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Preface 

 The beaches along the eastern shore of Lake Michigan are something to be marveled at. 

Their serenity, calmness, fury and glittering reflections make an impression on all who take the time 

to embrace their beauty. To some, they are places of solitude or reflection; to others, they are a 

playground. Whatever role they may play in each of our lives, it is important we feel secure in that 

they are a safe place to spend our time.   
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Abstract 

 Public beaches are routinely tested for potentially pathogenic bacteria to protect 

beachgoers from possible illness. An EPA approved method, Colilert™, used for testing E. coli in 

recreational water requires 18 – 22 hours before a result is reported but, recreators have already 

contacted unsafe water before the beach is closed. My study focused on a U.S. EPA proposed qPCR 

method (Draft Method C) to quantify E. coli in recreational waters that can provide same-day results. 

In Chapter 2, I examined the calibration procedure used to validate Draft Method C and compared 

standard curve intercept and slope estimates calculated with a Bayesian model to estimates generated 

from a simpler weighted linear regression (WLR) model to determine if it can replace the 

complicated Bayesian model for method implementation. A < 1% difference in the overall mean 

and median intercept and slope was observed between the two models, demonstrating that the WLR 

model results were comparable. I also analyzed inter-lab variability in intercept, slope, and 

R
2
 estimates produced by passing curves from the WLR model in a multi-lab 2018 data set. 

Significant pairwise differences were detected in 11% of the 36 inter-lab intercept comparisons; no 

differences were detected in the slope or R
2
 parameters. I concluded that the proposed standard 

curve acceptance criteria showed minimal variation between labs, thus ensuring reported results are 

accurate and reliable. In Chapter 3, I measured E. coli concentrations with Colilert™ and Draft 

Method C in water samples collected during the summer of 2018 from 14 inland lake and 6 Lake 

Michigan beaches in Muskegon County, MI. Kaplan-Meier distribution curves and log-rank trend 

tests were used to identify categorized environmental variables that significantly impacted E. 

coli concentrations based on the quantification method and the lake type. Bird count and birds 

present/absent significantly impacted E. coli levels at beaches of both lake types and quantification 

methods. The remaining variables significantly impacted E. coli concentrations depending on lake 

type and quantification method. Therefore, predictive models for beach water quality should 
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consider lake type and quantification method to account for the influence of environmental 

variables.   
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 : Introduction 
 

 Coastal communities throughout the world are impacted by the waters they border. These 

communities rely heavily upon these waters for employment opportunities, drinking water, and 

tourism, which in turn supports local businesses. Furthermore, coastal waters provide recreation 

opportunities such as boating, kayaking, swimming, and observing wildlife, all of which improve the 

quality of life for those who live near them. Because of the significant role these waters play in our 

lives, it is important to ensure they are safe for use. One way municipalities address this is by 

routinely monitoring the water at public beaches for potentially pathogenic fecal indicator bacteria.  

Exposure to fecal contaminated water has long been known to cause illness (Stevenson 1953; Cabelli 

and Dufour, 1982; Dufour 1984).  Diseases associated with exposure to fecal contaminated water 

include respiratory or ear infections, skin irritations and gastrointestinal (GI) illness (Seyfried, et al., 

1985 (I); Wade et al., 2008) and the economic impact from getting them can be substantial. Recently, 

it was estimated between $2 – 4 billion was spent annually as a result of contracting these illnesses 

(Deflorio-Barker et al., 2018).  

A commonly used United States Environmental Protection Agency (U.S. EPA) approved 

method to monitor recreational water for fecal bacteria, specifically Escherichia coli (E. coli), is called 

IDEXX Colilert-18™. This method measures culturable E. coli cells and requires 18 – 22 h before 

results are obtained (Rice et al., 2012). Consequently, water quality results are not disseminated to 

county officials, beach managers or the public until the following day. If elevated E. coli levels are 

present, the beach closure or advisory occurs the day after the water sample(s) were obtained and 

exposures occurring on the day of sampling are not prevented. Since E. coli concentrations can vary 

greatly from day to day (Whitman, 1999; Dorevitch, 2017) monitoring programs that identify and 

prevent exposure on the same day are needed. One such method being developed uses a 
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Quantitative Polymerase Chain Reaction (qPCR) assay first introduced, and described by, Holland 

et. al. (1991). This “rapid” qPCR technique is different from the Colilert method in that it measures 

a specific E. coli DNA sequence resulting in the quantification of both culturable and non-culturable 

E. coli. The use of qPCR as a replacement method has been validated repeatedly (Frahm and Obst, 

2003; Haughland et al., 2005; Lavender and Kinzelman, 2009; Whitman et al., 2010) and in 2014, the 

U.S. EPA submitted a standardized draft method for the use of qPCR to measure E. coli in water 

samples called Draft Method C. Unlike current approved methods, no incubation is needed, which 

reduces turn-around time. Once the samples are collected and processed in the morning, only 2 – 3 

hours are theoretically needed to complete analysis, making it possible to sample and assess E. coli 

levels prior to peak beach usage times in the afternoon.   

Before the new standardized qPCR method can be approved, it must be shown that 

laboratories with varying degrees of qPCR expertise can produce reliable and accurate results upon 

its implementation. One of the underlying components of Draft Method C is using pooled data 

from multiple individual standard curves to generate lab-specific composite standard curves. The 

individual standard curves are created from a series of known concentrations of a target analyte 

(Pfaffl et al., 2001; Rutledge et al., 2003), E. coli for our research, and the lab-specific standard curves 

are then used to determine the amount of E. coli DNA in water samples. To ensure the lab-specific 

composite curves will produce accurate results, individual standard curve acceptance criteria have 

been proposed. The purpose of Chapter 2 was two-fold: to assess the model chosen for generating 

standard curves and to determine the amount of inter-lab variation present after controlling for 

curves that passed the acceptance criteria proposed for Draft Method C. I hypothesized that:  1) 

selection of a simpler, more user-friendly model (i.e. Weighted Linear Regression) for generating a 

composite standard curve to quantify E. coli in recreational water samples is comparable to a more 

sophisticated Bayesian Master Standard Curve model used to set the standard curve acceptance 
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criteria for Draft Method C, and 2) the standard curve acceptance criteria proposed in Sivaganesan 

et al., (2019) for the intercept, slope and, R2 will reduce the amount of inherent method and analyst 

variability associated with qPCR  techniques to ensure data obtained with Draft Method C are 

reproducible and accurate. Our analysis is one of the first steps in demonstrating whether Draft 

Method C will be usable across the country as a rapid standardized method for testing E. coli in 

recreational water. If the outcome of our analysis shows that multiple labs can reliably produce 

similar results when implementing Draft Method C, it documents that the proposed standardized 

qPCR method could be a replacement for the more time intensive Colilert method. The expedited 

qPCR method would provide same-day bacterial water quality results thus protecting recreators 

from potentially contacting harmful pathogens in the water on the day where the risk is high versus 

the following day when the risk may be lower. 

Another aspect of introducing a new standardized method is to understand how it compares 

to the already approved method. Environmental variables such as rainfall or air and water 

temperature are used in models that predict microbial water quality exceedances based on already 

approved quantification methods (Frick et al., 2008; Byappanahalli et al., 2010). The purpose of 

Chapter 3 was to better understand how environmental variables observed during sampling would 

impact E. coli concentrations measured with the Colilert and qPCR methods at 14 inland lake and 6 

Lake Michigan beaches within Muskegon County, MI. I hypothesized that, although there are 

differences in the underlying methodologies of the two methods, environmental variables would 

impact E. coli concentrations measured with the Colilert and qPCR methods similarly. More 

specifically, I predicted that (1) higher turbidity, amounts of rain, and number of birds will be 

associated with higher E. coli concentrations; (2) higher air and water temperatures and longer 

periods of time since rain occurred prior to sampling, will be associated with lower E. coli 

concentrations; (3) E. coli concentrations measured with Colilert would be lower than when 
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measured using qPCR; and (4) inland lakes will have higher E. coli concentrations than Lake 

Michigan beaches when quantified using both the Colilert and proposed qPCR methods, all with 

respect to their E. coli concentration distributions. To perform these analyses, I assumed 

environmental variables recorded at the center sampling site of Lake Michigan beaches were the 

same at the north, center, and south sample sites, and therefore the same measurement or recorded 

observation was used for all three sites at the same beach. Additionally, because E. coli 

concentrations measured at the same beach on a daily and hourly basis are largely variable (Whitman 

and Nevers, 2004; Wyer et al., 2018), the variability in E. coli concentrations measured on a weekly 

basis at the same site on the same beach in our study could be treated as independent from each 

other and repeated measures analysis was unnecessary. This information will inform predictive 

models created for microbial water quality about whether the two analytical methods impact E. coli 

concentrations similarly, thereby protecting the public’s health from exposure to unsafe swimming 

conditions. Since up to 40% of observations contained no detectable E. coli, statistical analysis that 

allowed censored data to be included was needed.  Therefore, survival analysis was used to provide a 

more representative picture of the impact of environmental parameters on E. coli distributions than 

studies that replace or remove the censored data. 

The scope of this research includes a large data set from a 2016 and 2018 multi-lab Draft 

Method C validation study. A diverse group of labs took part in both the 2016 (21 labs across the 

Midwest and Southeast United States) and 2018 (9 labs across Michigan) studies, and included 

government, health department, and academic labs where analysts had varying degrees of experience 

with Draft Method C and qPCR. This research also included E. coli concentration data collected 

from 14 inland lake and 6 Lake Michigan public beaches within Muskegon County, MI. The county 

has approximately 42 km (26 miles) of Lake Michigan shoreline which plays a large role in its 
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economy. Following Chapters 2 and 3 are an extended review of the literature, extended 

methodology and bibliography.  
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 : A multi-laboratory comparison study of proposed standard curve acceptance 
criteria for U.S. EPA Draft Method C 

 
Authors: Molly J. Lanea* (mjlane07@gmail.com), James McNaira (mcnairja@gvsu.edu), Igor Mrdjena 

(igormrdjen10@gmail.com), Richard Rediskea (redisker@gvsu.edu) 

 

a Grand Valley State University: 1 Campus Dr., Allendale, MI, 4940, USA 

*corresponding author 

2.1 Abstract 

Draft Method C is a proposed standardized method for the absolute quantification of 

Escherichia coli (E. coli) in recreational waters. It uses a lab-specific composite curve generated from 

pooled results of individual standard curves. Three standard curve acceptance criteria proposed for 

individual curves to ensure results obtained with this method are of high quality are: intercept (36.66 

to 39.25), slope (−3.23 to −3.74), and R2 (≥ 0.98). To test if Draft Method C will provide 

reproducible and accurate results, we compared intercept and slope estimates calculated with 

Bayesian Master Standard Curve (MSC) and Weighted Linear Regression (WLR) models using data 

generated by twenty laboratories in a 2016 method validation study. There was < 1% difference 

between the two models in the overall group mean and median intercept and slope estimates and 

when comparing individual labs’ intercept estimations from the two models. Percent differences in 

slope estimates between the WLR and MSC models of individual labs ranged from 0.0 – 2.2%. We 

also analyzed inter-lab variability in the three acceptance criteria produced by passing curves from 

the WLR model in a 2018 data set. Significant pairwise differences were detected in four of the 36 

(11%) inter-lab intercept comparisons and no differences were detected in the slope or R2 

parameters. Our results support the use of Draft Method C as a rapid method for E. coli 

enumeration in recreational water samples because little variation was seen in the standard curve 
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acceptance criteria between labs, suggesting that the method can produce reliable and consistent 

results.  

Keywords: qPCR, standard curve model, multi-laboratory study, Draft Method C, E. coli, absolute 

quantification, beach monitoring, fecal pollution, recreational water  

 

2.2 Introduction 

Quantitative real-time Polymerase Chain Reaction (qPCR) has become a valuable tool for 

scientific research due to its specificity, analysis speed, and sensitivity. The technique has been 

implemented in environmental science and public health fields, where it is currently under regulatory 

consideration as a means for the rapid testing of fecal indicator bacteria (FIB) in recreational water 

(RW) samples. Since contact with fecal contaminated water increases the likelihood of developing 

RW illnesses (Dufour, 1984; Wade et al., 2006; Wade et al., 2008) such as ear infections, swimmer’s 

itch, and gastrointestinal issues (Wade et al., 2008; Seyfried et al. a, 1985; Seyfried et al., b, 1985), 

FIBs are used to alert beach managers and goers to the presence of fecal contamination (DEQ, 

2006; U.S. EPA, 2012). Furthermore, current bacterial recreational water quality criteria are based on 

the risk of contracting gastrointestinal illness after contact with fecal-contaminated water (Dufour, 

1984; Cabelli & Dufour, 1982; U.S. EPA, 1986, 2012). Therefore, to reduce the risk of recreational 

exposure, public beaches are routinely monitored for the presence of FIB.  

Enforcing recreational water quality guidelines across many localities requires a universal 

method—a method robust to the varying environmental conditions intrinsic to water bodies (i.e. 

turbidity and organic content), easily performed by laboratory analysts, and shown to produce 

reliable, consistent and accurate results. Draft Method C is being developed by the United States 

Environmental Protection Agency (U.S. EPA) as a universal, standardized qPCR assay for absolute 

quantification of Escherichia coli (E. coli), a potentially pathogenic FIB specific to the gut of 
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endothermic (“warm-blooded”) animals (Whitman et. al., 1999). Absolute quantification by qPCR is 

achieved by fitting a standard curve, also called a calibration curve, to data consisting of the base-10 

logarithms (log10) of a series of known concentrations of target DNA (the standards) and the 

corresponding measured threshold cycles (Ct values; Pfaffl et al., 2001; Rutledge et al., 2003). The 

fitted standard curve is used to estimate the initial copy number of the target DNA sequence in RW 

samples based on their measured Ct values.  

Traditionally, qPCR assays include a single standard curve per plate and apply the fitted 

standard curve only to the samples on the same plate (Converse et al., 2009; Noble et al., 2010; 

Shanks et al., 2016). This procedure ensures the standard curve used to estimate initial copy numbers 

in the unknowns reflects the identical conditions, which differ from run to run, under which the 

samples were prepared and processed (e.g. small differences in master mix preparation). However, 

this reduces the number of samples that can be analyzed on each plate. A typical standard curve uses 

fifteen to eighteen wells, making it inefficient in terms of time and supply costs when large numbers 

of samples will be analyzed. An alternative approach is to have each lab analyze several independent 

standard curves prior to running samples, then create a single lab-specific composite standard curve 

by pooling the results (U.S. EPA, 2012, 2013, 2014). Subsequent plates are then populated with 

samples and quality control measures, such as sample processing controls and positive/negative 

controls, to determine if the sample was analyzed correctly or to identify matrix interferences which 

would inhibit the qPCR reaction. Samples are analyzed separately from the lab-specific composite 

standard curve, increasing sample processing efficiency. When using this method, uncertainty in 

concentration estimates increases since the lab-specific composite standard curve used to calculate 

concentrations in samples no longer accounts for the exact conditions during each instrument run. 

Thus, there is a trade-off between precision and efficiency.  
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Two methods for generating a lab-specific composite curve are: 1) a hierarchical Bayesian 

method to generate a Master Standard Curve (MSC) (Sivaganesan et. al., 2008; Green et al., 2014), 

and 2) a classical Weighted Linear Regression (WLR) model (U.S. EPA, 2014). The Bayesian MSC 

method (Sivaganesan et. al., 2008) requires specialized statistical software and therefore is not 

suitable for use by labs with limited statistical capabilities. Instead, Draft Method C will use 

Microsoft Excel software to generate a lab-specific composite standard curve from pooled results of 

independently analyzed standard curves within each lab implementing the method using a WLR 

model to quantify E. coli concentrations in RW samples. The WLR model was chosen over the 

Bayesian MSC method mainly because its simplicity permits implementation of the method using 

the more familiar Excel software.  

Once an appropriate absolute quantification calibration model has been selected, it is 

important to assess model performance (i.e. reliability and consistency) because its reliability and 

robustness must be demonstrated before the method can become U.S. EPA approved. The use of 

quality assurance and quality control procedures, such as standard curve acceptance criteria, will help 

to ensure data quality and composite standard curve performance are acceptable (Shanks et. al., 

2016). Standard curve acceptance criteria have been proposed for Draft Method C which include 

ranges for the y-intercept (hereafter referred to as intercept) and slope of individual standard curves 

as determined by a Bayesian MSC model (Sivaganesan et al., 2019). Additionally, Draft Method C 

has a designated acceptance criterion for a standard curve’s R2 value.  

 The goals of the present study were two-fold: 1) determine if the WLR standard curve model 

selected for Draft Method C yields results similar to the Bayesian MSC method and 2) determine the 

amount of variation produced after controlling for curves passing the standard curve acceptance 

criteria. To achieve these goals, we 1) used the WLR model to calculate the mean intercept, slope, 

and 95% confidence intervals (CI) of lab-specific composite curve estimates with Ct values 
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produced during a 2016 Draft Method C validation study and compared them with the mean 

estimates obtained using the Bayesian MSC for each lab by visually assessing side-by-side plots and 

calculating the percent difference in mean estimates between the WLR and MSC models and 2)  

evaluated inter-lab variability of the intercept, slope, and R2 parameters estimated with the WLR 

model for individual standard curves analyzed in 2018. 

2.3 Materials and Methods 

Both the 2016 and 2018 studies used the E. coli EC23S857 qPCR assay, a specific region on 

the 23S rRNA gene of E. coli that is detected and amplified, and the same methods of DNA 

extractions and qPCR analysis. Methods used to construct standard curves for the 2016 Draft 

Method C validation study (Bayesian MSC) are described in detail by Sivaganesan et al. (2019). 

Methods used to construct the 2018 standard curves (WLR) are described below. 

Participants 

A diverse group of 21 labs from across the midwestern and southeastern United States 

participated in studies conducted in 2016, and 9 labs from across the state of Michigan participated 

in 2018 (Table S2.1). Government, university and county health department labs were represented in 

both studies. In each study, labs were assigned a unique code: ‘1’ through ‘21’ in 2016 (Sivaganesan 

et al., 2019) or ‘A’ through ‘I’ in 2018 to maintain anonymity when referring to them.  

Standards Instructions  

Standards (estimated copy numbers: standard 1 = 25,822.6; standard 2 = 3,396.25; standard 

3 = 417.83; standard 4 = 54.83; standard 5 = 11.61) were prepared and verified at the U.S. EPA 

Cincinnati laboratory, as described in Sivaganesan et al. (2019), then shipped to a central lab that 

managed their distribution to the remaining labs. Standards were shipped overnight on dry ice.  The 

U.S. EPA recommended that standards should be stored in 20 µL aliquots at −80°C until ready for 
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use. Each time a standard curve was analyzed, a set of the five concentrations of aliquoted standards 

were removed from the freezer and any unused standard was discarded. 

qPCR Assay  

In addition to the EC23S857 E. coli qPCR assay, a Sketa22 (salmon DNA) qPCR assay also 

was used. The Sketa22 assay amplifies a segment of the internal transcribed spacer region 2 (ITS2) 

of the salmon rRNA gene operon and was used as a sample processing and reaction inhibition 

control.  The reporter molecule was FAM and the quencher molecule was TAMRA. Assay master 

mix (MM) was prepared by combining TaqMan™ Environmental MM 2.0 (Thermo Fisher 

Scientific, Grand Island, NY) (12.5 µL), 2.0 mg/mL stock solution bovine serum albumin (BSA) 

from fraction V powder (Sigma B-4287 or equivalent) (2.5 µL) dissolved in PCR-grade water, 500 

µM stock solution of E. coli or sketa22 forward and reverse primers combined with 100 µM stock 

solution of E. coli or Sketa22 probes (3.0 µL) (Invitrogen or equivalent) (Table 2.1), and qPCR-grade 

water (2.0 µL). Volumes in parentheses are volumes specified in Draft Method C to use per 25 µL 

qPCR reaction being carried out. Two standard curves were permitted to be analyzed on the same 

96-well plate (Thermo Fisher Scientific) provided separate batches of MM were prepared for each 

curve. A single lot of TaqMan™ Environmental MM 2.0 (Table 2.1) was used by all eight labs 

(Lot#180115) and confirmed to have no underlying E. coli contamination by analyzing six No 

Template Controls (NTC) of AE buffer (Qiagen), run in duplicate (Saginaw Valley State University). 

All NTC runs resulted in an ‘Undetermined’ Ct value; meaning no fluorescence was detected above 

the background ‘noise’ or fluorescence signal, indicating the absence of E. coli DNA template in the 

TaqMan™. 
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Table 2.1 E. coli and salmon DNA forward (‘F’)/reverse (‘R’) primer sequences and TaqMan™ 
probe sequence used in Draft Method C. 

 
Assay 

Primer/probe 
name 

 
Locus 

Forward & reverse primer sequence  
(5’ to 3’) 

 
TaqMan™ probe sequence 

E. coli EC23S857 16S 
rRNA 

F: GGTAGAGCACTGTTTTGGCA (6-FAM)-5’-
TCATCCCGACTTACCAACCCG-
TAMRA 

   R: TGTCTCCCGTGATAACTTTCTC  
     
Salmon 
DNA 

Sketa22 23S 
rRNA 

F: GGTTTCCGCAGCTGGG (6-FAM)-5’-
AGTCGCAGGCGGCCACCGT-
TAMRA 

   R: CCGAGCCGTCCTGGTC  

 

DNA Extraction (Filter blanks and calibrators only) 

Each standard curve required three calibrator filters (positive controls; 1 x 104 E. coli cell 

equivalents) and three filter blanks (negative controls) prepared on separate sterile disposable 

MicroFunnel™ Filter Funnels (Pall Corporation, Ann Arbor, MI or equivalent) or re-useable filter 

funnel units. Calibrators were prepared by filtering 1 mL of a 1 x 104 E. coli suspension in sterile 

Phosphate Buffer Saline (PBS) (pH = 7.4 ± 0.2), through a polycarbonate 47 mm diameter with 0.45 

µm pore size filters (Millipore or equivalent) seated on a sterile filtration unit. The same procedure 

was used to filter 20 mL of PBS for filter blank preparation. Filters from calibrators and filter blanks 

were folded in half four times and placed in a 2.0 mL sterile semi-conical, screw-cap microcentrifuge 

tube containing 0.3g (± 0.01g) of acid-washed glass beads. Next, 600 µL of AE Buffer spiked with 

0.2 µg/mL salmon DNA (sketa22) was added to each extraction tube and tightly sealed. Extraction 

tubes were bead milled for 1.0 min at 5,000 rpm then centrifuged at 12,000 x g for 5 min. 

Approximately 400 µL of the crude DNA extract was removed and transferred into a clean 

correspondingly labeled, sterile 1.7 mL low retention micro-centrifuge tube and centrifuged again for 

1 min at 12,000 x g, then  ~ 100 µL of the clarified supernatant was transferred into a second sterile 

centrifuge tube. Calibrator and filter blank extracts were analyzed shortly after extraction along with 

each standard curve. 
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Plate Setup 

Extracted DNA from calibrator and filter blanks were analyzed in duplicate with both E. coli 

and salmon MM separately. NTC and standards 1–5 were tested in triplicate solely with E. coli MM. 

(Figure S2.1). Each well contained 25 µL of final reaction volume; 20.0 µL of prepared MM, as 

described in section 2.3, and 5.0 µL of the supplied E. coli DNA standard or positive/negative 

control or NTC.  

Instrument Run Method 

Thermocycling consisted of an initial ‘holding stage’ (50.0°C, 2 min; 95.0°C, 10 min) 

followed by 40 cycles of DNA denaturation and primer/probes annealing (95.0°C, 15 s; 56.0°C, 1 

min). At the end of each of the 40 cycles, fluorescence was measured by the instrument 

(StepOnePlus, Applied Biosystems). The fluorescence threshold, or the level of fluorescence in 

which the signal rises above the background level, was manually set to 0.03 ΔRn and baseline cycles 

were set to AUTO determination (Sivaganesan et al., 2019). 

Standard Curve Generation 

Upon completion of the instrument runs, data were exported from the StepOne™ Software 

(v2.3) and the resulting Ct values were copied into an accompanying Draft Method C Excel 

workbook where they were fitted to the WLR model of the form:  

 Xijk = αi + βi log10(Xj) + εijk (1) 

 

where Xijk is the observed Ct value for replicate k of standard j in run i; αi and βi are the intercept 

and slope, respectively, for run i; Xj is the known copy number in standard j, and εijk is the statistical 

error in the observed threshold cycle. A separate WLR was fitted to data for each standard curve 

run, and the externally Studentized residuals (Cook and Weisberg, 1983; p. 20) were examined to 

identify and remove up to two outliers from each data set if needed. The WLR model was then re-
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fitted to the retained data for each run, and the intercept, slope, and R2 values for each standard 

curve were assessed for acceptability based on the proposed standard curve acceptance criteria 

developed for Draft Method C (Table 2.2). When all three parameters met the acceptance criteria, an 

individual curve was considered ‘passing’ but, if any one of the three parameters failed, a curve was 

considered ‘failing’. Draft Method C requires a minimum of four passing individual cures to generate 

the lab-specific composite curve used to analyze RW samples therefore, if there were fewer than 

four passing, labs were requested to analyze additional curves. Only passing curves were considered 

for further statistical analysis of the 2018 data. 

Table 2.2 Standard curve acceptance criteria for Draft Method C 

Parameter Criteria Reference 

Intercept 36.66 to 39.25 (Sivaganesan et al., 2019) 

Slope −3.23 to −3.74 (Sivaganesan et al., 2019) 
 
R-squared (R2) 

 
≥ 0.98 

(Draft Method C and U.S. 
EPA, 2014) 

 

Data Analysis 

Bayesian MSC and WLR Standard Curve Model Comparisons  

Labs participating in the 2016 validation study analyzed four to five standard curve assays 

each, as described in Sivaganesan et. al, (2019) for a total of ninety-one curves analyzed. To obtain 

the WLR model values, intercept and slope data for each lab’s separate passing standard curve runs 

were assessed with the Draft Method C Excel workbook which uses an analysis of covariance 

(ANCOVA) to determine if there was evidence (α = 0.01) that any parameter estimates differed 

among runs. If not (p ≥ 0.01 for both parameters), results from the individual curves were pooled, 

and a WLR was performed to estimate the lab-specific composite curve intercept, slope and 95% CI 

for each lab. Mean intercept and slope estimates from the Bayesian MSC model for individual labs 

were taken from the 2016 validation study (Sivaganesan et al., 2019); the 95% Bayesian Credible 

Intervals (BCIs) are provided in the supplemental material (Table S2). The ANCOVA evaluation 
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was used in the WLR model only, and not the Bayesian MSC model. Intercept and slope estimates, 

and corresponding 95% CIs and BCIs, from the WLR and Bayesian MSC models, respectively, for 

each lab were plotted and compared visually. Comparisons also were made by examining the relative 

percent difference between the WLR and MSC models of the intercept and slope estimates for each 

lab. Percent differences were calculated by dividing the absolute value of the difference between the 

two models’ mean estimates by the average of the absolute values of the two models’ estimates and 

multiplying by one hundred.  

Inter-lab variability of 2018 standard curve WLR estimated acceptance criteria  

Each of the nine labs participating in 2018 used the WLR calibration model in the Draft 

Method C Excel workbook to analyze the instrument-determined Ct values for each individual 

standard curve and the workbooks were then shared with the authors of this study. Each lab 

produced between four and ten standard curves for a total of eighty-two. Of these curves, only 

those that passed all three acceptance criteria were considered for further statistical analysis. 

 Potential differences between acceptance criteria estimates produced by individual labs were 

assessed by determining the statistical significance of parameter differences and, where a statistically 

significant difference was detected, the relative magnitude of the difference on a percent scale was 

determined, as described above. The main goals of the assessment were to determine the proportion 

of labs for which a statistically significant difference was detected for each parameter and, more 

importantly, the relative magnitude of any detected differences. 

Inter-lab comparisons were carried out using a pairwise Wilcoxon rank sum test (Hollander 

et al. 2014) on each parameter; p-values adjusted with a Holm correction were used to account for 

multiple comparisons to test the null hypothesis that the locations of the distributions of reported 

intercept, slope, and R2 estimates were the same for each pair of labs against the two-sided 

alternative hypothesis that they were different. The Wilcoxon rank sum test is a nonparametric test 
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and does not assume a specific distribution for the individual estimates. All statistical analyses were 

performed using R Software (v3.5.2; R Core Team, 2018). Prior to any analysis, two data points 

from one lab (code H) were removed due to knowledge of errors during plate sealing.  

2.4 Results 

Bayesian and Weighted Linear Regression Standard Curve Model Comparisons 

 All passing standard curves from the 2016 validation study had intercept and slope estimates 

that passed the ANCOVA test which allowed for a WLR composite standard curve to be produced 

for every lab. However, lab code 21 was excluded from the model comparisons since it was not used 

in the Bayesian MSC analysis (Sivaganesan et al., 2019). 

 Intercept: Estimates of the intercept and the corresponding 95% CI and BCI calculated from 

WLR and Bayesian MSC models were similar within each lab (Figure 2.1). The overall means of the 

WLR and MSC Ct intercept estimates across all twenty labs were 38.01 and 37.98, respectively; the 

overall medians of the WLR and MSC estimates were 37.97 and 37.96, respectively. Thus, there was 

< 1% difference between the two models for the overall mean and median intercept Ct estimates. 

Across all twenty labs there was a < 1% average difference between the WLR and MSC intercept 

estimates and there was a < 1% difference between the WLR and MSC intercept estimate  

when comparisons were made within each of the individual labs (Table 2.3).  

 Slope: The slope estimates calculated from the WLR and Bayesian MSC models also 

exhibited similar means and 95% CIs and BCIs, respectively (Figure 2.2). The overall means of the 

WLR and MSC slope estimates were −3.50 and −3.49, respectively; the overall medians of the WLR 

and MSC slope estimates were −3.51 and −3.50, respectively. As determined for the intercept 

estimates above, there again was < 1% difference between the overall mean and median of the two 

models. Assessment of the overall average difference of individual labs was < 1% difference 
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between the WLR and MSC slope estimates. Percent differences between slope estimates calculated 

with two models ranged from 0.0 – 2.2% (Table 2.3).  

Figure 2.1 Comparison of mean intercept estimates for the 2016 standard curve composite WLR 
(green bars with open circles) and Bayesian MSC (purple bars with open triangles) models. Open 
circles and triangles on bars indicate the mean least-squares and Bayesian intercept estimates, 
respectively. Bars represent the WLR 95% CI (green) and MSC 95% BCI (purple). 
 

 

Figure 2.2 Comparison of slope estimates of the 2016 standard curve composite WLR (green bar 
with open circle) and Bayesian MSC (purple bar with open triangles) models. Open circles and 
triangles on bars indicate the mean least-squares and Bayesian slope estimates, respectively. Bars 
represent the WLR 95% CI (green) and Bayesian MSC 95% BCI (purple). 
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Table 2.3 Percent differences between WLR and Bayesian MSC estimates of intercept and slope 
parameters for individual labs. 

Lab Code Percent (%) Difference: Intercept Percent (%) Difference: Slope 

1 0.02 0.03 
2 0.18 1.3 
3 0.47 1.8 
4 0.25 0.76 
5 0.03 0.20 
6 0.13 0.37 
7 0.00 0.37 
8 0.01 0.00 
9 0.21 1.3 

10* 0.18 0.71 
11 0.64 2.23 
12 0.20 0.63 
13 0.07 0.33 
14* 0.31 1.1 
15 0.10 0.46 
16 0.29 0.77 
17 0.10 0.03 
18 0.04 0.32 
19 0.18 0.85 
20 0.33 1.6 

*Denotes labs using BioRad instrument 

Inter-lab variability of 2018 standard curve WLR estimated acceptance criteria 

 Overall, sixty-three of the eighty-two (76.8%) standard curves analyzed in 2018 passed all 

three acceptance criteria for intercept, slope, and R2. The intercept criterion was most frequently 

met, with seventy-four curves (90.2%) meeting the proposed criterion (Figure 2.3). Seventy-three 

curves passed the R2 criterion (89.0%), and seventy-two curves met the slope acceptance criterion 

(87.8%) (Figure 2.3). Statistical comparisons of the reported estimates of intercept, slope, and R2 

were restricted to sixty-three curves that met all three criteria.   

Four of the thirty-six (11.1%) inter-lab intercept estimate (Figure S2.2) pairwise comparisons 

resulted in statistically significant differences (p ≤ 0.05) (Table S2.3a). Percent differences between 

labs whose WLR estimates of intercept were statistically significantly different are shown in Table 
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2.4. No inter-lab pairwise differences in mean slope (Figure S2.3) and R2 (Figure S2.4) estimates 

were detected (p > 0.05) (Tables S2.3b and S2.3c). 

Table 2.4 Percent differences between mean intercept estimates of passing standard curves for pairs 
of labs in the 2018 study. Only pairs of labs that showed a statistically significant difference are 
shown. 

Lab Codes 

Percent (%) Difference: 

Intercept 

A–G  1.4 

E–H 1.9 

F–G 1.8 

G–H 2.1 

 

2.5 Discussion 

To the best of our knowledge, this was the first study to compare intercept and slope estimates 

obtained with the Bayesian MSC model to those obtained with the WLR model and assess inter-lab 

variability of three proposed Draft Method C standard curve acceptance criteria across multiple labs 

within different regions. Comparisons of the two calibration models showed a < 1% difference 

between the mean and median intercept and slope estimates. Additionally, all differences between 

the Bayesian MSC and WLR estimates of intercept and slope for individual labs were below 3%. 

Inter-lab pairwise comparisons of WLR 2018 data detected the highest number of statistically 

significant differences in intercept estimates among labs, with four of the thirty-six pairwise 

comparisons showing differences and a relative percent difference between labs of only ≤ 2.1%. 

Statistically significant pairwise differences of slope and R2 were not detected.  

While a well-studied qPCR method for measuring Enterococcus (U.S. EPA, 2012; U.S. EPA, 

2013; Sivaganesan et al., 2014; Haugland et al., 2005; Whitman et al., 2010) already exists and is 

associated with gastrointestinal illness in marine waters (Colford et al., 2012), E. coli enumeration 

may be a better predictor of gastrointestinal illness in freshwater systems (Pruss et al., 1998). A meta-
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analysis of RW quality literature published from 1950 to 2003 reported that most studies indicated 

E. coli as being a more suitable predictor of gastrointestinal illness in freshwater than other bacterial 

indicators (Wade et al., 2003). Therefore, a standardized qPCR method for quantification of E. coli in 

freshwaters, such as Draft Method C, is needed to protect public health.  

 

Figure 2.3 Summary of all 2018 standard curve acceptance criteria for participating labs (codes A-I). 
Blue dashed horizontal lines represent the acceptance criteria value(s). Points in shaded area did not 
meet the acceptance criteria. 
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Calibration Model Selection 

Absolute quantification of E. coli by qPCR requires a standard curve model. A recent study 

compared gene copy estimates in water samples obtained with the Bayesian MSC model to those 

obtained using the delta-delta Ct (ΔΔCt) model, the absolute quantification method used to 

enumerate Enterococcus in RW (U.S. EPA, 2012, 2013), and found no statistically significant 

differences in estimates, although the MSC model exhibited overall higher gene copy estimates in all 

samples (Aw et al., 2019). Similarly, our study compared two standard curve models, the Bayesian 

MSC model, used to set the Draft Method C acceptance criteria, to those obtained with the WLR 

model, used in the current Draft Method C Excel workbook, and found very little variability in the 

means and medians of intercept and slope estimates (< 1%) calculated with both models indicating 

that parameter estimates from the two quantification models are quite similar. This result supports 

selection of the simpler, more user-friendly WLR model to be used in Draft Method C for RW 

sample analysis.  

Although the intercept and slope estimates produced with the two different standard curve 

models are similar within a single lab, visual assessment of Figures 2.1 and 2.2 indicate the presence 

of some variability between labs. In 2016, all labs did not have −80°C storage, which may have 

caused the variation (Aw et al., 2019), compared to 2018 when all labs did have the recommended 

sample storage capabilities. Proper storage and handling of DNA standards is important to qPCR 

method performance (Sivaganesan et al., 2010; Sivaganesan et al., 2008; Shanks et al., 2016; Bustin et 

al., 2009), therefore suboptimal storage conditions of standards could cause DNA to degrade and 

subsequently impact the standard curve assay outcome (Dhanasekaran et al., 2010).  

Interlaboratory Comparisons of 2018 Acceptance Criteria 

The theory underlying Eq. (1) suggests that variation should be more pronounced in the 

intercept than in the slope, because the slope is smaller in absolute value and reflects inter-run 
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variation in only a single underlying parameter (the amplification factor) while the intercept is larger 

and reflects inter-run variation in two underlying parameters (the amplification factor and 

fluorescence of the passive reference dye) thus more variability in the intercept criterion was 

expected. However, calibration curves in our study were analyzed in multiple labs on different 

instruments and were therefore more likely to exhibit greater variability from instrumental and 

analyst factors (Sivaganesan et al., 2008) than because of the underlying standard curve model 

theory. 

The coefficient of determination (R2) for a linear ordinary least-squares regression model 

indicates the proportion of total variation in the response variable that is attributable to (or 

explained by) the predictor variable. The lack of detected significant differences in R2 values 

indicated there was little variation among labs in this measurement of curve acceptance and that the 

predictor variable (log10 of the initial copy number) consistently accounted for a very high 

proportion of total variation in the response variable (Ct value). Overall, 89% of standard curves 

analyzed in 2018 had a passing R2 acceptance criterion, indicating that the proposed 0.98 acceptance 

value was replicable in practice by multiple labs.  

Future Considerations 

Variation and error can be introduced during each step of qPCR analysis (Baker et al., 2011). 

Factors such as storage time, storage temperature of standards and reagents, precision of dilutions, 

and pipette calibration can influence the accuracy of standard concentration measurements used to 

create the calibration model (Sivaganesan et al., 2008; Sivaganesan et al., 2010). Additionally, 

differences in the equipment used within laboratories and the ability of analysts to pipette uniformly 

contribute to variation in absolute quantification by qPCR. Visible differences are seen in the 2016 

intercept acceptance criterion values of labs 10 and 14 that used a different brand of thermocycler 

than the other participants (Figure 2.1) therefore, we agree with Ruijter et al. (2013) that in-depth 
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studies are needed to evaluate variability introduced to standard curves when using different 

thermocycler instruments. Also, for some labs participating in 2016, the standards storage 

temperature was not at the U.S. EPA recommended temperature of −80°C, therefore we also 

recommend that labs implementing Draft Method C use a −80°C storage freezer. Future work 

evaluating the variation in the resulting lab-specific composite curves of individual labs are also 

recommended along with epidemiological studies to show that bacteria concentrations measured 

with Draft Method C are associated with predicting recreators’ risk of illness. 

Further experimental studies are needed to evaluate intra-laboratory variation when 

implementing Draft Method C to better understand how individual analysts perform based on their 

experience. Pipetting is a fundamental element of qPCR and an analyst’s ability to repeatedly and 

consistently pipette small volumes is vital to getting accurate results when performing Draft Method 

C. Lippi et al. (2017) tested whether an analyst’s pipetting experience impacted their performance 

and saw no correlation between an analyst’s age, sex or years of experience (varying from nine to 

forty-seven years of experience) and their pipetting precision. Conversely, Aw et al. (2019) 

concluded that prior experience with qPCR appeared to contribute to failure of quality control 

measures like those examined in this study. However, aside from knowing analyst experience with 

Draft Method C in the 2018 study, the extent of prior experience with qPCR or pipetting was 

unknown. Another key finding in the Lippi et al. study was a comparison of inter- and intra-analyst 

imprecision when pipetting volumes of 10 µL, 100 µL, and 1 mL of water which determined that the 

smaller the volume pipetted, the more error there was (Lippi et al., 2017). Draft Method C requires 

pipetting volumes as low as 5 µL, much lower than previously examined.  This reinforces the use of 

acceptance criteria to ensure analysts are performing within a defined acceptable range and 

subsequently providing correct estimates of bacteria concentrations in RW samples.  
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The variability introduced by the plethora of environmental factors which occur during 

sampling also needs be considered when developing a standardized method. Items such as sampling 

frequency or time of day, number of samples collected per site, sampling season and sample depth 

can all introduce variability in bacterial quantification (Whitman et al., 2004). Likewise, spatial and 

temporal variation arise when quantifying bacterial concentrations (Whitman et al., 2004). For these 

reasons, a standardized method for absolute quantification of E. coli by qPCR is vital for ensuring 

results are consistent and reliable while reducing variability where possible.  

Not only is it important to understand where variation occurs when implementing a 

standardized method such as Draft Method C, it is equally essential to understand how the variation 

impacts the reported E. coli values. The proposed individual standard curve acceptance criteria serve 

as a screening process where poor quality data are rejected. Therefore, it is important to know if the 

set criteria prevent large variation in the final E. coli concentrations. For example, the largest percent 

difference of 2.1% between lab codes G and H (Table 2.4) is not substantial in terms of percentages, 

but further studies are needed to better understand what a 1 – 2% difference may mean to the final 

E. coli concentration. Similarly, although no statistically significant differences were detected in 

passing slope or R2 estimates generated by labs, the range of values (Slope: −3.31 – −3.71; R2: 0.98 – 

0.99) could potentially result in reportable E. coli quantities falling above or below the bacteria 

exceedance level. Analyses looking at the effect this variability could have on reported E. coli 

quantities is important because it may be the difference between a beach remaining open or an 

exceedance causing a beach closure, at the detriment of recreators and the surrounding businesses. If 

the proposed standard curve acceptance criteria need to be more stringent, the acceptance range can 

be reduced to limit variation in final measured E. coli quantities.  
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2.6 Conclusion 

 The results of this study provide evidence that absolute quantification of E. coli by qPCR 

using Draft Method C can provide reliable and reproducible results for RW samples. Our analyses of 

the mean intercept and slope estimates from the 2016 multi-laboratory study demonstrated that the 

WLR calibration model produces comparable results to the Bayesian MSC model used to set the 

acceptance criteria. Our pairwise comparisons of passing individual standard curve intercept, slope 

and R2 estimates produced by multiple laboratories, which are used to generate the lab-specific 

composite curves, demonstrated little variation among labs as well. To advance these findings, 

further analysis is needed to determine what these detected differences mean to the magnitude of 

reported E. coli quantities measured with Draft Method C. Our findings support the use of Draft 

Method C as a rapid, standardized protocol for E. coli enumeration at public beaches.   
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2.7 Supplementary Materials 
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Figure S2.1  96-well plate setup for 2 standard curves per plate. NTC = No Template 
Control; Cal. = Calibrator; FB = Filter Blank.  
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Figure S2.2 Individual labs (x-axis, codes A-I) WLR intercept estimates (y-axis) values from passing 
standard curves in the 2018 study. Solid and dotted lines inside boxes represents the median and 
mean values, respectively. Intercept acceptance criteria range (36.66 to 39.25) is shown with 
horizontal dashed lines across the plot area.  
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Figure S2.3  Individual labs (x-axis, codes A-I) WLR slope estimates (y-axis) from passing standard 
curves in the 2018 study. Solid and dotted lines inside boxes represents the median and mean values, 
respectively.  Slope acceptance criteria range (−3.23 to −3.74). 
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Figure S2.4  Individual labs (x-axis, codes A-I) WLR R2 estimates (y-axis) values from passing 
standard curves in the 2018 study. Solid and dotted lines represent the median and mean values, 
respectively. R2 acceptance criterion (0.98) is shown by a horizontal dashed line across the plot area. 
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Supplemental Tables 

Table S2.1 Labs participating in the 2016 and 2018 standard curve studies. An ‘x’ indicates the year 
a lab participated in the study. 

Lab Location 2016 2018 

Central Michigan District Health Department, 
Assurance Water Laboratory Gladwin, MI 

 
X X 

City of Racine Public Health Department 
 

Racine, WI 
 

X  

Ferris State University, Shimadzu Core Laboratory 
 

Big Rapids, MI 
 

X 
 

X 

Georgia Southern University, Department of 
Environmental Health Sciences 

 
 

Statesboro, GA 

 
 

X  

Grand Valley State University, Annis Water 
Resources Institute Muskegon, MI X X 

Health Department of Northwest Michigan, 
Northern Michigan Regional Laboratory Gaylord, MI 

 
X 

 
 

Kalamazoo County Health and Community 
Services Laboratory Kalamazoo, MI X  

Lake Superior State University, Environmental 
Analysis Laboratory Sault St. Marie, MI X X 

Marquette Area Wastewater Facility 
 

Marquette, MI 
 

X 
 

X 

Michigan State University, Department of Fisheries 
and Wildlife East Lansing, MI X  

Northeast Ohio Regional Sewer District, 
Environmental and Maintenance Services Center Cuyahoga Heights, OH X  

Oakland County Health Division Laboratory 
 

Pontiac, MI 
 

X 
 

X 

Oakland University, HEART Laboratory 
 

Rochester, MI 
 

X 
 

X 

U.S. EPA National Exposure Research Laboratory Cincinnati, OH X  

United States Geological Survey, Upper Midwest 
Water Science Center Lansing, MI X X 

U.S. National Parks Service, Sleeping Bear Dunes 
Water Laboratory Empire, MI X  

Saginaw County Health Department Laboratory 
 

Saginaw, MI 
 

X  

Saginaw Valley State University, Department of 
Chemistry University Center, MI X X 

University of Illinois at Chicago, School of Public 
Health 

 
 

Chicago, IL 

 
 

X  

University of North Carolina at Chapel Hill, 
Institute of Marine Sciences Morehead City, NC X  

University of Wisconsin-Oshkosh, Environmental 
Research Laboratory Oshkosh, WI X  
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Table S2.2 95% Bayesian MSC Credible Intervals (BCIs) for intercept and slope parameters in the 
2016 validation study. LB = Lower Bound; UB = Upper Bound. 

 
Lab Code 

Intercept Slope 

LB UB LB UB 

1 37.64 38.04 −3.615 −3.497 
2 37.77 38.69 −3.786 −3.486 
3 37.54 38.02 −3.615 −3.452 
4 38.10 38.57 −3.643 −3.501 
5 37.65 38.47 −3.604 −3.348 
6 37.09 37.67 −3.604 −3.404 
7 37.81 38.52 −3.399 −3.182 
8 37.50 37.95 −3.558 −3.426 
9 37.57 38.40 −3.446 −3.220 
10 38.87 39.39 −3.472 −3.316 
11 37.78 38.70 −3.705 −3.398 
12 37.45 37.98 −3.574 −3.404 
13 37.65 38.20 −3.692 −3.522 
14 36.68 37.62 −3.810 −3.450 
15 37.69 38.31 −3.601 −3.391 
16 37.54 38.11 −3.460 −3.277 
17 38.01 38.79 −3.641 −3.433 
18 38.09 38.94 −3.571 −3.269 
19 37.38 37.89 −3.592 −3.418 
20 37.29 38.04 −3.563 −3.301 
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Table S2.3 p-values from the 2018 inter-laboratory (codes A−I) pairwise Wilcoxon comparisons of 
intercept (a), slope (b), and R2 (c). P-values were adjusted for multiple comparisons using the Holm 
correction. 
a. 

Intercept A B C D E F G H 

B 1.00 - - - - - - - 

C 0.267 0.902 - - - - - - 

D 1.00 1.00 0.543 - - - - - 

E 0.062 1.00 1.00 0.527 - - - - 

F 1.00 1.00 0.267 0.686 0.089 - - - 

G 0.044 0.902 0.902 0.319 1.00 0.005 - - 

H 0.067 0.267 0.400 0.267 0.005 0.067 <0.005 - 

I 0.267 1.00 1.00 0.902 1.00 0.267 1.00 1.00 

b. 

Slope A B C D E F G H 

B 1.00 - - - - - -  

C 1.00 1.00 - - - - -  

D 1.00 1.00 1.00 - - - -  

E 0.242 0.338 1.00 1.00 - - -  

F 1.00 1.00 1.00 1.00 0.170 - -  

G 0.379 0.069 1.00 1.00 1.00 0.379 -  

H 1.00 1.00 1.00 1.00 1.00 1.00 1.00  

I 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

c. 

R2 A B C D E F G H 

B 1.00 - - - - - -  

C 1.00 1.00 - - - - -  

D 1.00 1.00 1.00 - - - -  

E 1.00 1.00 1.00 1.00 - - -  

F 1.00 1.00 1.00 1.00 1.00 - -  

G 1.00 1.00 1.00 1.00 1.00 1.00 -  

H 1.00 1.00 1.00 1.00 1.00 1.00 1.00  

I 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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3.1 Abstract 

To provide a safe environment for beachgoers, public beaches are tested for E. coli which 

alerts the public to the presence of potentially pathogenic bacteria in the water. We used Kaplan-

Meier distribution curves paired with log-rank trend tests to analyze eight categorized environmental 

variables and their relative impact on E. coli concentrations measured with Colilert® and qPCR 

(Draft Method C) at 14 inland and 6 Lake Michigan beaches in Muskegon County, MI. Additionally, 

we compared the two methods’ E. coli results and, E. coli levels of the two lake types with Kaplan-

Meier distribution curve analysis to allow for the inclusion of all data (i.e. censored (below the limit 

of quantification) and quantifiable data) without any alterations. Of the eight environmental 

variables analyzed, only bird abundance and presence significantly impacted E. coli levels (p < 0.001) 

across all scenarios tested. Impacts on E. coli concentrations by other tested variables (i.e. turbidity, 

wind speed etc.) depended on the quantification method used and lake type, thus our results indicate 

that predictive models unique to the monitoring method being used and general lake type are 

necessary because the quantification method changes the manner in which environmental variables 

impact E. coli quantities. Furthermore, our analysis showed a statistically significant difference 

between Kaplan-Meier distribution curves of E. coli levels measured with Colilert and qPCR which 

supports the development of distinct water quality criteria for the two E. coli quantification methods 

explored in this study. 
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3.2 Introduction 

 Public beaches provide many opportunities to enjoy the outdoors. Throughout the summer 

months tourists visit communities with public beaches, benefitting the local economy. A Forest 

Service’s National Survey on Recreation and the Environment (NSRE) report estimated that in 2008 

approximately 61% of the United States’ (US) population over 16 years of age participated in non-

motorized water activities (i.e. swimming, snorkeling, visiting beaches) and almost 17% participated 

in canoeing, kayaking or rafting activities (Cordell, H., 2012). Furthermore, it was estimated that a 

typical beachgoer would spend approximately $13.13 within 10 miles of a beach per visit (Murray et 

al., 2001), which, when coupled with the number of recreators engaging in water activities at 

beaches, can potentially result in millions of dollars invested at local businesses. The state of 

Michigan has over 1,200 public beaches (www.deq.state.mi.us/beach). A 2017 tourism summary 

reported 122.4 million visitors to Michigan—which helped support 6% of all jobs—and spent $3.4 

billion on recreation (www.medc.app.box.com (a)). Visitors to Muskegon County, MI spent over 

$313 million in 2017 (www.medc.app.box.com (b)). Although these reports do not distinguish 

tourism dollars spent specifically on or around water activities, one can assume that with millions of 

people using water as a form of recreation a large portion of the dollars spent was due to the 

presence of a nearby beach, thereby helping to sustain local economies.  

With the vast number of people enjoying recreational waters and local businesses depending 

on them, it is important that visitors be confident the water is safe to use. One way local 

municipalities address this is by testing the water for fecal indicator bacteria (FIB), specifically 

Escherichia coli (E. coli) in Michigan, which alerts public health officials and beach managers to the 
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possibility of fecal contamination. The presence of fecal contamination has long been known to 

increase the risk of contracting recreational water illnesses (Dufour, 1984; Seyfried et al., 1985 (II)), 

such as respiratory or ear infections, skin irritations and gastrointestinal (GI) illness (Seyfried et al., 

1985 (I), Wade et al., 2008). GI illnesses can range from being acute (mild discomfort or nausea) to 

severe (continuous vomiting and diarrhea leading to hospitalization for dehydration) (Deflorio-

Barker et al., 2016) and are what the current recreational water quality criteria are based upon. 

Furthermore, recreational water illnesses were estimated to cost beachgoers between $2 – 4 billion 

dollars annually (Deflorio-Barker et al., 2018). By testing for FIB in recreational water, municipalities 

can reduce the risk of beachgoers contracting an illness and instill confidence that the water they are 

recreating in is safe.  

Considering the possible health risks and economic impacts associated with exposure to 

fecal contaminated water, it is important to test and report unsafe conditions as quickly and as 

accurately as possible. Two common methods for quantifying E. coli in recreational water are: 1. The 

United States Environmental Protection Agency (U.S. EPA) approved IDEXX Colilert-18® Quanti-

Tray 2000, hereafter referred to as Colilert, and 2. quantitative polymerase chain reaction (qPCR), a 

proposed molecular quantification method. Colilert is a defined substrate method, reported as most 

probable number (MPN) and requires an incubation period of 18 – 22h before results can be 

reported. The current recreational water quality standard for E. coli in Michigan is the geometric 

mean of three sample sites at a single beach or a single composited sample from three sample sites at 

a single beach cannot exceed 300 MPN per 100 mL daily, or  a 30-day geometric mean of 130 MPN 

per 100 mL (EGLE, Water Resources Division, 2019). Alternatively, a standardized qPCR assay has 

been proposed by the U.S. EPA for quantification of E. coli in recreational water titled ‘Draft 

Method C’ which can provide recreational water E. coli concentrations within a few hours of samples 

being received at the lab. qPCR methods are becoming more widespread and one has already been 
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approved for the quantification of Enterococcus (U.S. EPA 2012 & 2013), another commonly used 

FIB. Recently, a beach notification value (BNV) has been established in Michigan for Draft Method 

C as 8,760 DNA copies of an E. coli-specific gene sequence per 100 mL. This BNV is being used 

across Michigan to monitor bacterial water quality at select beaches in Oakland County and Kent 

County (Dr. S. Briggs, EGLE. Pers. comm.). The underlying methodology of these two E. coli 

quantification methods is quite distinct in that Colilert only measures culturable E. coli cells and 

qPCR measures both culturable and non-culturable E. coli. Colilert relies on an E. coli specific 

enzyme (β-glucuronidase) to react with a patented substrate to produce fluorescence upon exposure 

to ultra-violet light (www.idexx.com). In contrast, qPCR amplifies a DNA sequence on the 23S 

rRNA gene specific to E. coli which is then used to calculate the number of DNA gene copies 

present. 

As an alternative to collecting recreational water samples from beaches and testing for FIB, 

some scientists have created computer predictive models to anticipate when a microbial water 

quality exceedance may occur (Nevers and Whitman 2005; Frick et al., 2008). This approach does 

not require expensive instrumentation or a laboratory and, fewer personnel are needed to provide 

water quality monitoring to the community. Microbial concentration predictive models, such as the 

U.S. EPAs “Virtual Beach” (V3.0.6; Cyterski et al., 2016) use environmental variables (EVs) 

collected at the beach or from nearby weather stations to predict an exceedance (Frick et al., 2008, 

Byappanahalli et al., 2010). Common EVs used in these models and that were included in our study 

were: turbidity, water and air temperature, wind speed, the number of birds, the presence or absence 

of birds, rain amount, and time since the last rain fall. Each variable can potentially contribute to E. 

coli densities in recreational water in different but interrelated ways.  

The effect different environmental variables can have on E. coli concentrations can vary 

significantly. A direct relationship between turbidity, wind speed, or birds and fecal contamination 
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can be predicted. Wind speed can drive increased wave action, which causes waves to break higher 

into the swash zone where fecal matter potentially stored in the sand (Alm et al., 2003) or bird feces 

along the shore (Goodwin et al., 2017; Kelly et al., 2018) is carried into the water column as the 

wave recedes. On the other hand, an inverse relationship between air or water temperature and E. 

coli densities can be expected since reduced cloud cover can result in higher air temperatures, and 

more ultraviolet light penetrating the water column thereby causing solar inactivation or die off of E. 

coli (Noble et al., 2004; Boehm et al., 2018). This trend would particularly be seen when E. coli was 

measured with Colilert since this method only quantifies culturable bacteria compared to qPCR 

which measures culturable and non-culturable E. coli. Consequently, even if warmer temperatures 

caused a decrease in culturable E. coli, qPCR would measure the inactivated or dead cells. Finally, 

low rainfall and an antecedent rainfall prior to sampling would correspond to lower E. coli 

concentrations. Rainfall produces terrestrial stormwater runoff which eventually enters the beach 

environment through tributaries or as it moves from the backshore across the sand potentially 

carrying fecal matter into the swim area. Additionally, during intense rainfall, the lake bottom in the 

shallower foreshore area could be disturbed, causing E. coli stored in the sand to be released into the 

water column (Whitman and Nevers, 2003; Ishii et al., 2007). Given that each of these 

environmental variables can contribute to increased fecal contamination at beaches, understanding 

how they can be used to predict E. coli concentrations across different environments and with 

different quantification methods will be vital to predictive models used to issue beach closures.  

The goal of our study was to examine the association between eight categorized 

environmental variables (EVs) and E. coli concentrations quantified with the approved (Colilert) and 

proposed (qPCR Draft Method C) methods at fourteen inland lake and six Lake Michigan beaches 

to inform models aimed at predicting microbial water quality as to which variables play a significant 

role. We also compared E. coli results measured with Colilert to those obtained with qPCR for inland 
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and Lake Michigan beaches to assess the need for separate water quality criteria for the different 

methods. Finally, we compared the E. coli concentrations found at inland lake beaches with those at 

Lake Michigan beaches to determine if there was an overall difference in microbial water quality. 

Inland lake beaches are less frequently studied than the coastal waters of the Great Lakes, therefore 

our results will contribute much needed information regarding inland lake beach environments. A 

novel component of this study is that we used survival analysis methods to assess E. coli 

concentrations measured with an approved (Colilert) and proposed (Draft Method C) quantification 

method. Unlike most statistical analyses used for environmental studies, this method allows for all 

data to be included in the analysis, including data that is below the range of detection and normally 

removed from analysis.  The information provided by this study will be useful to beach managers to 

focus recreational water mitigation efforts and delegate resources where they would be most 

beneficial. 

3.3 Methods 

Sampling 

Sampling occurred once a week over five weeks (June 4th through August 6th, 2018) within 

Muskegon County, Michigan. Water samples were stored on ice until transported to the lab and 

processed for either Colilert analysis or filtered for the Draft Method C qPCR assay within six hours 

of collection.  

Inland Lake Beaches: 100 mL samples were collected in 125 mL Security-Snap™ BacT 

(Thermofisher Scientific) sterile polypropylene bottles at each of the left, center, and right sample 

sites (Figures S3.1 – S3.5). The three 100 mL samples were composited in the lab into a sterile 500 

mL HDPE bottle (Microtech Scientific), totaling 300 mL of a composite sample for each beach. 

One-100 mL aliquot was used for immediate Colilert analysis and two-100 mL aliquots were filtered 

for qPCR analysis then stored at −80°C for analysis at later date. Overall, five composite samples 
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from each of the fourteen inland lake beaches (Table 3.1) (n = 70) were analyzed. An ~50 mL 

sample also was collected from the center location of each beach in a Nalgene bottle for turbidity 

measurements.  

Lake Michigan Beaches: A 500 mL sample was collected in sterile, tamper sealed HDPE bottles 

(Microtech Scientific) at each of the north, center, and south locations (Figures S3.6 – S3.8) and 

prepared individually for analysis as described above for both Colilert (1 x 100 mL) and the Draft 

Method C qPCR assay (2 x 100 mL). Overall, 15 water samples per Lake Michigan beach (3 samples 

x 5 sampling events) were analyzed over the course of the study (Table 3.1) (n = 90). 

Environmental Variables 

Eight environmental variables (EVs) were recorded for each beach during each sampling 

event to assess its impact on E. coli concentrations. They included: turbidity (NTU), wind speed 

(mph), air and water temperature (°C), number of birds, whether birds were present or absent, time 

(h) since the last rain fall, of any amount, and the amount of rain during the last rainfall (inches). 

Most variables were included on the Great Lakes Beaches Routine On-Site Sanitary Surveys 

(https://www.epa.gov/sites/production/files/documents/greatlakes_onsite.pdf), except for birds 

present/absent, as part of the beach monitoring program protocol. Wind speed, air and water 

temperature and samples for turbidity were collected from or measured at the center sample site. 

Bird counts were performed by visual observation as samplers walked from the center sampling 

point towards the north/right or south/left sampling points and counted the number of birds 

observed on the beach and in the water within the swim area (U.S. EPA 2008). Samplers would 

report the number of birds to the person at the center location and all birds observed were tallied 

and recorded on the Sanitary Survey. Wind speed and air temperature were measured with an 

anemometer by holding it above the sampler’s head for approximately 10 s and recording the 

highest reading of wind speed and, once a consistent temperature was seen, air temperature.  
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Table 3.1 Lake type, beach name, location, and sampling event dates (month/day) in this study. 

Lake Type Beach Name Location Sample Dates  

Inland Blue Lake County Park Big Blue Lake 7/11, 7/16, 7/25, 7/30, 8/6 

 Duck Lake State Park Duck Lake 6/6, 6/11, 6/18, 6/25, 7/2 

 Fox Lake Park Fox Lake 7/11, 7/16, 7/25, 7/30, 8/6 

 Harbor Towne Beach Muskegon Lake 6/4, 6/12, 6/19, 6/26, 7/5 

 Maple Park White Lake 7/11, 7/16, 7/25, 7/30, 8/6 

 Mona Lake Park Mona Lake 6/4, 6/12, 6/19, 6/25, 7/5 

 Moore County Park Half Moon Lake 6/13, 6/20, 6/27, 7/9, 7/19 

 Muskegon State Park Channel 
Campground 

 
Muskegon Lake 

 
7/12, 7/18, 7/24, 7/31, 8/7 

 Padley Park West Lake 7/11, 7/16, 7/25, 7/30, 8/6 

 Ross Park Mona Lake 6/4, 6/12, 6/19, 6/26, 7/5 

 Sunset Beach Wolf Lake 6/13, 6/20, 6/27, 7/9, 7/19 

 Twin Lake Park Twin Lake 7/11, 7/16, 7/25, 7/30, 8/6 

 Watersports Park Muskegon Lake 7/12, 7/18, 7/24, 7/31, 8/7 

 Wolf Lake County Park Wolf Lake 6/13, 6/20, 6/27, 7/9, 7/19 

Lake Michigan Meinert County Park  6/6, 6/11, 6/18, 6/25, 7/2 

 Old Channel  7/11, 7/16, 7/25, 7/30, 8/6 

 Pere Marquette  7/12, 7/18, 7/24, 7/31, 8/7 

 Pioneer Park  6/6, 6/11, 6/18, 6/25, 7/2 

 PJ Hoffmaster Campground Beach  6/4, 6/12, 6/19, 6/26, 7/5 

 PJ Hoffmaster Public Beach  6/4, 6/12, 6/19, 6/26, 7/5 

 

Anemometer instructions directed measurements to be taken in the shade, however no 

shade was available at most center sampling sites thus for consistency, all readings were recorded at 

the center location regardless of the availability of shade. Water temperature was measured at knee 

depth with a thermometer (Component Design Northwest, Inc. DTQ450X) held near the surface of 

the water until a steady reading was observed. Turbidity samples were transported to the lab on ice 

and measured with a turbidimeter according to the manufacturer’s instructions following analysis of 

three NTU standards (0, 10, and 100 NTU) as a quality control measure (Thermo Scientific Orion 

AQUAfast AQ4500). Time since the last rain and rain amounts were recorded from individual 
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weather stations (www.wunderground.com) chosen based on nearness to a beach and, in all 

instances except one, was the same throughout the sampling season (Table S3.1).  

E. coli Quantification 

 Colilert: The composited inland lake beach samples and north, center, south Lake Michigan 

samples were all analyzed within six hours of collection using Colilert (Method 9233 B) (Rice et al., 

2012). In accordance with this method, a Colilert reagent packet was emptied into and dissolved in 

100 mL of water sample. The solution was poured into a Quanti-Tray and incubated for 18 – 22 h at 

35°C. The Quanti-trays were then removed from the incubator and exposed to ultraviolet light. 

Based on the total number of fluorescing wells in the tray, E. coli concentrations were calculated and 

recorded as MPN. A more in-depth description of this method is provided in Kinzelman et al. 

(2005) and on the IDEXX website (www.idexx.com).  

qPCR: Each composited inland lake beach sample and the three individual Lake Michigan 

samples per beach were analyzed according to the Draft Method C qPCR assay described in 

Sivaganesan et al. (2019) which uses TaqMan™ chemistry and the EC23S857 region of the 23S 

rRNA gene (Chern et al., 2011). Briefly, 100 mL of sample was filtered through 0.45 µm pore 

polycarbonate filter seated on a sterile disposable filtration unit (Pall Corporation, Puerto Rico, 

MicroFunnel™ Filter Funnel). The filters were folded four times and added to a 2.0 mL sterile semi-

conical, screw-cap microcentrifuge tube containing 0.3 g (± 0.01 g) of glass beads. Working within a 

laminar flow hood, 600 µL of extraction fluid consisting of AE buffer with 0.2 µg/mL salmon 

(sketa) DNA was added to each extraction tube, tightly sealed then bead milled for 1.0 min at 5,000 

rpm. The sketa DNA served as a sample processing control (SPC) to ensure the qPCR reaction 

occurred as expected. Because a known concentration of sketa DNA was added to each sample, a 

specific range (18.58 – 22.01) of cycle threshold (Ct) values was expected, and required, for 

designated Draft Method C quality control parameters to be met (Sivaganesan et al., 2019). The 
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extraction tubes were then centrifuged for 5 min at 12,000 x g and ~ 400 µL of the crude DNA 

extract was transferred into a correspondingly labeled sterile 1.7 mL low retention micro-centrifuge 

tube. The crude extract was centrifuged for 1 min at 12,000 x g, then ~ 100 µL of clarified 

supernatant was transferred to a second sterile 1.7 mL centrifuge tube. Tubes of clarified 

supernatant were then moved to a second laminar flow hood and set aside until sketa and E. coli 

Master Mixes (MM) were prepared (see chapter 2, section 2.3). Half of the 96-wells in the qPCR 

plate were filled with 20 µL of E. coli MM and the other half were filled with 20 µL of sketa MM. 5 

µL of recreational water sample extracts were analyzed in triplicate using both the E. coli and sketa 

MM. Three separate negative (blanks) and positive (calibrator) controls, and a No Template Control 

(NTC) were analyzed in duplicate, on each tray of samples with E. coli and sketa MM. Once MM, 

samples, and quality controls were added, the plate was sealed and analyzed on a StepOnePlus™ 

Applied Biosystems thermocycler instrument using the StepOne™ Software (v2.3). Thermocycling 

consisted of an initial ‘holding stage’ (50.0°C, 2 min; 95.0°C, 10 min) followed by 40 cycles of DNA 

denaturation and primer/probes annealing (95.0°C, 15 s; 56.0°C, 1 min). At the end of each of the 

40 cycles, fluorescence was measured by the instrument. The fluorescence threshold, or the level of 

fluorescence in which the signal rises above the background level, was manually set to 0.03 ΔRn and 

baseline cycles were set to AUTO determination (Sivaganesan et al., 2019). Instrument generated Ct 

values for water samples and quality control parameters were exported and entered in a U.S. EPA 

provided Draft Method C Excel Workbook where E. coli concentrations (log10Copies/5 µL) were 

calculated, provided all quality control parameters were met. log10Copies/5 µL were then converted 

to log10Copies/100 mL to make the Colilert and qPCR quantification methods comparable. There 

were nine Lake Michigan beach samples whose sketa Ct values did not pass specified acceptance 

criteria. In these cases, the stored duplicate filter was extracted, and the crude extract was filtered 

through a OneStep™ PCR Inhibitor Removal Kit (Zymo Research) column, then re-analyzed with 
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the Draft Method C qPCR assay. The inhibitor removal kit does not impact dilution ratios although 

it is thought that it may bind some DNA within the column resulting in a lower measured 

concentration. The log10Copies/100 mL results from five of the nine re-analyzed samples were used 

in statistical analysis, while four were unusable as the filter blank acceptance criteria was not met (Ct 

> lower limit of quantification as given in the Draft Method C Excel workbook) (Sivaganesan et al., 

2019). All filtered qPCR samples were analyzed within 6 months after storage. 

Statistical Analysis 

It was assumed that the variation in EVs between north, center, and south sample locations 

at the same beach was negligible for Lake Michigan beaches, therefore the EV value recorded at the 

center sampling site was used for all three sample locations for analysis. Additionally, repeated 

measures statistical analysis was unnecessary because E. coli concentrations vary greatly from day to 

day and even hour to hour (Whitman and Nevers, 2004; Wyer et al., 2018) thus our weekly samples 

could be treated as independent of each other. 

Kaplan-Meier distribution curves (KM) (Kaplan and Meier, 1958), a survival analysis 

statistical method, were used to analyze our EV data with respect to the E. coli concentration. This 

method allows all data to be included in analysis, particularly E. coli measurements whose values 

were determined to be below the instrument or method limit of quantification (LOQ), also called 

“left censored” data. For the purposes of our study, E. coli concentrations in the units of 

log10(MPN/100 mL) for Colilert and log10(Copies/100 mL) for qPCR were used in place of the 

traditional “time” variable, and the method or instrument LOQ was the “event”. Colilert results 

recorded as < 1 MPN were below the LOQ and therefore considered a censored observation; qPCR 

results below 246 copies/100 mL (2.391 log10Copies/100 mL) were considered censored. 

EVs were categorized into two or three categories (e.g. “Low”, “Medium”, or “High”) 

(Table 3.2) chosen to have at least 10 non-censored observations per group. KM distribution curves 
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were then generated using the categorized groups and E. coli concentrations from recreational water 

samples. For EVs categorized into three groups, KM curves were statistically compared with a log-

rank trend test (Klein and Moeschberger 2006, section 7.4; Machin et al., 2006 section 3.5). The log-

rank trend test tests the null hypothesis that the E. coli concentration distributions of the categorized 

EVs are equal against the alternative that there is a designated ordering among the KM curves. For 

example, if K1(x), K2(x), and K3(x) are the KM curves (as functions of concentration x) for the low, 

medium, and high categories of a particular EV, then the null hypothesis of the trend test is K1(x) = 

K2(x) = K3(x) for all concentrations x, and the “increasing form” of the alternative hypothesis is 

K1(x) ≤ K2(x) ≤ K3(x) for all x, with the inequality being strict (i.e., “<” instead of “≤”) for at least 

one concentration and at least one pair of KM curves. The test outcome does not specify which KM 

distribution curve relationship is statistically different, just that a statistical difference in distribution 

curves was detected. For the bird present/absent and the method and lake type comparisons, a two-

sample one-sided log-rank test (Hollander et al., 2013) (Ch. 11.7; p. 594 – 597) was used. Output 

from the log-rank test were used to calculate the original test statistic prior to it being squared for 

the chi-squared p-value in order to perform one-sided statistical analyses. These comparisons were 

performed to identify EVs that exhibited a statistically significant impact (α = 0.05) on E. coli 

concentrations quantified with both methods (Colilert and qPCR) for inland and Lake Michigan 

beaches separately. All statistical analyses were performed using R Software (v3.5.2; R Core Team, 

2018); survival analysis packages were “survival” (v2.44-1.1; Therneau, 2015) and “survMisc” (v0.5.5; 

Dardis, 2018). 
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Table 3.2 Categorized environmental (explanatory) variable ranges for Kaplan-Meier distribution 
curves. Instances where the two lake types grouping range varied, they were differentiated as:  IL = 
inland lake range; LM = Lake Michigan range. 

Environmental Variable Category Range 

Turbidity (NTU) Low ≤ 1.00 

 Medium  
IL: 1.01 – 1.50 
LM: 1.01 – 1.99 

 High 
IL: ≥ 1.51 
LM: ≥ 2.00 

Wind Speed (mph) Low ≤ 2.0 

 Medium 2.1 – 4.9 

 High ≥ 5.0 

Air Temperature (°C) Low ≤ 21.1 

 Medium 
IL: 21.2 – 25.0 
LM: 21.2 – 24.9 

 High 
IL: ≥ 25.1 
LM: ≥ 25.0  

Water Temperature (°C) Low 
IL: ≤ 23.9 
LM: ≤ 15.0 

 Medium 
IL: 24.0 – 26.6 
LM: 15.1 – 22.0 

 High 
IL: ≥ 26.7 
LM: ≥ 22.1 

Bird Count Low 
IL: ≤ 1 
LM: ≤ 3 

 Medium 
IL: 2 – 5 
LM: 4 - 20 

 High 
IL: ≥ 6 
LM: ≥ 21 

Bird Presence Present ≥ 1 

 Absent 0 

Time Since Last Rain (h) ≤ 24 ≤ 24 

 25 – 72 25 – 72 

 ≥ 72 ≥ 72 

Rain Amount (inches) Low ≤ 0.10 

 Medium 0.11 – 0.24 

 High ≥ 0.25 

 

The limitations of R-Software prevent it from performing survival analysis on left-censored 

data, like the data in our study, therefore trend tests and two-sample log-rank tests were carried out 
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on the ‘flipped’ E. coli concentration data set which is achieved by reversing, or ‘flipping’, the data by 

subtracting all measurements—E coli concentrations in our study—by an arbitrary number higher 

than the maximum observed value (Gillespie et al., 2010; Helsel, 2011; Dinse et al., 2014). Its 

primary benefit for our purposes is that it allows information from data below the LOQ to be 

included in the statistical analysis in a statistically rigorous way simply by changing data from left- to 

right-censored. All KM distribution curves presented below are based on the ‘unflipped’ or original 

E. coli concentration data scale.  

3.4 Results 

Trend tests of categorized EV on their corresponding KM distribution curves were tested in 

the same order for inland lake and Lake Michigan beaches and for both E. coli quantification 

methods (Colilert and qPCR) (see below). As previously mentioned, KM distribution curves were 

plotted on the original concentration scale (x-axis). Only KM distribution curves of categorized EVs 

where a statistically significant ordered difference was detected in the tested trend were shown 

below. Select statistically non-significant KM distribution curves were included in the supplemental 

material when referenced and all p-values for categorized EV curve comparisons are listed in Table 

S3.2. 

Environmental Variables 

Turbidity 

The turbidity trend tested was ‘low < medium < high’ with respect to the E. coli 

concentration distribution. Specifically, the high turbidity category was hypothesized as having the 

greatest E. coli concentration distribution based on the original or ‘unflipped’ concentration scale.  

Categorized turbidity KM distribution curves for E. coli concentrations measured with Colilert at 

inland lake beaches were statistically significantly ordered (p = 0.035) (Figure 3.1a) with respect to 

the concentration distributions, however they did not follow the predicted order. For example, the 
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inland lake medium turbidity category (Figure 3.1a) had the highest E. coli concentration along the x-

axis at a probability of 0.5 (log10 = 1.5 MPN/100 mL) indicating that the medium category had a 

higher distribution of E. coli concentrations than both the low (log10 = 0.7 MPN/100 mL) and high 

(log10 = 1.1 MPN/100 mL) groups. E. coli measured with qPCR at inland lake beaches did not result 

in statistically significant ordering (p = 0.606) based on turbidity.  

Lake Michigan beaches also had statistically significantly ordered turbidity with respect to E. 

coli measured with Colilert (p < 0.001) (Figure 3.2a) and with qPCR (p < 0.001) (Figure 3.2b). The 

evidence to reject the null hypothesis at Lake Michigan beaches was stronger because the trend 

tested on the KM distribution curves with respect to E. coli concentration distributions was the same 

as that plotted (low < medium < high) (Figures 3.2a and 3.2b), where increasing turbidity was 

associated with increasing E. coli concentrations. Whereas, the order seen in the Figure 3.1a for 

inland lake beaches suggests a ‘low < high < med’ trend. Thus, turbidity had statistically significant 

impact on E. coli distributions when quantified with Colilert at inland lake beaches, albeit the trend 

observed was different than that tested. A statistically significant impact on E. coli measured with 

both methods at Lake Michigan beaches was observed. 

Wind Speed 

An increasing trend was tested for wind speed (‘low < medium < high’) with respect to the 

E. coli concentration distribution on the original concentration scale. Inland lake KM distribution 

curves of wind speed categories and E. coli quantified with Colilert were statistically significantly 

ordered (p = 0.018, Figure 3.1b), but not when measured with qPCR (p = 0.801). Therefore, wind 

speed impacted E. coli concentrations measured with Colilert but not qPCR at inland lake beaches. 
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    a.                                                                          b. 

     
  c.                                                                             d.  

     
   e.                                                                              f.     

    
 
Figure 3.1 Inland lake beaches categorized environmental variables Kaplan-Meier distribution 
curves with 95% point-wise confidence intervals. X-axes are E. coli concentration quantified with 
Colilert (log10(MPN/100 mL) or qPCR (log10(copies/100 mL) on the original concentration scale; y-
axis is the probability that a random sample selected from the data set will be less than or equal to 
the concentration along the x-axis. 
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g.                                                                                h. 

   

Figure 3.1 (Continued) Inland lake beaches categorized environmental variables Kaplan-Meier 
distribution curves with 95% point-wise confidence intervals. X-axes are E. coli concentration 
quantified with Colilert (log10(MPN/100 mL) or qPCR (log10(copies/100 mL) on the original 
concentration scale; y-axis is the probability that a random sample selected from the data set will be 
less than or equal to the concentration along the x-axis. 
  
a.                                                                           b.  

    
Figure 3.2 Lake Michigan beaches categorized environmental variables (EVs) Kaplan-Meier 
distribution curves with 95% point-wise confidence intervals. X-axis is the log base-10 of the 
observed E. coli concentration, on the original concentration scale, measured with either Colilert 
log10(MPN/100 mL) or qPCR log10(copies/100 mL); y-axis is the probability that the concentration 
of a random sample selected from the data set will be less than or equal to the log10(concentration) 
on the x-axis.  
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c.                                                                            d. 

    
   e.                                                                           f.  

         
g.                                                                           h.  

    
Figure 3.2 (Continued) Lake Michigan beaches categorized environmental variables (EVs) Kaplan-
Meier distribution curves with 95% point-wise confidence intervals. X-axis is the log base-10 of the 
observed E. coli concentration, on the original concentration scale, measured with either Colilert 
log10(MPN/100 mL) or qPCR log10(copies/100 mL); y-axis is the probability that the concentration 
of a random sample selected from the data set will be less than or equal to the log10(concentration) 
on the x-axis.  
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  i.                                                                            j.  

    
k.  

 
Figure 3.2 (Continued) Lake Michigan beaches categorized environmental variables (EVs) Kaplan-
Meier distribution curves with 95% point-wise confidence intervals. X-axis is the log base-10 of the 
observed E. coli concentration, on the original concentration scale, measured with either Colilert 
log10(MPN/100 mL) or qPCR log10(copies/100 mL); y-axis is the probability that the concentration 
of a random sample selected from the data set will be less than or equal to the log10(concentration) 
on the x-axis.  

 

In contrast, Lake Michigan beaches exhibited a statistically significant wind speed order for 

E. coli concentration distributions measured with both Colilert (p = 0.002, Figure 3.2c) and qPCR (p 

= 0.019; Figure 3.2d). There was some crossing of the medium and high category KM distribution 

curves in Figures 3.2c and 3.2d which affects the power of the tested trend (Klein and Moeschberger 

2006, section 7.6), but the low category had a reduced E. coli concentration distribution throughout 
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the range.  This observation suggested that wind speed, particularly lower wind speeds, influenced E. 

coli densities measured with either method at Lake Michigan beaches.  

Air Temperature 

 The trend tested on air temperature categories was inversely ordered (high < med < low) 

with respect to E. coli distributions on the original scale. Meaning, we expected that high air 

temperatures would be associated with the lowest E. coli concentration distribution. A statistically 

significantly order was not detected for either method of E. coli quantification at inland lake (Colilert: 

p = 0.684; qPCR: p = 0.364) or Lake Michigan beaches (Colilert: p = 0.418; qPCR: p = 0.478). Thus, 

the way in which we categorized and ordered air temperature did not have a significant effect on E. 

coli measured with Colilert or qPCR at either type of lake. 

Water Temperature   

 The trend test on KM distribution curves of categorized water temperatures at inland lake 

beaches were not statistically significantly ordered for Colilert (p = 0.343) or qPCR (p = 0.942) 

indicating water temperature at inland lake beaches did not significantly impact E. coli densities 

measured in this study. Trend tests for Lake Michigan beaches on the other hand, detected a 

significant order (Colilert: p < 0.001; qPCR: p = 0.002) (Figures 3.2e and 3.2f, respectively). 

However, the order of the plotted categories were directly, not inversely, related to E. coli quantities 

(Figures 3.2e and 3.2f) as predicted, where lower water temperatures had relatively reduced E. coli 

concentration distributions.  

Bird Count and Presence/Absence 

 We hypothesized that the three bird count categories would directly impact E. coli 

concentration distributions (low < medium < high) in that low bird counts would have the lowest 

E. coli concentration distribution. Bird count KM distribution curve categories at inland lake beaches 

were statistically ordered for E. coli quantification with Colilert (p < 0.001) (Figure 3.1e) and with 
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qPCR (p = 0.004) (Figure 3.1d). Similarly, the number of birds at Lake Michigan beaches had a 

significantly ordered impact on E. coli concentrations measured with Colilert and qPCR (both p < 

0.001) (Figures 3.2g and 3.2h, respectively). However, the category trend shown for quantification 

with the Colilert method (Figure 3.2g) was different than predicted. Both methods of quantification 

at Lake Michigan beaches had some degree of KM distribution curve crossing between the medium 

(4 – 20 birds) and high (≥ 21 birds) categories, but the low category had a reduced E. coli 

concentration distribution than the medium and high categories indicating that Lake Michigan 

beaches with ≤ 3 birds had a lower probability of high E. coli densities.  

Regarding the presence or absence of birds at beaches, we tested the null hypothesis that the 

KM distribution curve of E. coli concentrations at beaches where birds were present (≥ 1) was equal 

to concentrations at beaches without birds, with respect to the E. coli concentration distribution, 

against the alternative that beaches without birds would have lower E. coli densities than beaches 

with birds. Both methods of quantification at inland lake (Colilert: p = 0.015, z = −2.18; qPCR: p = 

0.012, z = −2.24) (Figures 1e and f) and Lake Michigan beaches (both methods p < 0.001, Colilert: 

z = −4.12; qPCR: z = −4.04) (Figures 3.2i and 3.2j) resulted in the absence of birds exhibiting a 

significantly lower E. coli concentration distribution than when birds were present. Our findings 

strongly suggest that birds play a substantial role in E. coli concentrations at both lake types and with 

either method of quantification. 

Hours Since the Last Rain  

The trend interval tested was (>72 h) < (25 – 72 h) < (< 24h), with respect to the 

distribution of E. coli based on the original concentration scales, where E. coli was predicted to be the 

lowest when rain proceeded sampling more than 72 h (> 3d). Inland lake beach KM distribution 

curves of the ordered time categories were marginally significantly ordered when Colilert was used (p 

= 0.057) (Figure 3.1h) and not statistically significantly ordered when the qPCR quantification 
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method was used (p = 0.658). Although the curves for the 25 – 72 h group and the < 24 h group 

had a considerable amount of crossing, the > 72 h group had the lowest Colilert measured E. coli 

concentration distribution (Figure 3.1h), partially supporting our hypothesis. The amount of time 

since the last rainfall did not affect E. coli concentrations at Lake Michigan beaches when measured 

with Colilert (p = 0.192) or qPCR (p = 0.099). Our results indicated that hours since the last rainfall 

may have significantly contributed to E. coli concentrations measured with Colilert but not with 

qPCR at inland lake beaches and not at Lake Michigan beaches. 

Amount of Rain  

 The tested trend for amount of rain with respect to the E. coli concentration distribution 

was ‘low < medium < high’. The inland lake beach KM distribution curves of the categorized rain 

amount were significantly ordered (p = 0.031) (Figure 3.1g) when measured with Colilert but not 

with qPCR (p = 0.887). However, the Colilert method result should be interpreted with some 

caution because a substantial amount of crossing can be seen between all three KM distribution 

curves (Figure 3.1g) with the high category showing some indication of having the highest E. coli 

concentration distribution. Lake Michigan KM distribution curves for categorized rain amounts and 

E. coli measured with Colilert were not significantly ordered (p = 0.613). The KM curves of 

categorized rain amounts and E. coli measured with qPCR were statistically significantly ordered (p = 

0.035). Noticeably, the opposite trend of what was expected when E. coli was measured with qPCR 

at Lake Michigan beaches is seen; high amounts of rain were associated with the lowest E. coli 

concentration distribution and low rain amounts had the highest concentration distribution (Figure 

3.2k). Rain amounts were recorded and tested independently from the time since the last rain. 

Therefore, if rain occurred more than 72 h before sampling it would have the same impact on this 

category as rainfall within 24 h of sampling. 
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Method Comparison  

We hypothesized that E. coli concentrations measured with Colilert would be lower than 

those measured with qPCR at both inland lake and Lake Michigan beaches because qPCR measures 

culturable and nonculturable E. coli DNA whereas Colilert only quantifies culturable E. coli. The KM 

distribution curve of E. coli quantified with Colilert was statistically lower than the qPCR method 

KM distribution curve (both p < 0.001; Inland: z = −6.33; Lake Michigan: z = −7.56) (Figures 3.3a 

and 3.3b) with respect to their E. coli concentrations on the original scale. This is further supported 

by the large area of no overlap between the two methods’ KM distribution curves with the qPCR 

curve (blue dotted) exhibiting a higher E. coli concentration at 0.5 probability than the Colilert KM 

curve (green solid) for both lake types. Furthermore, the difference in the two censoring values, 

Colilert at 1 MPN/100mL (log10 = 0 MPN/100mM) and qPCR at 246 copies/100mL (log10 = 2.391 

copies/100 mL), is visible by the lack of plotted qPCR E. coli observations before 2.391 along the x-

axis. 

a.                                                                           b. 

    
 
Figure 3.3 Method comparison of Kaplan-Meier distribution curves with 95% point-wise 
confidence intervals for inland lake (a) and Lake Michigan (b) beaches. X-axis is the log base-10 of 
the observed E. coli concentration, on the original concentration scale, measured with Colilert 
(log10(MPN/100 mL)) or qPCR (log10(Copies/100 mL)). Y-axis is the probability that the 
concentration of a random sample will be less than or equal to the log10(concentration) on the x-axis. 
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Lake Type Comparison 

 The null hypothesis that the KM distribution curves of the two lake types were equal was 

tested against the alternative that Lake Michigan beaches had lower E. coli concentration 

distributions than the inland lake beaches. Although the one-sided log-rank test did not support our 

hypothesis when E. coli was quantified with Colilert (p = 0.862, z = 1.09) (Figure 3.4a) or qPCR (p = 

0.946, z = 1.61) (Figure 3.4b), the resulting inflated p-values were an indication that the reverse was 

more likely true in that E. coli concentrations at inland lake beaches were lower than those at Lake 

Michigan beaches. Examination of Figures 3.4a and 3.4b supported this theory since the Lake 

Michigan beaches KM distribution curve had a higher E. coli concentration distribution than the 

inland lake beaches. 

 a.                                                                          b.  

  
Figure 3.4 Kaplan-Meier distribution curves with 95% point-wise confidence intervals of inland 
lake beaches compared to Lake Michigan beaches when E. coli was quantified with Colilert (a) and 
qPCR (b). Log-transformed E. coli concentration are along the x-axis based on the original 
concentration scale; y-axis is the probability that the concentration of a random sample will be less 
than or equal to the log10(concentration) on the x-axis.  
 
 

3.5 Discussion 

The beach environment is a dynamic system affected by a multitude of environmental 

factors that exhibit both spatial and temporal variability. The factors examined in our study included 

turbidity, wind speed, air and water temperature, the number of birds present, whether birds were 
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present or absent, the number of hours prior to sampling that rain occurred, and rain amount. Using 

KM distribution curves, we were able to identify factors that significantly contributed to E. coli 

concentrations in four scenarios: two quantification methods (Colilert and qPCR) at beaches on two 

lake types (inland lake and Lake Michigan). Of the eight factors, only the number of birds and the 

presence/absence of birds significantly affected concentrations at both lake types and with both 

quantification methods. Turbidity and wind speed significantly influenced E. coli concentrations in 

three of the four scenarios tested. Two of the tested scenarios detected a significant impact by rain 

amount and water temperature, and air temperature and time since the last rain had no impact on E. 

coli concentrations for any tested scenario. 

Environmental Variables 

Turbidity 

When water, potentially contaminated with fecal matter, is carried downstream by tributaries 

and discharges into the beach environment, turbidity increases along with E. coli concentrations. 

Three of the six Lake Michigan beaches had various sized tributaries near or within the swim area, 

while the inland lake beaches did not, which may have caused the trend in increasing turbidity to be 

more pronounced at Lake Michigan beaches than beaches on inland lakes. Turbidity also can be 

elevated from disturbance of the lake bottom when wave action is intense, which increases the 

likelihood that bacteria living or settled in the sand is resuspended into the water column (LaLiberte 

and Grimes, 1982; Ishii et al., 2007). Our study supports this since the wave action on Lake 

Michigan is more intense, resulting in higher turbidity measurements and E. coli measured with both 

quantification methods were found to be influenced by turbidity. Furthermore, without the intense 

wave action to resuspend dead E. coli cells in the water column, E. coli concentrations quantified with 

qPCR at inland lakes would be less impacted, as was observed in our study. Finally, turbidity can 

influence the amount of solar radiation penetrating the water column which can kill off bacteria cells 
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by solar inactivation (Weiskerger and Whitman et al., 2018). Our data showed that inland lake beach 

E. coli levels were significantly impacted by turbidity when measured with Colilert but not qPCR, 

supporting the solar inactivation theory because inactivation of E. coli would affect Colilert results 

and not qPCR due to the differences in their methodology (i.e. measuring culturable only versus 

culturable and nonculturable cells/DNA). Since turbidity was found to significantly influence E. coli 

quantities in three of the four scenarios tested and has been a good predictor of FIB measured with 

Colilert and qPCR using hydrometeorological models in other studies (Byappanahalli et al., 2010), 

we recommend including it as a factor in predictive models for forecasting microbial water quality in 

recreational water.  

Wind speed 

 Wind speed impacts wave action in a similar manner as turbidity. Increasing wind speeds 

produce larger waves that break in the foreshore area of a beach. During periods of high-winds and 

intensified wave activity, waves breaking along the shoreline facilitate E. coli from bird feces or 

bacteria stored in the sand being washed into the beach water (Alm et al., 2003). E. coli 

concentrations at the Lake Michigan beaches in our study were affected by wind speed when both 

methods of quantification were used, whereas wind speed only influenced bacteria quantified with 

Colilert at inland lake beaches. Lake Michigan beaches experience higher wind speeds and higher 

energy waves than inland lake beaches thereby causing more bacteria, culturable and non-culturable, 

stored in the sand to enter the water. Both lake types were impacted by wind speed, although 

differently depending on the quantification method, therefore it is our recommendation that models 

used to predict microbial water quality should include wind speed as a factor. This supports the 

work by Haack et al. (2013) where wind speed was identified as a significant variable in all models 

tested.  

Air and Water Temperature  
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We predicted that warmer air was connected to stronger solar radiation on less cloudy days 

resulting in more solar inactivation of E. coli within the water column reducing culturable but not 

nonculturable E. coli. However, air temperature did not significantly impact E. coli concentrations at 

inland or Lake Michigan beaches. This is most likely because air temperature and solar radiation are 

not necessarily directly related therefore, measuring the amount of light penetrating the water 

column or measuring solar radiation directly would likely be better predictors. One possible variable 

to use is photosynthetically active radiation (PAR) which measures light at 400 – 700 nm, however 

shorter wavelengths were more effective at killing E. coli cells (Vermeulen et al., 2008).  

Water temperature impacted E. coli concentrations quantified at Lake Michigan beaches 

regardless of the quantification method, but the trend was in the opposite direction of what we 

expected. E. coli quantities can decrease as the day proceeds (Whitman et al., 2004) and, since most 

of our samples were collected between 8 am and noon, peak insolation may not have occurred until 

later in the day. Our results suggest that water temperature had more of an impact on E. coli levels 

than air temperature, particularly at Lake Michigan beaches. For this reason, we recommend using 

water temperature in predictive models for monitoring beach water quality.  

Bird Abundance 

Unquestionably, birds impact the microbial water quality at the beaches where they gather. 

Studies investigating before and after bird mitigation with dogs have seen significant reductions in E. 

coli concentrations measured with culture and qPCR methods (Converse et al., 2012). Our research 

included two ways of comparing beaches with or without birds. There was strong evidence in all 

tested scenarios that bird count categories and the presence or absence of birds significantly 

impacted E. coli concentrations at both lake types and with both quantification methods. In 

agreement with our findings, Kelly et al. (2018) saw that beaches where birds were present had a 

statistically significantly higher number of exceedances compared to beaches without. One 
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consideration regarding their study was that the number of beaches with birds outnumbered those 

without by almost one-hundred times and therefore may have biased their results. Our study on the 

other hand had several sampling events where birds were not seen at inland lake and Lake Michigan 

beaches and still had the same outcome. Because birds are a predictor of E. coli levels, we feel it is 

important that censored E. coli concentrations paired with bird counts are considered in predictive 

models to capture all facets of the system. For example, on two sampling occasions Pere Marquette 

beach had over 100 birds present, and the E. coli results were below the LOQ. Our use of survival 

analysis allowed the inclusion of these data when other current predictive models would not have. 

Also to be noted is the way in which we categorized our bird count categories could drive our results 

because the high category had a much larger range than the low or medium. However, the results of 

the binary present/absent KM distribution curves provide clear support that birds impact E. coli 

levels in the water at a beach. These conclusions substantiate including either the number of birds as 

a variable or, more simply, whether birds are present or absent in beach closure predictive models in 

addition to including censored data paired with the environmental variable observation. 

Rainfall 

Contrary to other studies which have shown that rain impacts microbial water quality 

(Dwight et al., 2011; Yakirevich et al., 2013), the tested trends for the two categorized rainfall EVs 

analyzed in this study did not have considerable impacts on E. coli concentrations at inland lake or 

Lake Michigan beaches. The expectation was that as time increased between a rain and sampling 

event, the E. coli concentration would decrease. Although rainfall and E. coli density impacts were 

not statistically significant based on the ordered groups in our analysis, there were some patterns that 

emerged. For instance, the > 72 h since the last rainfall KM curve where E. coli was measured with 

Colilert (Figure 3.1h) or qPCR (Figure S3.10) at inland lake beaches had the lowest E. coli levels, 

agreeing with our predictions. The same trend tested for Lake Michigan beaches revealed that the > 
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72 h category as being associated with the highest E. coli concentrations when either quantification 

method was used (Figure S3.11). We suspect these differences could be a result of the varying beach 

catchment areas of the two lake types. As previously discussed, inland lake beaches did not have 

large tributaries emptying stormwater into them like some beaches along Lake Michigan. Therefore, 

it was likely that inland lake beaches were more rapidly affected by rainfall than Lake Michigan 

beaches as it takes longer for the stormwater runoff to reach the Lake Michigan beach environment. 

Inland lakes also are inherently smaller and have less potential for dilution than Lake Michigan.  

Although our results did not show categorized rainfall as being significantly associated with E. coli 

quantities, we still advise it to be included in predictive models because multiple studies have 

identified rain as a good predictor of bacterial water quality exceedances (Dwight et al., 2011; Eregno 

et al., 2016; Staley et al., 2018). The lack of evidence in our study may simply be from the manner in 

which we categorized and tested rainfall or because the rain gauges were not situated directly on the 

beach.  

Method Comparison 

In addition to the improved result turn-around-time qPCR provides, qPCR methods 

quantify viable but non-culturable bacteria cells along with culturable cells. These viable but non-

culturable organisms can still be pathogenic (Pruzzo et al., 2002) and possibly become culturable 

under certain environmental conditions (Lleo et al., 2005). Therefore, the use of qPCR data can 

prevent encounters with some potentially harmful pathogenic E. coli in recreational water when 

Colilert results predict safe conditions. The strength of the detected significant difference between 

the two quantification methods in our study is reflected in the KM distribution curves of both lake 

types (Figures 3.2a & 3.2b) where a large separation is visible between the two methods. Our results 

support the implementation of a separate water quality criterion for the proposed Draft Method C 

qPCR assay because it is clear the two methods perform differently when quantifying E. coli. Our 



82 

 

findings also emphasize that models created for predicting E. coli concentrations must incorporate 

the quantification method being used because different quantification methods produce vastly 

different E. coli results. 

Lake Type Comparison 

Beach type, such as those along an open coast or situated within a bay, played a role in E. coli 

levels at beaches in Florida where lower concentrations were observed at the coastal beaches (Kelly 

et al., 2018). Although not an exact comparison to the freshwater lake types in our study, their open-

coast beaches are similar to the freshwater coastal beaches of Lake Michigan in that there are long 

stretches of open coast with no disruptions to the coastline. We hypothesized that E. coli densities in 

Lake Michigan beaches would be lower than those at inland lake beaches because stronger water 

currents cause a larger mixing effect within Lake Michigan, which in turn contributed to the dilution 

of fecal contaminates throughout the substantially larger water body. However, our Lake Michigan 

beaches were not associated with lower E. coli densities than inland lake beaches. In fact, the Lake 

Michigan beach KM distribution curves were associated with higher E. coli concentrations (Figures 

3.4a and 3.4b). One explanation for our results departure from our hypothesis is that with over 

1,600 miles (~2,600 km) of shoreline and a 176,007 km2 catchment area that can contribute water 

potentially contaminated with fecal matter, Lake Michigan has more tributaries and river outlets 

impacting its water quality than any inland lake tested. Tributaries can transport fecal contamination 

from upstream locations (Haack et al., 2013, Weiskerger et al., 2019) along with potentially 

pathogenic E. coli when upstream land has cattle pastures (Bradshaw et al., 2016) or highly 

developed areas lacking pervious surfaces (Molina et al., 2014). Although a conflicting study by the 

United States Department of Agriculture found no significant increase in E. coli found in runoff 

from fields after dairy compost application, the maximum E. coli concentration at all three types of 

agricultural fields tested did occur when compost had been applied (Harmel et al., 2010). Given that 
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there are hundreds if not thousands of tributaries within the Lake Michigan watershed, identifying 

those with considerably high E. coli concentrations, then taking steps to reduce the contamination 

would improve the microbial water quality at Lake Michigan beaches. Furthermore, microbial water 

quality predictive models should include tributaries and the plumes they produce as a factor because 

the plumes produced from water emptying at their outlets has the potential to impact E. coli along 

the coast (Nekouee et al., 2015).  

3.6 Conclusion and Future Studies 

The only EVs that performed the same for E. coli quantification method and lake type were 

related to the abundance or presence of birds. The remainder of the EVs analyzed differed in their 

impact on E. coli depending on the method used to measure it and the lake type. This was further 

supported by Haack et al. (2013) who used beach catchment delineation as a grouping variable and 

found no set of shared variables that were able to predict E. coli levels. EVs impact E. coli 

concentrations in drastically different ways at inland lake beaches compared to freshwater coastal 

beaches like those found on Lake Michigan, as our study shows. Therefore, our overall 

recommendation is that separate microbial water quality predictive models should be created based 

on the FIB quantification method being used to monitor water quality and the lake type. 

Additionally, analyzing E. coli or other FIB levels in beach sand samples alongside recreational water 

samples could improve model accuracy by providing a more complete picture of the possible 

sources of fecal contamination.  

E. coli is a commonly used indicator of fecal contamination to monitor for unsafe swimming 

conditions at beaches. Beaches with repeated bacterial exceedances can then use microbial source 

tracking (MST)—another emerging qPCR tool—to determine the source (i.e. human, dog, bovine 

etc.) of fecal contamination (Byappanahalli et al., 2015; Shanks et al., 2016; U.S. EPA 2019) and 

action can be taken to reduce the number of beach closures. Future studies also should use emerging 
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molecular methods to investigate specific pathogens to better understand the risk to recreators, like 

is being done for swimmer’s itch (cercarial dermatitis) (Rudko et al., 2018).  

Kaplan-Meier distribution curves—part of the survival analysis statistical methods suite— 

allowed us to incorporate all E. coli concentration data in analysis. This provides a more universal 

view of the system being studied than if these data were removed or replaced with a different value. 

These statistical methods can extend into other environmental studies such as those including 

nutrient data or FIB fate and transport models. Therefore, future studies should consider these types 

of statistical analyses when censored results occur. Our trend tests did not distinguish between the 

differences in EV groupings though. For example, turbidity categories at inland lake beaches 

measured with Colilert were statistically significantly ordered, but it is unknown what pair of 

categories was the driver in the difference. Future studies should employ higher levels of survival 

analysis, such as Cox Regression (Cox, 1972), to distinguish which categories are driving the impact 

on E. coli concentrations. 

Protecting recreators from unsafe swimming conditions is the primary objective for 

monitoring microbial water quality at beaches. What must be remembered, is that good water quality 

at beaches is not only important for recreational use, but that same water is often used as a drinking 

water source and for our food supply hence, safe beach water is connected to good water quality for 

all aspects of our life. 
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3.7 Supplemental Materials 

Supplemental Tables 

Table S3.1 Weather stations reporting to www.wunderground.com and the beaches whose rain data 
were recorded from it. Weather stations were selected based on proximity to the beach. 

Weather Station Associated Beach 

KMICONKL3/ 
KMIRAVEN5 

Moore County Park 

KMIMONTA1 Maple Park 

KMIMONTA2 Old Channel 

KMIMONTA5 Meinert County Park 

KMIMONTA7 Duck Lake State Park 

KMIMUSKE4 Mona Lake Park 

 Ross Park 

KMIMUSKE35 Sunset Beach 

 Wolf Lake County Park 

KMIMUSKE45 Pere Marquette 

 Harbor Towne 

KMINORTO8 PJ Hoffmaster Public 

 PJ Hoffmaster Campground 

KMINORTH13 Pioneer 

 Muskegon State Park North Channel 
Campground 

 Watersports Park 

KMITWINL5 Blue Lake County Park 

KMITWINL8 Twin Lake County Park 

KMITWINL9 Padley Park 

 Fox Lake Park 
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Table S3.2 Log-rank trend test and log-rank paired with two-sample test for censored data p-values 
and z-statistic, where appropriate, from comparisons of categorized environmental variable (EV) 
Kaplan-Meier distribution curves. Bolded values were statistically significantly different (α = 0.05). 

Lake Type Inland Lake Michigan 

EV Colilert qPCR Colilert qPCR 

Turbidity (NTU) 0.035 0.606 <0.001 <0.001 

Wind Speed (mph) 0.018 0.801 0.002 0.019 

Air Temperature (°C) 0.684 0.364 0.418 0.478 

Water Temperature (°C) 0.343 0.942 <0.001 0.002  

Number of Birds < 0.001 0.004 <0.001 <0.001 

Birds Present/Absent* 
0.015 

z = -2.18 
0.012 

z = -2.24 
<0.001 

z = -4.12 
<0.001 

z = -4.04 

Time Since Last Rain (h) 0.057 0.658 0.192 0.099 

Rain Amount (inches) 0.031 0.887 0.613 0.035 

*Tested birds absent < present 

Supplemental Figures



87 

 

 
Figure S3.1 Inland lake beaches within Muskegon County, MI (inset) included in this study. Lake names where beaches are located are in 
parentheses.  
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Figure S3.2 Blue Lake County Park (1), Fox Lake Park (2), and Padley Park (3) beach location on lake (yellow rectangle in left column) and 
sampling sites (right column).  
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Figure S3.3 Twin Lake County Park (4), Maple Park (5), and Duck Lake State Park (6) beach location on inland lake (yellow rectangle in 
left column) and sampling sites (right column).  



90 

 

 

 
Figure S3.4 Muskegon State Park North Channel Campground (7), Watersports Park (8), and Harbor Towne Beach location on inland 
lake (yellow rectangle in left column) and sampling sites (right column).   
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Figure S3.5 Mona Lake Park (10), Ross Park (11), and Sunset Beach (12) location on inland lake (yellow rectangle, left column) and 
sampling sites (right column). 
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Figure S3.6 Wolf Lake Park (13) and Moore County Park (14) beach location on inland lake (yellow rectangle, left column) and sampling 
sites (right column). 
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Figure S3.7 Lake Michigan beaches sampled for this study within Muskegon County, MI. 
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Figure S3.8 Meinert County Park (1), Old Channel (2), and Pioneer Park (3) beach location (yellow rectangle, left column) and sampling 
sites (right column). 
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Figure S3.9 Pere Marquette (4), PJ Hoffmaster Campground (5), and PJ Hoffmaster Public (6) beach locations (yellow rectangle, left 
column) and sampling sites (left column).
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Figure S3.10 Kaplan-Meier distribution curves of hours since the last rain and E. coli concentrations 
measured with qPCR at inland lake beaches with 95% point-wise confidence intervals. Non-
significant p-value (p = 0.658) indicates the tested trend did not significantly impact E. coli quantities 
measured with Colilert at inland lake beaches. Tested trend: (< 24 h) > (25 – 72 h) > (> 72 h); 
longer amount of time since the last rain would have lower E. coli concentrations. 
 

 
 a.                                                                               b.  

    
Figure S3.11 Kaplan-Meier distribution curves of hours since the last rain and E. coli concentrations 
measured with Colilert (a) and qPCR (b) at Lake Michigan beaches with 95% point-wise confidence 
intervals. Non-significant p-values indicate the tested trend did not significantly impact E. coli 
quantities. Tested trend: (< 24 h) > (25 – 72 h) > (> 72 h); longer amount of time since the last rain 
would have lower E. coli concentrations. 
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 : Extended Review of Literature and Extended Methodology 
 

4.1 Extended Literature Review 

Recreational waters, such as public beaches, lakes, and rivers, are an economic resource for 

the local community. A Forest Service’s National Survey on Recreation and the Environment 

(NSRE) report estimated that in 2008 approximately 61% of the United States’ (US) population over 

16 years of age participated in non-motorized water activities (i.e. swimming, snorkeling, visiting 

beaches) and almost 17% participated in canoeing, kayaking or rafting activities (Cordell, 2012). 

Furthermore, a single beachgoer will spend $13.13 within ten miles of the beach per visit (Murray et 

al., 2001), helping to support local businesses. Muskegon County is one of the communities that 

benefits from tourism. In 2016 approximately 1.7 million visitors traveled to Muskegon County and 

spent an estimated $244 million on leisure (B. Lukens, Community Development Director, 

Muskegon County Convention & Visitors Bureau, www.visitmuskegon.org, pers. comm.). One of 

the main tourist draws are the thirteen public beaches along the twenty-six miles of Lake Michigan 

shoreline and the fifteen public inland lake beaches that serve as places for recreation. On the other 

hand, a beach closure due to unacceptable water quality can result in lost tourism dollars. A one-time 

beach closure could cost, on average, $100,000 in lost revenue to businesses within a ten-mile radius 

of the closed beach (Jentes, 2000). Thus, the number of beach attendees in a single summer has the 

potential of adding up to millions of dollars invested in the community provided that the beaches 

remain open for use.  

Recreational waters are also a public health concern. It has long been known that swimming 

in contaminated water can lead to illness (Stevenson, 1953; Cabelli et al. 1982; Dufour, 1984; Wade 

et al., 2008). Several types of illnesses have been reported as being associated with recreational 

waters. Respiratory infections, gastrointestinal illnesses (GI), ear and skin symptoms were higher 
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among swimmers than non-swimmers, and ear infections were higher among swimmers who had 

their head underwater (Seyfried et al., 1985 (I); Colford et al., 2007; Wade et al., 2008). Also to 

consider is how contact with polluted water affects the health of different groups of people. For 

instance, people with compromised immune systems or elderly individuals may be more susceptible 

to health issues arising from contact with contaminated water. Additionally, children ages 10 and 

under are more greatly affected by contact (Wade et al., 2008). Therefore, it is important that water 

quality guidelines protect everyone from exposure to contaminated water. 

Testing recreational waters for fecal contamination is essential to public health, but the 

question of what organism to test for arises. There are numerous microbial pathogens associated 

with fecal contamination but testing for all of them would place a temporal and financial burden on 

the entities conducting the monitoring. Despite an early study showing that staphylococci were a better 

indicator of recreational water illnesses (Seyfried et al., 1985 (II)), the most commonly used fecal 

indicator bacteria (FIB) are total coliforms, fecal coliforms, Escherichia coli (E. coli) and enterococci 

(Meays et al., 2004). Of these, E. coli, a potentially pathogenic bacterium found in the intestines of 

endothermic (“warm-blooded”) animals (Whitman et al., 1999), is considered to be the best 

indicator microorganism for freshwater (Prüss, 1998). A meta-analysis of recreational water quality 

literature published from 1950 to 2003 reported most studies indicated E. coli surpassed enterococci as 

a FIB for predicting GI illness in freshwater than other bacterial indicators (Wade et al., 2003).  

E. coli is a well-studied FIB for recreational water monitoring. There are several routes 

through which it is believed to enter the beach environment: treated municipal wastewater discharge, 

untreated sewage during storm events due to combined sewer overflows, aging septic systems, 

agricultural runoff (Bradshaw et al., 2016), water vessel wastewater discharge, leakage from diapers 

on children, urban runoff (Molina et al., 2014), and as animal wastes from birds (Mathai et al., 2018), 
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dogs and other wildlife. Another possible introduction pathway for E. coli into the water column is 

from disturbed sand or sediment on the lake bottom when intense wave action occurs (Laliberte and 

Grimes, 1982; Staley et al., 2016). Sand in the foreshore area of the beach also can be an E. coli 

source as runoff from rain or waves carry E. coli stored in the sand towards the water (Whitman and 

Nevers, 2003; Alm et al., 2003; Ishii et al., 2007). Cladophora mats (Whitman et al., 2003; Quilliam et 

al., 2014) and submerged aquatic vegetation such as the invasive Eurasian watermilfoil (Myriophyllum 

spicatum) (Mathai et al., 2018), may also serve as introduction routes of E. coli intro recreational 

waters. Although the statistical methods used in the Mathai et al. study (2018), were unable to 

demonstrate the direction of E. coli movement; they assumed the bacteria moved from areas of 

higher to lower density (i.e. from the watermilfoil to the water column). Furthermore, tributaries that 

are near swim areas also may contribute E. coli as they carry storm water runoff into the beach area 

(Baral et al., 2018). Six years of hydrometeorological data were used to examine precipitation impacts 

on the coastal beaches of California and revealed peaks in precipitation levels, river discharge rates 

and bacteria quantities all happened concurrently (Dwight et al., 2011). Another study collected 

water samples downstream of a tarp-lined creek where high-water flow was simulated by releasing 

city water over the tarp. E. coli concentrations peaked when flow rates peaked, suggesting that E. coli 

stored in the benthos was resuspended in the water column during peak-flow, like that which occurs 

during rain events (Yakirevich et al., 2013); evidence that E. coli can be introduced into a beach 

through a contaminated tributary.  

Because the waters of public beaches may be contaminated with pathogenic bacteria, they 

should be routinely sampled and analyzed during the summer when attendance is highest. Federal 

and local governments provide guidance and administer programs for monitoring the water quality 

at public beaches. An amendment to the Clean Water Act in 1986, section 304(a) (1), implemented 



 105  

 

by the U.S. Environmental Protection Agency (U.S. EPA) set guidelines for bacterial densities in 

recreational waters. The guidelines, based on the research conducted by Cabelli (1982) and Dufour 

(1984), were determined by the likelihood of developing a GI illness through contact with fecal 

contaminated water. The current acceptable level of E. coli in a recreational water sample, as 

recommended by the U.S. EPA, is a 30-day geometric mean not to exceed 126 colony forming units 

(cfu) per 100 mL (U.S. EPA, 1986). This recommendation is explicitly a guideline for states and not 

an enforceable regulation. The decision to adopt it or develop a different one, based on scientifically 

determined water quality data, is left up to each individual state.  

Michigan is one of the states with its own criteria for recreational water quality (EGLE, 

2019). The Michigan Public Health Code (Act 368 of 1978) authorizes local health departments to 

monitor bathing beaches, but does not require it (EGLE, 1978). According to the health code, 

beaches must be sampled a minimum of five times in a 30-day period, with three samples taken at 

each beach during every sampling event. These three samples can be analyzed individually and a 

geometric mean calculated for the three samples. Alternatively, the three samples can be 

composited, and a single sample analyzed. For a beach to remain open for swimming the E. coli 

concentrations of the daily geometric mean, or single composited sample, must be below 300 

cfu/100 mL. At the end of the 30-day period, a 30- day geometric mean is calculated for all 

individual samples collected during the 30-day sampling period. The results of the 30-day geometric 

mean must fall below 130 E. coli per 100 mL for the water to be designated as safe for swimming. A 

beach is closed if either of the following occur: 1. the single day result exceeds 300 cfu/100 mL or 2. 

the 30-day geometric mean is exceeded. The E. coli level results are then required to be reported to 

the Department of Environment, Great Lakes and Energy (EGLE) within 36 hours. Once the 

bacteria levels are back within the acceptable range, the waterbody is deemed safe for swimming and 
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the beach will reopen. The regulatory E. coli levels set by the State of Michigan are slightly higher 

than the U.S. EPA recommendation, but still provide a level of risk abatement when beaches are 

routinely monitored. 

The above water quality criteria recommended by the U.S. EPA and established in Michigan 

were based on quantification by membrane filtration; one of the U. S. EPA approved methods for 

testing water quality. For the membrane filtration method, water samples are filtered, exposed to a 

modified thermo-tolerant E. coli agar and incubated for 22 ± 2 hours. E. coli colonies are counted 

based on a color change brought about by the culture media and are reported as cfu’s. Another 

method, originally used for drinking water and wastewater testing, is the IDEXX Colilert-18® 

Quanti-Tray/2000 system, hereafter referred to as Colilert (Crane et al., 2006). Colilert relies on the 

enzyme β-glucuronidase to react with a patented chemical substrate containing 4-methyl-umbelliferyl 

β-D-glucuronide (MUG) which has a fluorescent molecule attached (www.idexx.com). Water 

samples are mixed with MUG, poured into a Quanti-Tray, sealed and incubated for 18 – 22 hours. 

The MUG substrate causes enzymatic activity in the β-D-glucuronidase enzyme, cleaving the 

fluorescent molecule. Following the incubation time, the tray is exposed to ultraviolet light, the 

number of large and small fluorescing wells are counted, and E. coli concentrations are reported as 

the most probable number (MPN). The U.S. EPA approved the Colilert method in 2003 (U.S. 

Federal Register-40 CFR Part 136 Vol. 68, No. 139, August 2003). Following its approval, a two-

year comparison study was performed using water samples from five Lake Michigan beaches. A 

strong correlation in E. coli concentrations was found between the membrane filtration and Colilert 

methods, and in less than 0.5% of the samples would there have been a discrepancy in a beach 

closing or remaining open (Kinzelman et al., 2005). However, relying on the enzymatic activity of β-

D-glucuronidase may not account for some of the most pathogenic strains of E. coli, such as the 
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O157:H7 because enzymatic activity is not exhibited (Fricker et al., 2008) and, other 

microorganisms, such as Salmonella, Shigella and Staphylococcus spp, also produce β-D-glucuronidase 

(Silva and Domingues; 2015). Furthermore, the Colilert method does not account for viable but 

non-culturable bacteria cells (Pruzzo et al., 2002) that may become viable, or culturable, under 

certain conditions (Lleo et al., 2005). Although the membrane filtration and Colilert methods are 

reliable, the time to obtain a result requires at least 18 hours. Consequently, water quality results are 

not disseminated to county officials, beach managers or the public until the day after the potential 

health risk occurred. This management practice is flawed in that E. coli levels can vary greatly from 

day to day (Whitman et al., 1999; Dorevitch 2017; Wyer et al., 2018) thus beaches are closed on days 

where there may be no risk but remain open on days where the risk was high. Both U.S. EPA 

approved methods provide some measure of protection from exposure to fecal contaminated water, 

but a new recreational water monitoring method was needed.  

It is because of the temporal limitations and concerns about public health that the Beaches 

Environmental Assessment and Coastal Health (BEACH) Act was signed into law (Congress, 2000). 

The BEACH Act is an amendment to the Clean Water Act and instructs the U.S. EPA to conduct 

and fund research for faster testing, monitoring and reporting techniques for water quality in 

recreational waters. Additionally, the BEACH Act requests epidemiological research aimed at 

potential pathogens found in water and their effect on human health. The culmination of these 

studies would deliver revised water quality criteria to be included in the Clean Water Act.  

Many studies have since been conducted to find a more expedited method of testing and 

reporting beach water quality results. One technique is microbial water quality predictive modeling, 

or nowcast modeling. Nowcast modeling offers a more cost-effective method since samplers and 

complex instruments for analysis are not needed. Nowcast modeling of E. coli outbreaks is a 
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statistical technique in which past water quality data and current environmental variables are entered 

in a “Virtual Beach” public domain software (Frick et al., 2008; Cyterski et al., 2016). Abiotic factors 

thought to impact E. coli densities in water include such things as water turbidity, wind direction and 

speed, wave height, rainfall and presence of tributaries emptying into the beach area (Frick et al., 

2008, Byappanahalli et al., 2010) and can often be collected from nearby buoys and weather stations 

already in place. The software then uses a multiple linear regression model and predicts when E. coli 

concentrations would be high enough to warrant a beach-closure. Microbial water quality 

predictions were often more accurate than sampling (Frick et al., 2008) and, when used in 

combination with a microbiological quantitative method, the model was effective (Byappanahalli et 

al., 2010). In contrast, on five of eleven occasions a nowcast model failed to predict E. coli levels 

above the U.S. EPA limits (Nevers and Whitman, 2005). While microbial water quality predictive 

models are faster and cost-effective there is still research needed to determine how they can be 

applied at individual beaches with dynamic and differing environments. Another approach is to test 

for chemical compounds associated with anthropogenic waste as a way of identifying fecal 

contamination in waterbodies. Pharmaceuticals such as carbamazepine (for seizures, nerve pain and 

bipolar disorders) and diphenhydramine (an antihistamine for pain and itching) or caffeine 

(Glassmeyer, et al., 2005) could potentially act as indicators of human sewage. However, the 

concentrations of these pharmaceutical chemicals decreased as the distance from waste-water 

treatment plants increased. Therefore, their use may not be applicable for recreational waterbodies 

distant from waste-water treatment plants. Moreover, connecting the presence of human-associated 

chemical substances found in wastewater and increased risk of illness is poorly supported (Napier et 

al., 2018). 
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The BEACH Act also sparked research on an emerging technology for water quality analysis, 

common in microbiology, called Quantitative Polymerase Chain Reaction (qPCR). Sample is mixed 

with a DNA polymerase, individual nucleotides and a primer/probe mixture whose DNA sequence 

template is complimentary to the target gene of interest. The sample mixture is heated, causing 

DNA strands to denature, then cooled allowing the primers and probes to anneal to the target 

sequence. Finally, the DNA polymerase extends the primer using free nucleotides in the reaction 

mixture thereby building a complimentary strand of the target DNA (Figure 4.1). The heating and 

cooling cycles are carried out approximately 40 times, producing an exponential amplification of the 

target gene sequence to be measured and is completed in only 2 – 3 hours. This is a significant 

improvement over the 18 – 24 hours required for membrane filtration or Colilert methods currently 

in use for microbial water quality analysis. An early demonstration of this assay for use with water 

samples used the DNA polymerase Thermus aquaticus (Taq) (Holland et al., 1991). Taq is a DNA 

polymerase with 5’→ 3’ exonuclease capabilities, meaning it can both extend a primer (DNA 

polymerase activity) and cleave nucleotides annealed to the target DNA strand (exonuclease activity). 

Through use of the exonuclease capabilities, the probes, which attach at a different segment of 

DNA than the primer, can be labeled with a fluorescent signal molecule (fluorophore) on the 5’ end 

of the DNA and Taq will cleave it thereby releasing it into the reaction mixture. After each cycle, the 

cleaved fluorescent signal molecules are detected by the instrument and measured. When the signal 

reaches a pre-determined level, the instrument provides a threshold cycle value (Ct) associated with 

the cycle number it occurred at. This value is inversely related to the starting amount of the target 

gene or, the lower the number of target gene copies in the sample, the higher the Ct value. Much 

research has been done to demonstrate the effectiveness of qPCR at measuring E. coli and approved 



 110  

 

methods are available for measuring enterococcus concentrations in beach water samples (U.S. EPA 

2012 and 2013). 

 

Figure 4.1 Diagram of a qPCR reaction cycle. The green arrow represents where the TaqMan™ 
DNA polymerase attaches and extends the primer. Photo courtesy of Wikipedia.org. 
 

Quantification of E. coli by qPCR uses a fluorescent signal molecule called FAM, and a DNA 

polymerase called TaqMan™ (Applied Biosystems, StepOnePlus). The 23S rRNA gene, a specific 
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region on E. coli DNA, is amplified and used to calculate the number of E. coli DNA gene copies 

present in a water sample. A positive correlation between culture-based methods and qPCR has 

been repeatedly verified (Haughland et al., 2005; Lavender and Kinzelman, 2009; Lam et al., 2014). 

The correlation was even more pronounced at higher concentrations (Whitman et al., 2010) which is 

applicable to beach monitoring programs since regulatory levels are set to > 100 cfu. Confirmation 

of the qPCR method’s ability to predict swimming-associated GI illnesses came in 2006 (Wade et al.) 

and was reported as being a better predictor of GI illnesses than the culture-based method (Wade et 

al., 2008). Preliminary studies showed that qPCR was a promising candidate for beach water quality 

monitoring since it would greatly improve sample turn-around time and because it can detect 

densities of E. coli in compliance within regulatory levels. However, there are many factors to be 

examined before it becomes a fully approved method. 

Interactions within the reaction-mixture are one of the factors to consider when using 

qPCR. Factors such as detection of the fluorescent signal molecule while it is still attached to the 

probe and, preventing the Taq polymerase from cleaving the fluorescent molecule before it has 

annealed to the sample’s E. coli target gene sequence. If either of these were to occur, an elevated 

fluorescent signal would be detected, and the method would not produce accurate results. To 

prevent signal detection before cleavage, The TaqMan™ assay uses a quencher molecule called 

TAMRA™. It is attached to the 3’ end of the probe and while the quencher and fluorescent signal 

molecules are near one another, the fluorescent signal is “quenched” thereby preventing a false 

reading. This phenomenon is referred to as Fluorescence Resonance Energy Transfer (FRET) 

(Cardullo et al., 1988). It is only once the fluorescent signal molecule is released that the 

thermocycler instrument detects the fluorescence. Holland et al. (1991) undertook the second 

interaction and showed that the Taq polymerase only cleaved the fluorescent signal molecule while it 
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was attached to the target gene sequence. Factors involving laboratory technique also are important 

when implementing a qPCR assay. As discussed in Chapter 2.5, because qPCR requires pipetting 

volumes in the micro-liter (µL) range, it is important that analysts are adept at repeatedly pipetting 

small volumes. The cost and time to implement a new technology must also be addressed. Training 

of personnel, purchasing supplies and instrumentation necessary to implement a qPCR lab has been 

estimated to cost $100 thousand (Griffith and Weisberg, 2011). Grants awarded by the U.S. EPA 

under the BEACH Act will help defer costs, making the qPCR method available to a greater number 

of monitoring entities, thereby protecting a greater number of recreators from contact with fecal 

contaminated water.  

Another factor which needs to be studied is qPCR’s response to matrix interferences in 

varying water-body types. For it to replace current methods, it must provide accurate and 

reproducible results regardless of differing aquatic environments. Inland lakes tend to be more 

turbid then temperate water bodies such as the Great Lakes and turbidity is a cause of interference 

in qPCR analysis. Studies that have analyzed inland lake water samples (Siefring et al., 2008; 

Whitman et al., 2010; Haughland et al., 2012) did not extensively sample the inland waterbodies and, 

in some instances, only a single sample was taken from each inland lake. Another source of 

interference is organic material such as humic and tannic acids in the water sample (Opel et al., 

2010). One effective approach to eliminating organic interferences and turbidity problems was to 

dilute water samples by five- or ten-fold (Haughland et al., 2005, 2012; Siefring et al., 2008; Noble et 

al., 2010). Another way to negate interference is to use a DNA purification step. DNA purification 

kits can be easily obtained and were found to be successful in samples exposed to heat prior to 

enumeration (Varma et al., 2009). However, for purposes of beach monitoring, heat-killing bacteria 

in samples before measurements are made is not a viable solution. Conversely, the purification step 
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did not improve results, and even caused DNA to be of poor quality leading to unmet method 

efficiency criteria (Noble et al. 2010). The amount of qPCR data on varying water-body samples is 

growing, but additional research is needed to make strong conclusions about how qPCR will handle 

the various water types and how to eliminate the related interferences.   

As a result of all the research on qPCR quantification methods, a draft method for 

quantification of E. coli in recreational water by qPCR that uses the Applied Biosystems TaqMan™ 

assay and StepOne Plus thermocycler has been proposed by the EPA, currently called Draft Method 

C. More details on the specific method steps can be found in Chapters 2 and 3 of this manuscript. 

There have been many changes to the method throughout its development. Initially, as per the Site-

Specific Alternative Recreational Criteria Technical Support Materials for Alternative Indicators and 

Methods, hereafter referred to as TSM, (U. S. EPA, 2014) the U.S. EPA used Willmott’s Index of 

Agreement (IA) (Willmott, 1981) to compare E. coli concentrations quantified with the Draft 

Method C qPCR method to the Colilert defined substrate method. According to the TSM, the IA or 

Pearson’s Correlation Coefficient (R-squared; R2) can be used to test if the association between a 

proposed and approved quantification method were equivalent; though, it was noted that squaring 

the error terms in the IA equation increased the sensitivity to outliers (Kneale et al., 2001) and 

Willmott later removed the squaring function from the error terms, thereby reducing outlier 

sensitivity (Willmott et al., 2012). The E. coli reporting units and quantification method also have 

changed during the development of Draft Method C. Originally, the reportable quantity was 

Calibrator Cell Equivalents (CCE) which were calculated using the comparative quantification 

method, or delta-delta Ct (ΔΔCt) quantification method (Life Technologies, Ch. 4.3, 2014; p. 46).   

The reporting unit then became the Genomic Equivalent (GE). GEs were calculated by dividing the 

CCE by seven, as it was assumed that each E. coli cell had seven copies of the target gene. By 
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dividing the number of target gene copies by seven, it would give the estimated number of E. coli 

cells present in the sample. However, it was later determined that the ratio of seven gene copies per 

cell was not ubiquitous for all samples (Dr. R. Haugland, U.S. EPA. pers. comm.) because qPCR 

amplifies the target gene sequence regardless of whether it is contained within a cell or free in the 

environment. The current version of Draft Method C uses a Weighted Linear Regression (WLR) 

calibration model and E. coli concentrations are reported as log base-10 gene copies per reaction. 

Lab-specific composite curves are generated from independently analyzed standard curves, as 

described in Chapter 2, and are then used to quantify E. coli concentrations in recreational water 

samples. Recently, beach notification value (BNV) has been established in Michigan for Draft 

Method C as 8,760 DNA copies of an E. coli-specific gene sequence per 100 mL; or as calculated in 

the Draft Method C provided Excel spreadsheet: 1.863 log10(copies/reaction). This BNV is being 

used to monitor bacterial water quality at select beaches in Oakland and Kent Counties in Michigan 

(Dr. S. Briggs, EGLE. pers. comm.).  

Now that there is a scientifically tested standardized qPCR method for E. coli quantification, 

the question becomes how to handle the data produced from it. One of the many challenges that 

surface in data analysis is when the measured result, E. coli concentration in our study, is below the 

analytical limit of quantification (LOQ), often referred to as ‘left-censored data’. Left-censored data 

are encountered when monitoring beaches if the water samples are relatively free from fecal 

contamination. Thus, having a statistical method that allows for the inclusion of such data are 

important to provide a complete picture of the beach environment. Historically accepted methods 

for handling censored data in the environmental sciences and microbiology fields include removing 

the censored values from the data set (Nie et al., 2010) or substituting LOQ/2 for the unknown 

value (Helsel, 2006; Chen et al., 2013). But both procedures ultimately alter the innate distribution of 
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the data set (Helsel, 2011). Even with as few as 5 – 10% of the data being censored, replacing values 

with LOQ/2 can introduce bias (Dinse et al., 2014; U.S. EPA, 2010, p. 10). Furthermore, by 

replacing censored values with LOQ/2 it is assumed that the data has a uniform distribution and 

that their median and mean are also LOQ/2 (Gillespie et al., 2010), which is unlikely the case. Thus, 

there is a need in the environmental sciences to use alternate statistical methods that allow for 

censored values to remain in the data set; because even an unquantifiable or zero result can inform 

us about the system being studied.  

Survival analysis, also referred to as time-to-event analysis, offers such an alternative 

statistical method. Traditionally, it was used to analyze time-to-event data from medical and 

toxicology studies, however it has also been used in studies outside those disciplines (McNair et al., 

2012; Sisson et al., 2013; Muñoz & Vermeiren, 2018; Tomazi et al., 2018). In our study, we used E. 

coli concentrations as the response variable in place of time. Survival analysis is typically used with 

right-censored data, because in many medical scenarios an ‘event of interest’, such as a diagnosis 

outcome or manifestation of a side-effect, is under investigation in response to some sort of 

treatment (e.g. variations in medication dosage). Often, the event of interest occurs after the 

completion of the study, so it is only known that the event time was greater than the study duration 

and this type of data are right-censored. Therefore, statistical software used to implement survival 

analysis testing methods, such as the trend tests used in our study (Chapter 3), do not have functions 

to handle left-censored data analysis. Fortunately, a simple data transformation allows one to employ 

survival analysis with a left-censored dataset. This is achieved by reversing, or ‘flipping’, the data by 

subtracting all measurements—E coli concentrations in our study—by an arbitrary number higher 

than the maximum observed value (Helsel, 2011; Dinse et al., 2014, Gillespie et al., 2010). Its 

primary benefit for our purposes is that it allows information from data below the LOQ to be 
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included in the statistical analysis in a statistically rigorous way simply by changing data from left- to 

right- censored. By using a survival analysis method like Kaplan-Meier distribution curves in Chapter 

3, our results are more representative than those where data points were replaced or removed 

because no data were excluded, and our data set was not fundamentally altered. 

Accurate quantification and analysis of E. coli concentrations in recreational waters is 

important to public health, but only if recreators understand the information provided to them. As 

pointed out by Oliver et al. (2016), how the public perceives and responds to swim warnings issued 

by beach managers is equally important. For example, full or part-time residents near a beach are 

more likely to view bacterial pollution as a measure of safe usage conditions (Jones et al., 2018). In 

contrast, non-resident visitors base water cleanliness on how they themselves perceive the quality by 

visual assessments such as the presence of garbage or clarity of the water (Jones et al., 2018). 

Analogous to beach monitoring in the United States, the European Union (EU) bathing waters are 

regulated by the Bathing Water Directive 2006/7/EC (Quilliam et al., 2019). Designated recreational 

waters are classified as being ‘Excellent’, ‘Good’, ‘Sufficient’ or ‘Poor’ based on monitoring data 

from the previous four years and the classification result is displayed at the beginning of the swim 

season (Quilliam et al., 2019). However, 60% of questionnaire respondents didn’t recognize the 

signage used in the EU water quality classification system (Quilliam et al., 2019). It is only when 

recreators understand water quality warnings that they refrain from entering unsafe water thereby 

decreasing the risk of illness and improving the health of the community. Further research is needed 

to fully understand the best way(s) to inform the public.    
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4.2 Extended Methodology 

Standard Curve Generation and Analysis 

Both the 2016 and 2018 studies used the E. coli EC23S857 qPCR assay, a specific region on 

the 23S rRNA gene of E. coli that is detected and amplified, and the same methods of DNA 

extractions and qPCR analysis. Methods used to construct individual standard curves for the 2016 

Draft Method C validation study (Bayesian MSC) are described in detail by Sivaganesan et al. (2019). 

Methods used to construct the 2018 individual standard curves (WLR) and lab-specific composite 

curve are described below. 

Participants 

A diverse group of 21 labs from across the midwestern and southeastern United States 

participated in studies conducted in 2016, and 9 labs from across the state of Michigan participated 

in 2018 (Table S2.1). Government, university and county health department labs were represented in 

both studies. In each study, labs were assigned a unique code: ‘1’ through ‘21’ in 2016 (Sivaganesan 

et al., 2019) or ‘A’ through ‘I’ in 2018 to maintain anonymity.  

Standards Instructions  

Standards (estimated copy numbers: standard 1: 25,822.6; standard 2: 3,396.25; standard 3: 

417.83; standard 4: 54.83; standard 5: 11.61) were prepared and verified at the U.S. EPA Cincinnati 

laboratory, as described in Sivaganesan et al. (2019), then shipped to a central lab that managed their 

distribution to the remaining labs. Standards were shipped overnight on dry ice. The U.S. EPA 

recommended that standards should be stored in 20 µL aliquots at −80°C until ready for use. Each 

time a standard curve was analyzed, a set of the five concentrations of aliquoted standards were 

removed from the freezer and any unused standard was discarded. 
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qPCR Assay  

In addition to the EC23S857 E. coli qPCR assay, a Sketa22 (salmon DNA) qPCR assay also 

was used. The Sketa22 assay amplifies a segment of the internal transcribed spacer region 2 of the 

salmon rRNA gene operon and was used as a sample processing and reaction inhibition control.  

The reporter molecule was FAM and the quencher molecule was TAMRA. Assay master mix (MM) 

was prepared by combining TaqMan™ Environmental MM 2.0 (Thermo Fisher Scientific, Grand 

Island, NY) (12.5 µL), 2.0 mg/mL stock solution bovine serum albumin (BSA) from fraction V 

powder (Sigma B-4287 or equivalent) (2.5 µL) dissolved in PCR-grade water, 500 µM stock solution 

of E. coli or sketa22 forward and reverse primers combined with 100 µM stock solution of E. coli or 

Sketa22 probes (3.0 µL) (Invitrogen or equivalent) (Table 2.1), and qPCR-grade water (2.0 µL). 

Volumes in parentheses are volumes specified in Draft Method C to use per 25 µL qPCR reaction 

being carried out. It was also recommended to prepare two additional reaction wells worth of MM 

to make sure enough was made for plate analysis. For example, if 24 wells of a 96 well plate were 

going to be used for E. coli quantification, 325 µL of TaqMan (24 wells + 2 additional; 12.5 µL x 26 

wells) would be measured out. Two standard curves were permitted to be analyzed on the same 96-

well plate (Thermo Fisher Scientific) provided separate batches of MM were prepared for each 

curve.  

Reagents and Supplies  

E. coli standards were provided by the US EPA; labs also purchased: E. coli and salmon 

primers, TaqMan™ Environmental MM 2.0, optical 96-well PCR plates (Thermo Fisher Scientific), 

optical adhesive PCR plate seals (Thermo Fisher Scientific), sterile disposable MicroFunnel™ Filter 

Funnels (Pall Corporation, Ann Arbor, MI or equivalent) or re-useable filter funnel units, 

polycarbonate 47 mm diameter with 0.45 µm pore size filters (Millipore or equivalent), AE Buffer 
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(Qiagen), sterile Phosphate Buffer Saline (PBS) (pH = 7.4 ± 0.2), BSA, 5 x 104 E. coli cell aliquots for 

calibrator preparation, sterile 2.0 mL semi-conical screw cap microcentrifuge tubes pre-filled with  

212 – 300 µm acid-washed glass beads (0.3 ± 0.01 g) or purchased acid-washed glass beads 

separately and filled as indicated above, 1.7 mL low retention micro-centrifuge tubes, and PCR-grade 

water. A single lot of TaqMan™ Environmental MM 2.0 was used by all eight labs (Lot# 180115) 

and confirmed to have no underlying E. coli contamination by analyzing six No Template Controls 

(NTC) of AE buffer, run in duplicate (Saginaw Valley State University). All NTC runs resulted in an 

‘Undetermined’ Ct value; meaning no fluorescence was detected above the background ‘noise’ or 

fluorescence signal, indicating the absence of E. coli DNA template in the TaqMan™. 

DNA Extraction (Filter blanks and calibrators only) 

Each standard curve required three calibrator filters (positive controls; 1 x 104 E. coli cell 

equivalents) and three filter blanks (negative controls) prepared on separate filtration units. 

Calibrators were prepared by filtering 1 mL of a 1 x 104 E. coli suspension in PBS through a 0.45 µm 

filter seated on a sterile filtration unit. The same procedure was used to filter 20 mL of PBS for filter 

blank preparation. Filters from calibrators and filter blanks were folded in half four times and placed 

in a 2.0 mL sterile semi-conical, screw-cap microcentrifuge tube containing 0.3g (± 0.01 g) glass 

beads. Next, 600 µL of AE Buffer spiked with 0.2 µg/mL salmon DNA was added to each 

extraction tube and tightly sealed. Extraction tubes were bead milled for 1.0 min at 5,000 rpm then 

centrifuged at 12,000 x g for 5 min. Approximately 400 µL of the crude DNA extract was removed 

and transferred into a clean correspondingly labeled, sterile 1.7 mL low retention micro-centrifuge 

tube and centrifuged again for 1 min at 12,000 x g, then  ~ 100 µL of the clarified supernatant was 

transferred into a second sterile centrifuge tube. Calibrator and filter blank extracts were analyzed 

shortly after extraction along with each standard curve. 
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Plate Setup 

Extracted DNA from calibrator and filter blanks were analyzed in duplicate with both E. coli 

and salmon MM separately. NTC and standards 1 – 5 were tested in triplicate solely with E. coli MM. 

(Figure S2.1). Each well contained 25 µL of final reaction volume; 20.0 µL of prepared MM, as 

described in section 2.3, and 5.0 µL of the supplied E. coli DNA standard or positive/negative 

control or NTC.  

Instrument Run Method 

Thermocycling consisted of an initial ‘holding stage’ (50.0°C, 2 min; 95.0°C, 10 min) 

followed by 40 cycles of DNA denaturation and primer/probes annealing (95.0°C, 15 s; 56.0°C, 1 

min). At the end of each of the 40 cycles, fluorescence was measured by the instrument 

(StepOnePlus, Applied Biosystems). The fluorescence threshold, or the level of fluorescence in 

which the signal rises above the background level, was manually set to 0.03 ΔRn and baseline cycles 

were set to AUTO determination (Sivaganesan et al., 2019). 

Standard Curve Generation 

Upon completion of the instrument runs, data were exported from the StepOne™ Software 

(v2.3) and the resulting Ct values were copied into an accompanying Draft Method C Excel 

workbook where they were fitted to the WLR model of the form:  

 Xijk = αi + βi log10(Xj) + εijk (1) 

 

where Xijk is the observed Ct value for replicate k of standard j in run i; αi and βi are the intercept 

and slope, respectively, for run i; Xj is the known copy number in standard j, and εijk is the statistical 

error in the observed threshold cycle. A separate WLR was fitted to data for each standard curve 

run, and the externally Studentized residuals (Cook and Weisberg, 1983; p. 20) were examined to 
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identify and remove up to two outliers from each data set if needed. The WLR model was then re-

fitted to the retained data for each run, and the intercept, slope, and R2 values for each standard 

curve were assessed for acceptability based on the proposed standard curve acceptance criteria 

developed for Draft Method C (Table 2.2). When all three parameters met the acceptance criteria, an 

individual curve was considered ‘passing’ but, if any one of the three parameters failed, a curve was 

considered ‘failing’. Draft Method C requires a minimum of four passing cures to generate the 

composite curve used to analyze RW samples therefore, if there were fewer than four passing, labs 

were requested to analyze additional curves. Only passing curves were considered for further 

statistical analysis of the 2018 data. 

Data Analysis 

Bayesian MSC and WLR Standard Curve Model Comparisons  

Labs participating in the 2016 validation study analyzed four to five standard curve assays 

each, as described in Sivaganesan et.al, (2019) for a total of ninety-one curves analyzed. To obtain 

the WLR model values, intercept and slope data for each lab’s separate passing standard curve runs 

were assessed with the Draft Method C Excel Workbook which uses an analysis of covariance 

(ANCOVA) to determine if there was strong evidence (α = 0.01) that any parameter estimates 

differed among runs. If not (p ≥ 0.01 for both parameters), results from the individual curves were 

pooled, and a WLR was performed to estimate the lab-specific composite curve intercept, slope and 

95% CI for each lab. Intercept and slope estimates from the Bayesian MSC model for individual labs 

were taken from the 2016 validation study (Sivaganesan et al., 2019); the 95% Bayesian Credible 

Intervals (BCIs) are provided in the supplemental material (Table S2.2). The ANCOVA evaluation 

was used only in the WLR model and not the Bayesian MSC model. Intercept and slope estimates, 

and corresponding 95% CIs and BCIs, from the WLR and Bayesian MSC models, respectively, for 
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each lab were plotted and compared visually. Comparisons also were made by examining the relative 

percent difference between the WLR and MSC models of the intercept and slope estimates for each 

lab. Percent differences were calculated by dividing the absolute value of the difference between the 

two model’s estimates to the average of the absolute values of the two model’s estimated means and 

multiplying by one hundred.  

Inter-lab variability of 2018 standard curve WLR estimated acceptance criteria  

Each of the nine labs participating in 2018 used the WLR calibration model in the Draft 

Method C Excel workbook to analyze the instrument-determined Ct values for each individual 

standard curve. The workbooks were then shared with the authors of this study. Each lab produced 

between four and ten standard curves for a total of eighty-two. Of these curves, only those that 

passed all three acceptance criteria were considered for further statistical analysis. 

 Potential differences between acceptance criteria estimates produced by individual labs were 

assessed by determining the statistical significance of parameter differences and, where a statistically 

significant difference was detected, the relative magnitude of the difference on a percent scale was 

determined, as described above. The main goals of the assessment were to determine the proportion 

of labs for which a statistically significant difference was detected for each parameter and, more 

importantly, the relative magnitude of any detected differences.  Inter-lab comparisons were carried 

out using a pairwise Wilcoxon rank sum test (Hollander et al. 2013) on each parameter, p-values 

adjusted with a Holm correction to account for multiple comparisons, to test the null hypothesis 

that the locations of the distributions of reported intercept, slope, and R2 estimates were the same 

for each pair of labs against the two-sided alternative hypothesis that they were different. The 

Wilcoxon rank sum test is a nonparametric test and does not assume a specific distribution for the 

individual estimates. All statistical analyses were performed using R Software (v3.5.2; R Core Team, 
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2018). Prior to any analysis, two data points from one lab (code H) were removed due to knowledge 

of errors during plate sealing.  

 

Environmental Variables and E. coli Concentrations 

Sampling 

Sampling occurred once a week over five weeks (June 4th through August 6th, 2018) within 

Muskegon County, Michigan. Water samples were stored on ice until transported to the lab and 

processed for either Colilert analysis or filtered for the Draft Method C qPCR assay within six hours 

of collection.  

Inland Lake Beaches: Fourteen inland lake beaches (Table 3.1) were sampled once a week over 

five weeks resulting in five samples per beach (n = 70). 100 mL samples were collected in 125 mL 

Security-Snap™ BacT (Thermofisher Scientific) sterile polypropylene bottles at each of three sample 

sites designated as left, center, and right (Figures S3.1 – S3.5). The three 100 mL samples were 

composited in the lab into a sterile 500 mL HDPE bottle (Microtech Scientific), totaling 300 mL of 

a composite sample for each beach. One-100 mL aliquot was used for immediate Colilert analysis 

and two-100 mL aliquots were filtered for qPCR analysis then stored in a −80°C freezer to be 

analyzed at a later date. An ~ 50 mL sample also was collected from the center location of each 

beach in a Nalgene bottle for turbidity measurements.  

Lake Michigan Beaches: Six Lake Michigan beaches (Table 3.1) were sampled once a week over 

five weeks, three sampling sites per beach, for a total of 15 water samples per beach over the course 

of the study (n = 90). A 500 mL sample was collected in sterile, tamper sealed HDPE bottles 

(Microtech Scientific) at each of three locations (north, center, and south) (Figures S3.6 – S3.8) and 
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prepared individually for analysis as described above for both Colilert (1 x 100 mL) and the Draft 

Method C qPCR assay (2 x 100 mL).  

Environmental Variables 

Eight environmental variables (EVs) were recorded for each beach during each sampling 

event to assess its impact on E. coli concentrations. They included: turbidity (NTU), wind speed 

(mph), air and water temperature (°C), number of birds, whether birds were present (P) or absent 

(A), time (h) since the last rain fall, of any amount, and the amount of rain during the last rainfall 

(inches). Most variables were included on the Great Lakes Beaches Routine On-Site Sanitary Surveys 

(www.epa.gov/sites/production/files/documents/greatlakes_onsite.pdf), except for birds 

present/absent, as part of the beach monitoring program protocol. Wind speed, air and water 

temperature and samples for turbidity were collected from or measured at the center sample site. 

Bird counts were performed by visual observation as samplers walked from the center sampling 

point towards the north/right or south/left sampling points and counted the number of birds 

observed on the beach and in the water within the swim area (U.S. EPA 2008). Samplers would 

report the number of birds to the person at the center location and all birds observed were tallied 

then recorded on the Sanitary Survey. Wind speed and air temperature were measured with an 

anemometer by holding it above the sampler’s head for approximately 10 s and recording the 

highest reading of wind speed and, once a consistent temperature was seen, air temperature. 

Anemometer instructions directed measurements to be taken in the shade, however no shade was 

available at the center sampling site of most beaches thus for consistency, all readings were recorded 

from the center location regardless of the availability of shade. Water temperature was measured at 

knee depth with a thermometer (Component Design Northwest, Inc. DTQ450X) held near the 

surface of the water until a steady reading was observed. Turbidity samples were transported to the 
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lab on ice and measured with a turbidimeter according to the manufacturer’s instructions following 

analysis of three NTU standards (0, 10, and 100 NTU) as quality control assurance (Thermo 

Scientific Orion AQUAfast AQ4500). Time since the last rain and rain amounts were recorded from 

individual weather stations (www.wunderground.com) chosen based on nearness to a beach and, in 

all instances except one, was the same throughout the sampling season (Table S3.1).  

E. coli Quantification 

Colilert: The composited inland lake beach samples and north, center, south Lake Michigan 

samples were all analyzed within six hours of collection using Colilert (Method 9233 B) (Rice et al., 

2012). In accordance with this method, a Colilert reagent packet was emptied into and dissolved in 

100 mL of water sample. The solution was poured into a Quanti-Tray and incubated for 18 – 22 h at 

approximately 35°C. The Quanti-trays were then removed from the incubator and exposed to 

ultraviolet light. Based on the total number of fluorescing wells in the tray, E. coli concentrations 

were calculated and recorded as MPN. A more in-depth description of this method is provided in 

Kinzelman et al. (2005) and on the IDEXX website (www.idexx.com).  

qPCR: Each composited inland lake beach sample and the three individual Lake Michigan 

samples per beach were analyzed according to the Draft Method C qPCR assay which uses 

TaqMan™ chemistry. Briefly, 100 mL of sample was filtered through 0.45 µm pore polycarbonate 

filter seated on a sterile disposable filtration unit (Pall Corporation, Puerto Rico, MicroFunnel™ 

Filter Funnel). The filters were folded four times and added to a 2.0 mL sterile semi-conical, screw-

cap microcentrifuge tube containing 0.3 g (± 0.01 g) of glass beads. Working within a laminar flow 

hood, 600 µL of extraction fluid consisting of AE buffer with 0.2 µg/mL salmon (sketa) DNA was 

added to each extraction tube, tightly sealed then bead milled for 1.0 min at 5,000 rpm. The sketa 

DNA served as a sample processing control (SPC) to ensure the qPCR reaction occurred as 
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expected. Because a known concentration was added to each sample, a specific range (18.58 – 22.01) 

of cycle threshold (Ct) values was expected, and required, for designated Draft Method C quality 

control parameters to be met (Sivaganesan et al., 2019). The extraction tubes were then centrifuged 

for approximately 5 min at 12,000 x g and ~ 400 µL of the crude DNA extract was transferred into 

a correspondingly labeled sterile 1.7 mL low retention micro-centrifuge tube. The crude extract was 

centrifuged for 1 min at 12,000 x g, then ~ 100 µL of clarified supernatant was transferred to a 

second sterile 1.7 mL centrifuge tube. Tubes of clarified supernatant were then moved to a second 

laminar flow hood and set aside until sketa and E. coli Master Mixes (MM) were prepared (see 

chapter 2, section 2.3). Half of the 96-well qPCR plate was filled with 20 µL of E. coli MM and the 

other half was filled with 20 µL of sketa MM. 5 µL of recreational water sample extracts were 

analyzed in triplicate using both the E. coli and sketa MM. Three separate negative (blanks) and 

positive (calibrator) controls, and a No Template Control (NTC) were analyzed in duplicate, on each 

tray of samples with E. coli and sketa MM. Once MM, samples, and quality controls were added, the 

plate was sealed and analyzed on a StepOnePlus™ Applied Biosystems thermocycler using the 

StepOne™ Software (v2.3). Instrument generated Ct values for water samples and quality control 

parameters were exported and entered in an EPA provided Draft Method C Excel Workbook where 

E. coli concentrations (log10Copies/5 µL) were calculated, provided all quality control parameters 

were met. log10Copies/5 µL were then converted to log10Copies/100 mL to make the two 

quantification methods comparable. There were nine Lake Michigan beach samples whose sketa Ct 

values did not pass specified acceptance criteria. In these cases, the stored duplicate filter was 

extracted, and the crude extract was filtered through a OneStep™ PCR Inhibitor Removal Kit 

(Zymo Research) column, then re-analyzed with the Draft Method C qPCR assay. The inhibitor 

removal kit does not impact dilution ratios although it is thought that it may bind some DNA within 
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the column resulting in a lower measured concentration. The log10Copies/100 mL results from five 

of the re-analyzed samples were used in statistical analysis, while four were unusable as the filter 

blank acceptance criteria was not met (Ct > lower limit of quantification as given in the Draft 

Method C Excel workbook) (Sivaganesan et al., 2019). All filtered qPCR samples were analyzed 

within 6 months after storage. 

Statistical Analysis 

Data were organized by beach, sample date, sample site (for Lake Michigan Beaches), 

corresponding Colilert (MPN) and qPCR (log10Copies/100 mL) E. coli concentrations and 

environmental variables collected or measured during each sampling event. Lake Michigan 

environmental variables were recorded at the center sampling site only and water samples were 

collected at three locations, therefore the same measurement or observation was filled in for all three 

sample locations the assumption being that the variation between north, center, south sample 

locations at the same beach was negligible. Additionally, repeated measures statistical analysis was 

unnecessary because E. coli concentrations vary greatly from day to day and even hour to hour 

(Whitman and Nevers, 2004; Badgley et al., 2011; Wyer et al., 2018) thus our weekly samples could 

be treated as independent of each other. 

An indicator variable, or status, column was created for E. coli concentrations measured with 

both methods to indicate if the measurement was above the LOQ with a ‘1’, or below the LOQ with 

a ‘0’. This is analogous to traditional survival analysis where a ‘1’ is used for a known time of event 

and ‘0’ is used for censored events. For the purposes of our study, E. coli concentrations in the units 

of log10(MPN/100 mL) and log10(Copies/100 mL) were used in place of the “time” variable, and the 

method or instrument LOQ was the “event”. Colilert results were censored at 1 MPN, meaning any 

result recorded as < 1 MPN was below the method LOQ and considered a censored observation, 
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thus a status of ‘0’ was given. qPCR results were censored at 246 copies/100 mL (2.391 

log10Copies/100 mL) based on the lower limit of quantification Ct value (37.63) of a 6-pt standard 

composite curve generated from four individual standard curves analyzed. Values below 2.391 

log10Copies/100 mL were considered censored (‘0’ status); values greater than 2.391 log10Copies/100 

mL were given a ‘1’ in the status column. To determine the LOQ, the LLOQ Ct value (37.63)—

given in the Draft Method C Excel Workbook— was used as ‘y’, y-intercept (38.73), and slope 

(−3.53) in the y = mx + b equation, where ‘x’ was the LOQ. 

EVs were categorized into two or three groups (Table 3.2) chosen to have at least 10 non-

censored observations per group. KM distribution curves were then generated using the categorized 

groups and E. coli concentrations from recreational water samples. For EVs categorized into three 

groups, KM curves were statistically compared with a log-rank trend test (Klein and Moeschberger 

2006, section 7.4; Machin et al., 2006 section 3.5). The trend test tests the null hypothesis that the 

categorized EVs E. coli concentration distributions are equal against the alternative that there is a 

monotonic ordering among the KM curves. For example, if K1(x), K2(x), and K3(x) are the KM 

curves (as functions of concentration x) for the low, medium, and high categories of a particular EV, 

then the null hypothesis of the trend test is K1(x) = K2(x) = K3(x) for all concentrations x, and the 

“increasing form” of the alternative is K1(x) ≤ K2(x) ≤ K3(x) for all x, with the inequality being strict 

(i.e., “<” instead of “≤”) for at least one concentration and at least one pair of KM curves. The test 

outcome does not specify which KM distribution curve relationship is statistically different, just that 

a statistical difference in distribution curves was detected. For the bird present/absent and the 

method and lake type comparisons, a two-sample one-sided log-rank test (Hollander et al., 2013; Ch. 

11.7; p. 594 – 597) was used. Output from the log-rank test were used to calculate the original test 

statistic prior to it being squared for the chi-squared p-value in order to perform one-sided statistical 
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analyses. These comparisons were performed to identify EVs that exhibited a statistically significant 

impact (α = 0.05) on E. coli concentrations quantified with both methods (Colilert and qPCR) for 

inland and Lake Michigan beaches separately. All statistical analyses were carried out using R 

Software (v3.5.2; R Core Team, 2018). 

 The limitations of R-Software prevent it from performing survival analysis on left-censored 

data, like the data in our study, therefore trend tests and two-sample log-rank tests were carried out 

on the ‘flipped’ E. coli concentration data set (further detail provided in the discussion). All KM 

distribution curves presented below are based on the ‘unflipped’ or original E. coli concentration data 

scale. 
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