage potentials offers no selectivity of analytes. To ensure we will be observing DA, 

release sites in the tissue will first be found using a traditional waveform known to be 

more sensitive and selective to DA (Patel, 2008).  

Tasimelteon 

 To provide additional support that the decrease in striatal DA release observed is 

a biological response to MT1 receptor activation, we utilized a melatonin receptor 

agonist. Tasimelteon has been used clinically since 2014 as an orally administered MT1 

and MT2 receptor agonist to treat sleep disorders. Though tasimelteon has a slightly 

reduced binding affinity to MT1 compared to melatonin, preliminary voltammetry work 

highlighted its experimental viability through relatively minor interaction with the 

electrode surface. Tasimelteon will be used to demonstrate that observed striatal DA 

release is not merely a product of electrode fouling and rather a function of MT1 

activation (Dhillon & Clarke, 2014). 

 

 



  
 

27 
 

Relevance and Purpose 

The primary purpose of this study is to elucidate the acute neurobiological 

effects of melatonin exposure on the release of DA within the caudate putamen of a 

mouse model. While previous studies have utilized protein assays to study melatonin 

exposure on cellular activity, we propose an ex vivo approach. By inserting the CFme 

directly into the caudate putamen of mouse brain slices for FSCV recording we will be 

able to progressively record DA release over a defined period of melatonin exposure. In 

order to elicit the strongest response, we hope to saturate MT1 and MT2 receptors by 

using multiple supraphysiological concentrations of melatonin in a range inspired by the 

work done by Paredes et al. (1999). 

 The evidence presented by the literature suggest that melatonin decreases 

striatal DA release from dopaminergic axon terminals which express the MT1 receptor. 

For a clinical application this could present an argument that the administration of 

melatonin to an individual with PD would be ineffective for treatment due to the 

already existing DA insufficiency which is rooted in the neuropathology of the disease. 

While we are not explicitly researching PD, the research conducted in this experiment 

could still add knowledge to the field of research exploring the therapeutic potential of 

melatonin on neurodegenerative diseases or neuropsychiatric disorders. 

Clinical studies on the application of melatonin for the treatment of 

neurodegenerative disorders has had mixed results. As described in Trotti & Karroum 

(2016), recent studies have shown that using melatonin to treat patients with 
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neurodegenerative diseases such as Parkinson’s fail to produce therapeutic results for 

treating motor PD (Pandi-Perumal et al., 2013; Willis & Armstrong, 1999) but show some 

antidepressant effects and sleep disorder improvement (Bassani et al., 2014). However, 

melatonin has shown to attenuate Dopaminergic neuronal cell death in a rotenone 

induced PD rat model (Carriere, Kang, & Niles, 2016) and a 6-hydroxyDA induced PD rat 

model (Yildirim et al., 2014). Promising results have also been observed in induced PD 

mouse models when supplemental melatonin was administered with L-DOPA (Naskar et 

al., 2013; Zaitone, Hammad, & Farag, 2013), likely attributed to melatonin’s natural role 

as an antioxidant for the reduction of oxidative stress seen by mitochondria in PD (Patki 

& Lau, 2011). 
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Chapter 3 

Materials and Methods 

Carbon Fiber Micro-Electrodes 

Carbon fiber micro-electrodes were fabricated using 7ɥm T-650 carbon fiber 

(Cytec Engineering) thread into a glass capillary tube (0.68mm ID/ 1.2mm OD) and 

pulled in a capillary puller (Sutter P77). Exposed carbon fiber was cut to a length of 50-

100ɥM and sealed in epoxy resin or paraffin wax then briefly washed with acetone or 

xylene, respectively.  

Animals 

Adult male C57BL/6J mice (Jackson Laboratories) were housed under a 12-hour 

day/night cycle with food and water available ad libitum. Mice selected for 

experimentation were anesthetized using isoflurane (1.5%, 2L/min O2) and then 

euthanized via cervical dislocation. The intact brain was removed from the skull via 

dissection and placed in ice-cold artificial cerebral spinal fluid (aCSF) buffer bubbled with 

carbogen (95%O2/5%CO2) and containing the following (in mM): 126 NaCl, 2.5 KCl, 1.2 

NaH2PO4, 2.4 CaCl2, 1.2 MgCl2, 25 NaHCO3, 11 glucose, and 0.4 l-ascorbic acid. A 

vibratome (Campden Instruments) filled with the same aCSF buffer was used to obtain 

300ɥm thick sagittal cross-sections of the brain. Slices were allowed to rest at room 

temperature while supplied with a constant flow of aCSF buffer until ready to use. All 

procedures were approved by and in compliance with the Grand Valley State University 

Institutional Animal Care and Use Committee.  
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Ex Vivo FSCV in Brain Slices 

Slices of mouse brain containing portions of the caudate putamen were placed in 

a 3D-printed flow chamber and held in place with a slice harp (Warner Instruments). 

aCSF buffer was continuously bubbled with carbogen and heated to 37°C before flowing 

through the chamber at a rate of approximately 1mL/min. Slices were given 1 hour to 

acclimate before FSCV work began, allowing for simultaneous preparation of the 

electrodes. Before tissue entry, electrodes were first submerged in the flowing aCSF and 

cycled for 15 minutes at 60Hz to clean the electrode surface, a protocol inspired by 

Takmakov et al. (2010). CFme were then lowered into the target tissue just until the 

entirety of the CFme was below the surface. DA release was electrically evoked via 

stimulation electrodes placed on the surface of the tissue slice on either side of the 

CFme entry site (figure 4). Recordings lasted 30 seconds with a stimulus onset delay of 5 

seconds, an intensity of 350uA, 1 pulse, 60Hz monophasic stimulation. Each trial 

consisted of 5 pre-drug recordings, 12 recordings during drug exposure, and 12 

recordings of post-drug washout. Melatonin concentrations of 10ɥM, 50ɥM, and 100ɥM 

were added to aCSF buffer and were exposed to the tissue during drug exposure 

periods. All recordings were given 5-minute refractory intervals to allow for the tissue to 

equilibrate. Experiments were also dedicated to observing the effects of 100ɥM 

tasimelteon exposure.  

An n=3 was collected for each melatonin concentration for each waveform. 

Pseudo-replication was avoided by ensuring that brain slices from a mouse were not 

exposed to the same concentration of melatonin twice. Parameters for FSCAV collection 
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maintain the same holding (-0.4V) and switching (+1.3V) potentials as traditional FSCV 

recording but increase the scan rate to 1200V/s with a frequency of 100Hz. For the 

melatonin specific waveform, a holding potential of +0.2V and a switching potential of 

+1.3V was utilized with a scan rate of 600V/s and frequency of 10Hz. Finally, 

amperometry was employed to hold a constant voltage potential of +0.6V at 60Hz to 

reduce melatonin fouling. When preparing to collect data with the melatonin-specific 

waveform and amperometry, DA release sites were first sought out using the traditional 

FSCV waveform (-0.4V-1.3V, 400V/s, 10Hz) due to high sensitivity to DA.  
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Figure 4. Experimental Setup – Electrode Placement: The left side of this figure is from 

a mouse brain atlas by Franklin & Paxinos (2008) used for reference when collecting 

brain slices. The right side of this figure is an image taken during experimentation, note 

the central location of the caudate putamen (CPu) on both sides of this figure. The 

CFme, located at the end of a pulled capillary (A) was positioned between two 

stimulating electrodes (B). The brain slice was immobilized with the aid of a metal slice 

harp with lycra strings (C). 
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Voltammetry in vitro 

Electrodes were saved after ex vivo work to be calibrated with 1uM DA to 

quantify electrode sensitivity. The electrodes were placed in a thin flow chamber 

submerged in calibration aCSF containing the following (in mM): 126 NaCl, 2.5KCl, 0.66 

NaH2PO4, 2 Na2HPO4, 2.4 CaCl2, 1.2 MgCl2, 11 glucose, and 0.4 l-ascorbic acid. The 

calibration aCSF pH was manually adjusted to 7.4 before it was used for electrode 

calibrations. Calibration recordings spanned a duration of 30 seconds, with calibration 

aCSF containing an additional 1ɥM DA timed to enter the flow chamber at 

approximately 10 seconds and be exposed to the electrode for roughly 10 seconds. 

Electrodes utilized the same waveforms used during experimental data collection. 

Calibrations were run until multiple consistent peak amplitudes for DA were produced.  

Additional FSCV work 

 Demonstration of melatonin interaction with the CFme utilizing the traditional 

FSCV waveform was carried out. An experimental environment was simulated by 

continuously exposing the CFme to an aCSF buffer containing 10ɥM melatonin with the 

addition and subsequent removal of 1ɥM DA in 5-minute intervals. A pipette-based 

calibration technique was utilized for DA introduction to the CFme, inspired by Ramsson 

(2016). 

Statistical analysis 

 The peak current produced by DA release (Dmax) was noted for each recording. 

To normalize data for statistical analysis, the 5 pre-drug recordings were averaged and 
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the remaining values for the drug exposure and washout periods were expressed as a 

ratio (%) of the pre-drug average. The relative ratios for each experimental group were 

then combined allowing for simplified analysis of statistical significance between data 

sets. Upon consultation with a statistician we decided on the utilization of generalized 

estimating equations (GEE) for the statistical analysis which was performed in SAS 

(version 9.4). For each of the two experimental recording periods, drug exposure and 

washout, the significance of change in Dmax was compared as a function of waveform, 

concentration, time, and combinations of these variables. 

Graphing 

 Raw data for background subtracted voltammograms, current verses time (IvT), 

and background current were output from files recorded in Demon Voltammetry 

Software (Wake Forest Innovations). All data was imported to and graphed utilizing 

Veusz graphing software.  
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Chapter 4 

Results & Discussion 

Summary of Results 
Figure 5 displays the average relative ratio of Dmax for each concentration of 

melatonin and respective waveforms used. Time -20 to 0 minutes represent the 5 pre-

exposure recordings before the introduction of melatonin to the brain slice. At time 0, 

brain slices were exposed to a 10ɥM, 50ɥM, or 100ɥM concentration of melatonin for 

60 minutes where 12 recordings were taken at 5-minute intervals. The final 12 time 

points, 65-120 minutes, span the drug washout period when melatonin has been 

removed from the incoming aCSF buffer. Dmax endpoints for the melatonin exposure 

and washout period have been compiled in Table 1 (Appendix A).  

 Upon initial assessment of the graphs, it is apparent that in most cases Dmax 

experiences a decrease upon melatonin exposure with varying responses to the 

washout period. We expected a dose-dependent response overall, but the data shows 

the melatonin-specific waveform and amperometry experienced a slightly greater mean 

decrease in Dmax with 50ɥM melatonin than 100ɥM. Additionally, change in Dmax 

across all waveforms appeared to have similar profiles under the influence of 50ɥM and 

100ɥM melatonin. The statistics support this initial observation.  
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Figure 5. Results Summary by Waveform: The mean Dmax for each melatonin 

concentration group has been plotted as a ratio of the 5 pre-exposure recordings (-20-0 

minutes). The melatonin exposure period occupies the time from 0 to 60 minutes, and 

the washout period occurs from 60 to 120 minutes. The beginning and end of melatonin 

exposure to the brain slice is marked with a dashed black line.  
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Statistical Results 

Tables 2 and 3 (Appendix A) outline the factors for which significant change in 

DA release is dependent upon using 100ɥM melatonin as a baseline. Upon observing DA 

release during melatonin exposure as a function of time and concentration across 

waveforms, GEE parameter estimates returned a p-value of 0.6835 for 50ɥM and a p-

value of 0.0081 for 10ɥM (Table 2). These results show that across waveforms, the 

trend of Dmax upon exposure to 100ɥM melatonin does not significantly differ from 

50ɥM but does significantly differ from 10ɥM. However, as displayed in Appendix A, 

Table 3 this trend does not continue into the washout period as 100ɥM does not differ 

from either 50ɥM (P=0.5371) nor 10ɥM (P=0.9765). 

Wald statistics for GEE analysis are outlined in Tables 4 and 5 (Appendix A). 

Significance of DA release as a function of time, concentration, and waveform had the 

greatest effect during the exposure period, seen by a P-value of 0.0043 (Appendix A, 

Table 4). This same effect, however, was not shared by the washout period as analysis 

yielded a P-value of 0.1304 (Appendix A, Table 5). These results indicate that overall 

observed change in Dmax over the course of the melatonin exposure period is heavily 

dependent on time, but during the washout period time does not hold the same effect. 

If the decrease in DA release observed was primarily attributed to fouling, then we 

would expect the signal to recover during the washout period as melatonin leaves the 

environment. This evidence supports the notion that the change in DA release observed 

is the result of a biological effect of melatonin on the dopaminergic axon terminals as 

opposed to fouling of the electrode. 
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Figures 6 and 7 represent the predicted linear model derived from GEE 

parameter estimates summarized in Tables 6 and 7, respectively (Appendix A). 

Observing the data as predicted linear models allows for a clearer and, more 

importantly, statistical lens through which we can observe results. Graphed in Figure 6, 

it is apparent that every concentration of each waveform during the melatonin exposure 

period exhibits some degree of negative slope over time indicating an overall decrease 

in Dmax. Considering the strong interaction that time has during this period as indicated 

by the Wald statistics, this representation is consistent with what we would expect 

while also displaying which group experienced the greatest decline in predicted Dmax.  

Observing the interaction of waveform and concentration on Dmax at each time 

point offers insight to how soon melatonin causes significant differences between test 

groups during the exposure period. Outlined in Table 8 (appendix A) are the Wald 

statistics for each time point. We can see that the P-values dip below 0.05 as soon as 25 

minutes into the exposure period and remain so for the duration of the hour with the 

one exception at 35 minutes. Based on this experiment, the data indicates that 

statistically significant change in Dmax upon melatonin introduction does not occur until 

at least 25 minutes into exposure. As previously described by the Wald statistics in 

Tables 4 and 5, the strong interaction of time does not carry into the washout period. 

  Figure 7 graphically represents the washout period which displays more gentle 

slopes than the exposure period while also exhibiting the lack of unidirectional slopes. 

This is the resulting behavior when significant change does not occur over the time 

course, reiterating the lack of strong interaction of time on change in Dmax. As 
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mentioned previously, lacking the significant interaction of time opposes the likelihood 

that fouling of the electrode surface is the primary contributor to the observed decrease 

in Dmax in the exposure period. All the waveforms utilized were chosen for their 

properties which reduce the fouling capacity of melatonin. With its constant holding 

potential, amperometry was expected to be the least susceptible to fouling by 

melatonin. Upon closer inspection of Figure 7, the three linear functions with the 

smallest slope all belong to the melatonin concentrations tested using amperometry. 

Disregarding time and observing Dmax as a function of concentration and waveform, 

statistical analysis finds that these linear functions are extremely similar to each other 

(Table 9, Appendix A). Considering the near-absent effect that melatonin washout has 

on amperometry, it becomes increasing likely that the decrease in Dmax observed using 

amperometry during the melatonin exposure period is indeed a result of biological 

function. As for the other waveforms, insight on the presence of fouling can be gained 

from analyzing the voltammetry data. 
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Figure 6. Predicted linear model of melatonin exposure period derived from GEE 

parameter estimates 
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Figure 7. Predicted linear model of melatonin washout period derived from GEE 

parameter estimates 
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Voltammetry Data 

Figures 8 and 9 display the voltammetry data recorded utilizing the FSCAV 

waveform for 10ɥM, 50ɥM, and 100ɥM melatonin concentrations respectively. While 

the changes in current amplitude of the cyclic voltammograms and IvT plots between 

experimental periods is the most immediately apparent feature, the data has already 

been summarized in Figure 5. What we are interested in are the properties that indicate 

impedance as explored by Meunier, Roberts, McCarty, & Sombers (2017). Their research 

shows that impedance will cause a decrease in sensitivity as well as a positive shift in 

voltage potential required for redox reactions of DA. Figure 11 illustrates voltammetry 

data from experiments utilizing the FSCAV waveform and melatonin specific waveform 

which exposed brain slices to the 100ɥM melatonin concentration. If either of these 

waveforms are susceptible to melatonin fouling, the evidence will present itself at our 

highest concentration. Positive shifts in the oxidation potential can be observed for both 

the FSCAV (Figure 11A) and melatonin specific (Figure 11B) waveforms with the 

background and background-subtracted plots experiencing a minor positive shift as well. 

While this evidence may initially seem contradictory, comparison to voltammetry data 

of CFme exposure to only 10ɥM melatonin utilizing the traditional FSCV waveform 

provides perspective on the oxidation shift which severe fouling can cause (Figure 12A). 

Although it is true that these two specialized waveforms still experienced a small degree 

of fouling, the relatively minor change in oxidation potential reveals that fouling likely 

had only a small effect on the decrease in Dmax observed. Though we are unable to 

quantify how much of the change in Dmax observed can be attributed to fouling due to 
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our methods of collection, minor observed impedance coupled with a lack of a time-

dependent change during the washout period indicates fouling present was minimal. 

The progression of change in aspects of voltammetry recordings over the course 

of the experiments have been outlined in Figures 8, 9, and 10. The background plot, 

cyclic voltammogram, and IvT plot for each concentration of melatonin has been 

selected from an experiment which best represents the mean Dmax of that respective 

group. The three data sets plotted on each graph represent the final recording of the 

pre-melatonin, melatonin exposure, and melatonin washout periods. Observing how 

these recordings change from exposure to washout periods provide insight to activity 

occurring at the electrode surface.  
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Figure 8. Data Collection Utilizing FSCAV Waveform: Background, background-

subtracted voltammogram, and current over time for 10ɥM (A), 50ɥM (B), and 100ɥM 

(C) melatonin exposure, respectively. For each graph the black line, red line, and blue 

line represent the final recording for the pre-melatonin, exposure, and washout 

experimental periods respectively.  
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Figure 9. Data Collection Utilizing Melatonin-specific Waveform: Background, 

background-subtracted voltammogram, and current over time for 10ɥM (A), 50ɥM (B), 

and 100ɥM (C) melatonin exposure, respectively. For each graph the black line, red line, 

and blue line represent the final recording for the pre-melatonin, exposure, and 

washout experimental periods respectively. 
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Figure 10. Data Collection Utilizing Amperometry: Current over time graphs for 10ɥM 

(A), 50ɥM (B), and 100ɥM (C) melatonin exposure. For each graph the black line, red 

line, and blue line represent the final recording for the pre-melatonin, exposure, and 

washout experimental periods respectively.  
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Figure 11. Progression of DA oxidation behavior during melatonin exposure utilizing 

tested waveforms: Background (left) and background-subtracted (right) cyclic 

voltammograms have been plotted to observe any susceptibility that the FSCAV (A) and 

melatonin specific (B) waveforms may have to melatonin fouling at 100ɥM. The dashed 

line represents the DA oxidation potential of the first recording (black). Subsequent 

recordings are colored to reflect the progression of time until concluding with red. 
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Figure 12. Comparative progression of DA oxidation behavior during melatonin 

exposure: Background (left) and background-subtracted (right) cyclic voltammograms 

have been plotted to observe susceptibility that the traditional FSCV waveform (A) has 

to melatonin fouling at 10ɥM in aCSF buffer. MT1 agonist tasimelteon (B) exposure to 

mouse brain tissue slice, read with FSCAV waveform. The dashed line represents the DA 

oxidation potential of the first recording (black). Subsequent recordings are colored to 

reflect the progression of time until concluding with red.  
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Activity on the Electrode Surface  

 As discussed previously, fouling of the electrode is a product of electroactive 

compounds becoming adsorbed to the surface resulting in decreased sensitivity. These 

compounds, including melatonin, persist on the surface for an extended period of time 

unless removed. As explored in Takmakov et al. (2010), CFmes can renew their surface 

given the right parameters. They found that application of a voltage greater than 1.0V 

will cause carbon on the surface of the electrode to degrade via oxidation of carbon into 

CO2, slowly renewing the surface. It was also discussed that the application of a more 

traditional waveform (-0.4V-1.3V, 400V/s) will almost completely restore the sensitivity 

of an electrode in 15 minutes when cycled at 60Hz. By calculating the total time this 

waveform spends renewing its surface in 15 minutes, we are able to create a benchmark 

for how long the FSCAV and melatonin specific waveform should take to renew their 

electrode surface.  

 
𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐴𝑏𝑜𝑣𝑒 1.0𝑉

𝑆𝑐𝑎𝑛 𝑅𝑎𝑡𝑒
× 𝑆𝑐𝑎𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 60 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 × 15 𝑀𝑖𝑛𝑢𝑡𝑒𝑠 

 Based on the work done by (Takmakov et al., 2010) and the above equation, we 

believe that 81 seconds spent above 1.0V is the standard for which to compare to our 

waveforms tested. Using the same equation to assess the experimental waveforms finds 

that in the same 15-minute period the FSCAV waveform spends 45 seconds cleaning its 

surface and the melatonin specific waveform only spends 9 seconds. This means that 

the time it takes for the FSCAV and melatonin specific waveforms to sufficiently renew 

their surfaces would require 27 minutes and 135 minutes, respectively. Given that we 
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allocated 60 minutes for the washout period in the absence of melatonin this reasoning 

gives evidence that any changes, or lack thereof, in Dmax observed with the FSCAV 

waveform after 27 minutes is likely a function of biological action. However, the same 

cannot be said for the melatonin specific waveform.  

 Using these required times for surface renewal brings additional context for the 

background data displayed in Figures 8 and 9. As we have concluded, both the FSCAV 

and Melatonin specific waveforms experience a degree of fouling contributing to the 

decrease and positive shift in background signal after 1 hour of melatonin exposure (red 

line). The capability of the electrode to renew its surface can be observed by the 

restoration of the background signal back to baseline 1 hour after removal of melatonin 

from the aCSF buffer (blue line). The restoration rate which we calculated is consistent 

with what is seen for the melatonin specific waveform, with the background returning 

to approximately half of what it was before melatonin exposure. This persistent 

depreciated background current indicates that the final recordings of Dmax taken with 

the melatonin specific waveform are likely not entirely accurate due to some fouling still 

present on the CFme.  

 This is not the case for the FSCAV waveform, where the background current 

experiences a full recovery or, in many cases, exceeds the baseline. To reiterate, it was 

calculated that the surface would renew itself in less than a half hour. Given the hour 

washout period, it is not surprising that the background current is restored. The 

implications of this is that the final recordings taken with the FSCAV waveform should 

be a reasonably accurate representation of the biological change in DA release.  As for 
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an explanation of the observed background exceeding baseline, it is likely a product of 

CFme etching also explored in depth by Takmakov et al. (2010). Background current is 

linearly proportional to scan rate and electrode surface area. As the CFme surface 

continues to renew itself, carbon is lost in the form of CO2 and the morphology of the 

surface transitions from smooth to rough. Since roughening of the surface increases the 

surface area, the increased background current follows suit. 

Outlier data 

 One data set which did not follow expected trends was the behavior of DA 

release observed during 10ɥM melatonin exposure when recording with the FSCAV 

waveform. Only one of our three slices tested experienced the expected pattern of 

decreased Dmax with minor restoration, while the other two actually experienced a 

moderate increase in Dmax upon melatonin exposure with little change into the 

washout period. Considering that this phenomenon occurred twice in the same test 

group, we believe there is more to the explanation besides possible error in procedure. 

Upon consultation of the literature, the contributor we believe to be at play is the 

diurnal expression of the MT1 receptor.  

 Much like the circadian role melatonin plays in the body, the MT1 receptor itself 

is under diurnal expression. Real-time PCR and western immunoblotting analysis have 

found low MT1 mRNA presence at night, but high MT1 receptor expression. Expression 

is inverse into daylight hours, with high MT1 mRNA and low MT1 receptor expression 
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(Uz et al., 2005). This information is important to discuss when retroactively considering 

the times of mouse sacrifice before experimentation.  

 As described in the methods, our mouse model was treated with a standard 12-

hour day-night cycle of light exposure beginning at 7am. Due to extensive time frame of 

experiments we often began preparation as early as 8am. However, equipment 

troubleshooting in the early stages could delay an animal sacrifice up to 3 hours into the 

light cycle. Therefore, it is possible that the lack of consistent decrease in Dmax among 

experimental groups exposed to 10ɥM melatonin could be attributed to the varied 

expression of the MT1 receptor. Additionally, similarity between and consistency within 

the experimental groups of 50ɥM and 100ɥM melatonin exposure suggest that 10ɥM 

melatonin may not be adequate to sufficiently saturate available MT1 receptors. While 

there are likely more complicated cellular mechanisms at play, sufficient receptor 

saturation and the role which circadian control has on MT1 receptor expression cannot 

be overlooked as possible contributors.  

Variability  

 Another occurrence with a dearth of explanation is the disparity between the 

washout periods of the FSCAV waveform and amperometry. There is great support in 

the literature that amperometry is not susceptible to fouling (Patel, 2008). Therefore, 

we believe that the change in Dmax observed by amperometry is likely the most 

accurate representation of the biological response to melatonin. However, what we 

have difficulty describing is why the endpoint mean Dmax for FSCAV at 50ɥM and 
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100ɥM remain ~20% compared to the persistence of ~75% which amperometry 

displays. Assuming our argument for surface renewal of the FSCAV electrode is correct, 

the last 30 minutes of FSCAV washout should also present data of the true biological 

response. While we should consider the variation of spatial CFme placement in relation 

to MT1 receptor localization, consistency among respective waveform sets in response 

to melatonin suggest that the most likely variable at play is the waveforms themselves. 

FSCAV and amperometry are functionally different in how they interact with DA at an 

electrochemical level. Considering the complex nature of surface interactions on the 

CFme, the possible explanation for this disparity could warrant an entire research 

project of its own. For this thesis we will conclude that, regardless of fouling, waveform 

selection could produce varied results if you are gathering longitudinal proportional 

data as performed in this project. 

Implications of results 

 A limitation of this study is simply the interpretation of a single product from 

what is a multivariate system of interaction. When considering the washout period 

there are actually two factors which can contribute to an observed restoration in Dmax. 

One is the removal of melatonin which would reduce impedance if the electrode is 

susceptible to fouling. However, the other should be a restoration in VGCC function as 

the inhibition of which is generally reversed over several seconds in normal synaptic 

regulation (Ford, 2014). If the extent of downstream effects by MT1 receptor activation 

only encompassed VGCC, then we would expect the 1 hour duration given during the 

washout period should be sufficient for a full recovery of Dmax. Since the Dmax remains 



  
 

54 
 

persistently impaired, even for amperometry recordings, then it is reasonable to suggest 

that the downstream effects of MT1 are possibly extending beyond just VGCC function. 

Perhaps the 1 hour of melatonin exposure is a sufficient time frame for MT1 activation 

to inhibit AC and reduce cAMP enough to downregulate downstream mechanisms 

relating to DA release. This hypothesis is supported by similar voltammetry results 

produced by tasimelteon exposure (Figure 12B).  

Summary  

 Our results found that despite variability between waveforms, all recording 

methods observed a decrease in Dmax in response to melatonin exposure. Analysis of 

all waveforms grouped together finds that time has a significant effect on change in 

Dmax upon melatonin exposure. Predicted linear modeling revealed significant change 

occurring as soon as 25 minutes into the exposure period. The melatonin washout 

period did not experience the same significant effect of time, supporting the hypothesis 

that fouling would not be a primary contributor to a change in Dmax.  

 Voltammetry data provided insight on our selected waveforms’ resistance to 

melatonin fouling. While the melatonin specific waveform has shown to be more 

resistant to fouling than FSCAV, the slow rate of surface renewal reduced the viability of 

end-point data. FSCAV, with a much faster surface renewal rate, still presented 

inconsistencies with amperometry. Amperometry, intended as a baseline for 

comparison due to its proven resistance to melatonin fouling, performed as expected 

with linear modeling suggesting the absence of fouling. While our initial goal was to 
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observe the acute effects of melatonin exposure on DA release, our results suggest that 

1 hour of MT1 receptor activation may be long enough to elicit significant 

downregulation of mechanisms involved with DA availability. 

Future Direction 

 Due to the complicated nature of voltammetry, studies which seek to investigate 

CFme surface interactions with analytes are valuable to the field. Our results suggest 

that observing proportional changes in Dmax could produce different results dependent 

on what waveform is utilized. Further exploration of this phenomenon through 

extensive buffer work would likely produce valuable knowledge for the field of 

voltammetry. Additionally, given the potential power this technique has on assessing 

the temporal response of cellular metabolism from receptor signaling, this experiment 

could benefit from extended amperometric study. Varying degrees of exposure and 

washout periods could give important insight to the time frame that metabolic action 

follows receptor signaling.  

 Validity of the results produced by this experiment could be tested by further 

study of the role which the presynaptic MT1 receptor plays on DA regulation. Based on 

our conclusions, performing a similar experiment on ex vivo tissue slices of MT1 

receptor knockout mice should not produce the same effects.  
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Appendix A 

Statistical Tables 

 

 

 

 

 

 

Table 1. Mean final Dmax for melatonin exposure and washout periods: summarized 

Mean and standard deviation for the final data collection of exposure (t=60) and 

washout (t=120) periods. 
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Table 2. GEE parameter estimates for melatonin exposure period 
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Table 3. GEE parameter estimates for melatonin washout period 
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Wald Statistics for Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

WF 2 10.69 0.0048 

time 1 229.46 <.0001 

Concentration 2 10.06 0.0065 

time*Concentration 2 26.60 <.0001 

time*WF 2 83.71 <.0001 

Concentration*WF 4 2.97 0.5629 

time*Concentration*WF 4 15.19 0.0043 

 

Table 4. Output of GEE analysis of melatonin exposure period: Significance of DA 

release ratios as a function of waveform (WF), time, and concentration of melatonin 

 

 

 

Wald Statistics for Type 3 GEE Analysis 

Source DF Chi-Square Pr > ChiSq 

WF 2 26.06 <.0001 

time 1 16.07 <.0001 

Concentration 2 20.40 <.0001 

time*Concentration 2 1.07 0.5865 

time*WF 2 12.64 0.0018 

Concentration*WF 4 15.62 0.0036 

time*Concentration*WF 4 7.11 0.1304 

 

Table 5. Output of GEE analysis of melatonin washout period: Significance of DA 

release ratios as a function of waveform (WF), time, and concentration of melatonin. 
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Table 6. Descriptive statistics of DA release by concentration and waveform (WF) 

during melatonin exposure period: Each subgroup value is derived from an N=3. Each N 

was normalized by dividing the value by average of the pre-melatonin recordings for 

that experiment.  

 

Table 7. Descriptive statistics of DA release by concentration and waveform (WF) 

during melatonin washout period: Each subgroup value is derived from an N=3. Each N 

was normalized by dividing the value by average of the pre-melatonin recordings for 

that experiment.  
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Table 8. Wald statistics for each time point during melatonin exposure period: Values 

given are in the order of Chi-square, degrees of freedom, and P-value.  

 

Table 9. Predicted mean and P-value for interaction of concentration and waveform 

over melatonin washout period. P-values which indicate significant difference between 

two data sets are denoted by (*). 
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