
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Masters Theses Graduate Research and Creative Practice

12-2020

An investigation into the development of a low cost, easy to use An investigation into the development of a low cost, easy to use

seizure analysis tool. seizure analysis tool.

Cody Dean
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/theses

 Part of the Systems and Integrative Engineering Commons

ScholarWorks Citation ScholarWorks Citation
Dean, Cody, "An investigation into the development of a low cost, easy to use seizure analysis tool."
(2020). Masters Theses. 1003.
https://scholarworks.gvsu.edu/theses/1003

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at
ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/theses
https://scholarworks.gvsu.edu/grcp
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F1003&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/237?utm_source=scholarworks.gvsu.edu%2Ftheses%2F1003&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/1003?utm_source=scholarworks.gvsu.edu%2Ftheses%2F1003&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

An investigation into the development of a low cost, easy to use seizure analysis tool.

Cody Dean

A Thesis Submitted to the Graduate Faculty of

GRAND VALLEY STATE UNIVERSITY

In

Partial Fulfillment of the Requirements

For the Degree of

Master of Science in Engineering

Biomedical Engineering

Seymour and Esther Padnos College of Engineering and Computing

December 2020

3

Dedication

To my loving and supportive wife, I am done with school now, I promise!

4

Acknowledgements

I would like to thank my thesis advisor Dr. Samhita Rhodes for her extreme patience and

support as I navigated a less “traditional” Masters path. Without her guidance and insight, I

truly would have never finished this thesis. A big thanks to Dr. Paul Fishback for his help and

insight as we navigated the world of Python together. I would also like to thank Dr. David

Zeitler for his expertise and guidance. Thank you to Dr. Mohamad Haykal for his expertise and

time as I learned about the amazing work that the Spectrum Health Epilepsy Monitoring Unit

does. I would like to thank Dr. Konstantin Elisevich and the numerous other researchers I met

at Spectrum Health for their continued support and collaboration with the Biomedical

Engineering program at Grand Valley State University.

5

Abstract

The need for collaborating and sharing data and research between doctors, researchers,

universities and patients has never been more necessary. We are seeing firsthand how a

deadly virus can completely devastate the world in a matter of months and being able to react

quickly is the top priority. Open source tools are making it possible to share research and

learnings about viruses like COVID-19 across countries, industries, and universities and these

tools and philosophies extend across all areas of medical research.

The amount of data that is being collected within the medical industry is increasing at an

exponential rate and there aren’t enough analysts and researchers to work through it all.

Partnering with universities to leverage the capabilities of the students starts to address this

issue. Not only can the institution glean more insights from their data, the students receive

much needed experience and exposure to real world scenarios. The problem then becomes

how to effectively develop the university research, so the clinicians can apply the learnings to

their current work – how do we go from bench to bedside?

By partnering with the Spectrum Health Epilepsy Monitoring Unit (EMU) doctors, and

leveraging previous research from Grand Valley State University Biomedical students, we

introduced a framework for using open source development tools to build out and test novel

algorithms in a way that makes it easier for clinicians to provide feedback for rapid

development. By embracing a collaborative culture, we will be able to build and test custom

tools in a clinical setting to better assist the clinician in helping their patients.

6

Table of Contents

List of Tables ... 7

List of Figures .. 8

1 Introduction .. 10

1.1 Problem and Clinical Significance ... 10

1.2 Purpose ... 14

1.3 Objectives.. 15

1.4 Thesis Roadmap .. 15

2 Background and Literature Review ... 17

2.1 Epilepsy Diagnosis and Treatment .. 17

2.2 Electroencephalogram (EEG) .. 18

2.3 Current SOZ Identification Methods ... 21

2.4 Commercial vs Open Source Software .. 22

3 Methodology ... 24

3.1 HFO detection algorithm .. 24

3.2 Performance optimization .. 31

3.3 Development Tools ... 36

4 Results ... 38

4.1 Example Data .. 38

4.2 Spectrum Health Epilepsy Monitoring Unit Data .. 40

4.3 Performance optimization .. 42

5 Discussion .. 46

6 Future Work .. 49

7 Conclusions ... 51

8 Appendices .. 52

8.1 Full HFO Count Table .. 52

8.2 Python HFO Detection Code ... 55

9 References .. 64

7

List of Tables

Table 1: Objectives of the research .. 15

Table 2:Table from (Islam, 2015) showing location of grid arrays for patient WDH-022 34

Table 3: Tables comparing time location and frequency content between (Islam, 2015) version (top) and
open source Python version (bottom) .. 39

Table 4: Table from (Islam, 2015) showing information about the patient file used to test the open
source HFO detection algorithm ... 40

Table 5: Comparing top 20 channels based on HFO count for each sample subset 43

Table 6: Approximate time it took to run 88 channels through the HFO detection algorithm using various
sample subsets .. 44

Table 7: Comparing top 20 channels based on HFO count for each sample subset with 5-minute interval
method. ... 45

8

List of Figures

Figure 1: Digital Health Hype Cycle from www.healthcare.digital ... 11

Figure 2: An illustration of EEG recording (Ref. EEG, Saint Luke's Health System) 19

Figure 3: Intracranial EEG electrode placement (Journal of Neurosurgery) ... 20

Figure 4: EoI detection (stage 1 of HFO detection algorithm) .. 25

Figure 5: (a) 10s raw iEEG signal (b) 0.5s of iEEG signal containing an EoI (c) 80 to 488 Hz band passed
filtered signal and envelope of the signal ... 27

Figure 6: Time-frequency space analysis for recognition of HFOs among EoIs .. 28

Figure 7: Time-frequency space representation of an HFO .. 30

Figure 8: HFO detection algorithm flow chart .. 32

Figure 9: New process flow with extra screening stage added in. ... 33

Figure 10: Diagram of how each channel was randomly sampled. Each channel is 120 minutes long and
samples range from 1 to 30 minutes. ... 35

Figure 11: Diagram showing how each channel is broken into intervals before sampling. 35

Figure 12: Example of a user interface built within Jupyter to test different optimization methods. 37

Figure 13: (a) 30 s example iEEG data sampled at 2000 Hz (b) Example data after 80 to 488 Hz band-pass
filtering .. 38

Figure 14: Filtered 30 s iEEG data sample using the Python HFO detection method. The vertical red bars
indicate where HFOs were detected .. 39

Figure 15: Bar charts comparing HFO counts across channels for the MATLAB and Python versions of the
HFO detection algorithm .. 41

9

Figure 16: HFO detection algorithm with parallel processing built in .. 49

10

1 Introduction

1.1 Problem and Clinical Significance

A revolution in health care is coming, but it may not be the one that people think. The

Artificial Intelligence (AI) hype train has left the station and the medical industry is one of its

many stops. People or patients are excited for the promise that soon they will be able to go

into the doctor’s office, get scanned with a tricorder device like the one from Star Trek, and

instantly they will know exactly what is wrong with them. The reason this hope is so strong is

because cost and time are increasing for the patient. Patients experience longer waits, invasive

procedures, and the cost of healthcare has skyrocketed. Commercial startup companies are

now starting to step in to address some of these issues. There has been an explosion of health-

related wearable monitors, telemedicine is becoming more realistic and convenient, allowing

patients to pay less, make it easier to see the doctor, and now the doctor can see more people.

(The Economist, 2018) This is the true revolution that we are experiencing. There is no

immediate future where we will be replacing our doctors with an AI robot that can diagnose

every disease known to man. What we will be doing is making the whole healthcare experience

more efficient using tools, such as the internet infrastructure, big data storage and computing,

machine learning, and artificial intelligence. The real promise of all these tools is to make

patient care more efficient and minimize the risks. Repetitive tasks can become automated to

then free up health professionals to focus on the human interaction with the patient.

 The website healthcare.digital is a thought leadership forum covering all things relating

to digital health and health technology. They recently posted an article talking about the digital

11

health hype cycle of 2018. A hype cycle is a branded graphical presentation for representing

the adoption, maturity and application of different technologies. (Price, 2018) Figure 1 shows

the hype cycle created by healthcare.digital.

Figure 1: Digital Health Hype Cycle from www.healthcare.digital

Each hype cycle has 5 key phases of a technology life cycle. The Innovation Trigger is when a

potential technology breakthrough kickstarts the process. The Peak of Exaggerated

Expectations is when early publicity produces several success stories, driving up everyone’s

expectations. For the digital health hype cycle this is the AI Symptom checkers, where the

patient can plug in all their symptoms and the AI machine diagnoses the patient. The next

phase is the Trough of Disillusionment, where people are starting to realize maybe the promise

of AI super doctors aren’t an actual thing. The final two stages are the Slope of Enlightenment

and the Plateau of Productivity. These phases are where the healthcare revolution will spring

12

from. Things like TeleHealth, personal health assistants, remote monitoring, Internet of Things,

and wearable tech. These are all pieces of technology that will help make the healthcare

industry cheaper, faster and more efficient. (Price, 2018) These technologies aren’t meant to

replace healthcare professionals, rather they will allow doctors and nurses to have more time

to spend on the patients that truly need help. It will give doctors more information to make

informed decisions and helping to diagnose and treat correctly the first time. They will also be

able to monitor their patients remotely to see how efficient the treatment was. This data will

travel with the patient as they go from one doctor to the next, allowing everyone to use the

same information to treat the patient. This revolution will depend on understanding the

strengths and weaknesses of these new technologies and applying them where they make

sense. An analogy would be going from a shovel to a backhoe. There is a lot of dirt that needs

to be moved and worked through, and while we still need someone to run the backhoe, they

now have a new technology to do it faster and more efficiently.

 One potential roadblock that will slow this revolution is the gap between academia and

the medical industry. There is a lot of research happening at the undergraduate and graduate

level around using machine learning and AI for detection and diagnosis of pathophysiologies

from medical signal and image processing. While these results are great, they remain

entrenched in the research setting. There is still a need to transform these results into

something that a medical professional can use clinical settings - a need to bring these

techniques from bench to bedside.

Novartis is one of the largest multinational pharmaceutical companies in the world,

based in Basel, Switzerland. They recently put out an article addressing the culture gap

13

between academia and industry in biomedicine. In the article they reported on a panel

discussion that explored the relationship between academic and industrial research, which was

held at the Novartis Institutes for Biomedical Research (NIBR). Much of the discussion centered

around how medical students graduate with misconceptions about how R&D works. Ken Kaitin,

Director of the Tufts Center for Study of Drug Development said, “One of the things that I think

is so critical now is an increase in education and understanding within the academic

environment of the entire process of innovation.” (Kneller, 2016)

 In the health section of the Stanford Social Innovation Review, there is an interesting

interview from 2011 with Stephen Friend, an Ashoka Fellow in the United States and president

of Sage Bionetworks. In the interview they address the issue of the medical information system

being closed and how the method to share and collaborate on work is slow and primitive. The

culture is a them-against-the-world mentality, and the “medical-industrial complex” is not

incentivized to share amongst each other, let alone with patients. (Clay, 2011) Stephen goes on

to describe their open source platform that allows researchers to share data and research to

evolve their models as more data is collected. Their goal is a world, “where citizens could

follow disease-related projects, become fans and join as followers or even funders.” (Clay,

2011) This further highlights the problem of the current culture around biomedical research

being a closed and competitive system. All these examples point to a need for using open

source development tools and philosophies within academia and the medical industry to foster

a more collaborative and creative culture.

 The specific problem that this thesis will address is the fact that there is currently a gap

between the research being conducted by the Grand Valley State University (GVSU) Biomedical

14

Engineering (BME) program, and the Spectrum Health Epilepsy Monitoring Unit (EMU). There

has been a lot of progress over the last couple years, specifically in new signal processing and

analysis techniques applied to the intracortical EEG data routinely collected at the EMU. The

issue has been how to get this research and these tools into the hands of the clinicians - EMU

doctors and our efforts to move the research from bench to bedside are hampered by

technological and administrative obstacles. But with new open source platform capabilities and

cloud computing solutions, the technical issues surrounding working with big data in an

efficient manner, can be addressed.

 By helping move academic research to the clinical or industry setting, advances in new

machine learning algorithms can improve the medical community’s abilities to diagnose and

treat pathophysiologies more efficiently. One example from Healthcare IT News talks about

how the Hill Physicians Medical Group used AI and machine learning algorithms to increase the

number of patient charts collected for risk adjustment effort by more than 200 percent. The

medical group was able to take the electronic health records (EHR) they had access to and used

the algorithms to extract important data that they had to collect manually before. (Siwicki,

2018) This is one example of how machine learning can be used help doctors be more efficient

in their day to day work.

1.2 Purpose

The purpose of this thesis is to develop a process and system that allows research and

algorithms developed by GVSU students and faculty to be easily used by researchers at the

EMU as well as future students and staff at GVSU and other universities to assist clinicians in

15

their diagnosis. As the researchers get access to new data, the old algorithms can evolve and

become more robust by being tested on multiple sources of data. Collaboration between EMU

and GVSU will guarantee that any findings can be quickly adapted to assist the EMU clinicians.

1.3 Objectives

The specific objects for this study are provided in Table 1 and we discuss how each was

fulfilled throughout this thesis.

Objectives

Review of current seizure analysis tools both commercial and open source.

Investigation into open source software to analyze EEG signals in different formats.

Develop a GUI that allows user to load at least 1 data file in edf format for any patient.

Research and implement efficient methods for speed.

Develop an output format based on the customer’s (Epilepsy Monitoring Unit clinicians)
requirements.

Table 1: Objectives of the research

1.4 Thesis Roadmap

This thesis is organized in the following manner. Chapter 2 discusses the scientific

literature regarding epilepsy and the tools and methods used for analyzing data from epileptic

patients. In this section we will also discuss the benefits of open source software and how it

can be used for better collaboration and development between academia and the medical

industry. In Chapter 3 we will discuss the algorithm that we translated to the open source

language Python and using these tools how we were able to focus on performance optimization

16

and developing a framework to test ideas quickly within this environment. We will then review

the results of the Python algorithm compared to the original algorithm developed within

MATLAB using sample data from (Brunos, et al., 2014) and data collected from the Spectrum

Health EMU. Finally, the findings will be discussed, future work will be proposed, and

conclusions will be made.

17

2 Background and Literature Review

2.1 Epilepsy Diagnosis and Treatment

Epilepsy is a neurological condition which affects the nervous system. Some epilepsies

are caused by problems in the early formation of the fetal brain while others occur as a result of

brain trauma, stroke, infection, tumor or genetic susceptibility. (Johns Hopkins Medicine, 2020)

Another term for epilepsy is seizure disorder. A person is considered to have epilepsy if they

meet any of the following conditions:

 1. At least two unprovoked (or reflex) seizures occurring greater than 24 hours apart.

2. One unprovoked (or reflex) seizure and a probability of further seizures similar to the

general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the

next 10 years.

3. Diagnosis of an epilepsy syndrome. (Epilepsy is resolved for individuals who had an age-

dependent epilepsy syndrome but are now past the applicable age or those who have

remained seizure-free for the last 10 years, with no seizure medicines for the last 5

years.) (Fisher, 2014)

Seizures are manifested as disturbances in electrical activity within the brain. The

seizures in epilepsy may be related to a brain injury or a family tendency, but in 6 out of 10

cases, epilepsy is idiopathic – meaning the cause is unknown. (Johns Hopkins Medicine, 2020)

Epilepsy is more common than people know with 1 in 26 Americans developing epilepsy at

some point in their lifetime. (Sirven & Shafer O. Patricia, 2014)

18

 Antiepileptic drugs are the most common treatment to control seizures. The dose of

the medicine is adjusted for better seizure control. Other treatments include vagus nerve

stimulation where an electrical device is placed in the shoulder to stimulate a cranial nerve,

along with special diets, such as the ketogenic diet, have shown promise. However, for more

than a third of patients, breakthrough seizures, or seizures that continue despite the treatment,

will occur. This condition is known as intractable or refractory epilepsy. The Epilepsy

Monitoring Unit at Spectrum Health in Grand Rapids, Michigan, is one place where advanced

medical and surgical therapy is offered. Patients stay in a private room for 5 to 7 days while a

microphone and video equipment are setup to track seizure activity. Electrodes are placed on

the surface of the scalp and implanted on the surface of the brain to track detailed brain

activity over time. The clinical team changes the environmental conditions of the patient by

introducing stressors, such as light, sound or insomnia to induce seizure activity so the events

can be recorded. Millions of data points are recorded over this period and reviewed by a team

of epileptologists and epilepsy neurosurgeons to determine which zone of the brain is the

epileptogenic focus and must be resected to reduce or stop the seizures all together.

(Treatments for Epilepsy, 2019)

2.2 Electroencephalogram (EEG)

Epilepsy is one of the few common clinical problems routinely diagnosed using an

Electroencephalography (EEG) evaluation. EEG measures the electrical activity coming from

thousands of neurons firing in the brain. Neurons communicate by sending electrical impulses

between each other in a complex network structure throughout the brain. By “listening” to

19

certain parts of the brain, neurologists can get a better understanding of how information is

shared and if there are issues with the messages being transmitted or received. EEG can reveal

specific features that are unique to several epilepsy syndromes. Rarely are these features

recorded in healthy, particularly young patients. EEG recordings are critical pieces of

information when it comes to identifying the seizure onset zone (SOZ). Epileptologists look at

the first clinical signs and symptoms of a seizure along with the evolutions of the seizure

symptomatology to identify important localizing clues. Noninvasive EEG recordings are taken

from surface electrodes placed directly on the scalp. While the recording is less sensitive than

invasive studies, it can help to provide a general area of where the SOZ is located.

Figure 2: An illustration of EEG recording (Ref. EEG, Saint Luke's Health System)

Intracranial EEG (iEEG) is an invasive procedure where electrodes are placed inside the

brain through surgery. This type of electrophysiological monitoring is also referred to as

electrocorticography (ECoG). The electrodes are placed on the exposed cortex and in order to

20

access this region the surgeon must perform a craniotomy, removing part of the skull to expose

the brain surface. The electrodes can be in an array that is placed directly on the surface of the

brain, or long needle electrodes that are placed deep within the brain. The precision and

resolution with these methods are much more accurate than normal EEG and they can be left in

over longer periods of time - from 5 to 10 days. The system is continuously sampling at 1000-

2000Hz and can have between 4 to 256 different channels collecting signals simultaneously.

This provides the clinicians with massive amounts of data that they can then use to try and

locate the SOZ. With so much data, it becomes essentially that the clinicians are armed with

methods to efficiently clean and analyze all the iEEG signals.

Figure 3: Intracranial EEG electrode placement (Journal of Neurosurgery)

21

2.3 Current SOZ Identification Methods

There are numerous ways that epileptologists use the iEEG signals to try and locate the

SOZ, like analyzing features between the phase of the amplitude of the high gamma activity and

the phase of lower frequency rhythms (Elahian, Yeasin, Mudigoudar, Wheless, & Babajani-

Feremi, 2017) or using directed information to infer the causal connectivity graph between

ECoG signals (Malladi, Kalamangalam, Tandon, & Aazhang, 2016). However, one method that

has been continuing to generate a lot of attention are High Frequency Oscillations (HFOs).

HFOs are defined as spontaneous EEG patters in the frequency range of 80-500Hz, consisting of

at least four cycles that can be “clearly” distinguished from background noise. (Buzsaki,

Horvath, Urioste, & et, 1992) By isolating the channels that have the most HFOs, the research

might be able to better zero in on the SOZ. One method for HFO detection was presented by

Sergey Brunos and team in the April 2014 issue of PLOS ONE. (Brunos, et al., 2014) This method

was also adapted by a prior graduate student and applied to patients at the Spectrum Epilepsy

Monitoring Unit (EMU) in fulfillment of their graduate work. Both methods break the

identification of the HFO into stages. In the first stage, Epochs of Interest (EoIs) are identified

by creating an envelope of the band-pass filtered signal using the Hilbert transform and then

building an amplitude threshold from the standard deviation of the envelope. These EoIs are

then merged if they are less than 10 ms apart and rejected if they don’t have a minimum of 6

peaks. In the second stage, the EoIs are transformed to the time-frequency space using the

Stockwell transform and then HFOs are accepted or rejected based on their high and low

frequency peaks. (Brunos, et al., 2014) Riazul adapted this method to MATLAB and while he

22

kept the overall process flow the same, there were changes made to thresholds and frequency

ratios to better handle the data coming from the EMU. (Islam, 2015)

Another HFO detection method for SOZ identification that seems promising is referred to

as the CS algorithm (Cimbàlnìk-Stead). One of the big differences between the CS method and

a method like the one described above (Brunos, et al., 2014) is based on the thresholding. The

CS algorithm states that their method considers the non-stationarity of the EEG signal by using

adaptive thresholds that are built from renormalizing metrics at specific frequencies in 10

second blocks. (Cimbàlnìk, Hewitt, Worrell, & Stead, 2018) While this paper doesn’t go into

depth on these other methods, they are worth mentioning, since they could also be adapted

and built into an open source system that epileptologists and researchers could use to analyze

their iEEG data.

2.4 Commercial vs Open Source Software

To have something be open source is a mindset and way of thinking. This is saying that

through transparency and collaboration the output that can be created is far more impactful

than if the work and research was closed off. For doctors and patients to be on the same page

with diagnoses and treatment there has been a big push in the medical field to try and open

more data information to patients and researchers. One great example of this is an initiative

called OpenNotes. This is an international movement supporting and studying the effects of

transparent communication by providing patients and families the meaningful notes described

in a telehealth or office visit (Open Notes, 2020). Another example is an open source tool called

Mendel, MD that could help doctors analyze patient’s genetic data in order to diagnose disease

23

caused by mutations. (Cardenas & et, 2017) The researchers designed this tool to be “intuitive

enough to be used directly by physicians, even those who are not proficient in bioinformatics.”

This is a value benefit of open source software vs. commercial software, the ability to customize

a product to fit the needs of specific doctors, or clinicians. Commercial products tend to be

inflexible. If the researcher finds the exact software for their exact problem, then the

commercial version is great, but for everyone else, the data and problem are less defined, and

the methods of analysis are constantly changing. By partnering with a research institute or

university, the doctors can continuously refine and update their open source version with the

latest methods. Also, crowd sourcing solutions and sharing information is a proven effective

way to ensure the validity of the techniques leading to more robust algorithm development.

24

3 Methodology

There were two sets of iEEG data used to validate the open source HFO detection

algorithm. The first was a single channel 30 second data set collected from (Brunos, et al.,

2014) sampled at 2000Hz. The second was data collected from the Spectrum Health EMU.

Data was recorded for evaluation starting the day after electrode implantation and was

sampled at 1000Hz across 88 channels. The anti-aliasing filter was set at 300Hz on the EEG

recording device.

3.1 HFO detection algorithm

Sergey Brunos and team published their HFO detection method in 2014 and a major focus

of their algorithm was to identify and discard spurious detections caused by artifacts or sharp

epileptic activity. They accomplished this by focusing on analysis in the time-frequency domain

in the second stage of their algorithm. In prior graduate work (Islam, 2015) this HFO detection

algorithm was adapted to MATLAB with some modifications that will be discussed later in this

section. Ultimately, this paper will focus on the translation of prior graduate work on the

Brunos HFO detection algorithm into a version written in the Python open source development

language. We also explore the benefits of using an open source language for flexibility and

optimization.

In the first stage of the algorithm, events of interest (EoIs), were identified from the

filtered iEEG signal. The signal was first passed through a band-pass filter from 80-488Hz. An

Infinite Impulse Response (IIR) Elliptic or Cauer filter was used with 60 dB minimum lower and

upper stop band attenuation, 0.5 dB maximum pass band ripple, 10 Hz lower and upper

25

transition width. (Islam, 2015) The one difference with the Python method was the filter order.

The Python package, scipy, used to build the filter has a function called iirdesign, which will

select the minimum order based on the requirements passed to it. The filtered signal was then

scanned for events above the chosen threshold and sufficient duration to qualify as EoIs.

(Brunos, et al., 2014) The envelope of the filtered signal was calculated using the Hilbert

Transform and the envelope was then scanned for events. Figure 4 shows a diagram of the first

stage.

Figure 4: EoI detection (stage 1 of HFO detection algorithm)

The first difference between the Brunos method and the prior graduate work is in the

amplitude thresholding, shown in step 3 above. Brunos sets a different threshold for each

channel, using the mean of the channel plus 3 standard deviations. In prior graduate research,

they found that this identified too many EoIs for each channel and ultimately made the SOZ

detection non-specific. They proposed that a threshold could be set using the mean plus 3

standard deviations of all the channels. The researcher argues this identifies the SOZ more

effectively and is also more computationally efficient. (Islam, 2015) An event was marked when

the envelope exceeded the threshold. The duration of the event was calculated using the

26

upward and downward crossing of half the threshold. If the duration exceeded 6ms, it qualified

as an EoI. Events with inter-event-intervals of less than 10ms were merged into one EoI. Events

not having a minimum of 6 peaks greater than 2 SD from the mean baseline signal were

rejected. (Brunos, et al., 2014) An example of an EoI from (Islam, 2015) is shown in figure 5.

27

Figure 5: (a) 10s raw iEEG signal (b) 0.5s of iEEG signal containing an EoI (c) 80 to 488 Hz band passed filtered
signal and envelope of the signal

In stage 2 the algorithm employed the Stockwell Transform to convert the signal to the

time-frequency domain. In order to qualify as an HFO, the EoI detected in stage 1 must exhibit

28

a high frequency peak, which is isolated from the low frequency activity by a spectral trough.

Figure 6 shows a diagram of stage 2.

Figure 6: Time-frequency space analysis for recognition of HFOs among EoIs

The instantaneous power spectra were computed for all time points of the envelope within the

full width at half maximum above threshold (FWHM). This boundary assures that the maximum

of the envelope and its neighborhood above the threshold is taken into analysis. The

instantaneous power spectrum for each time point was parameterized by three frequency bins

in the following way. (Brunos, et al., 2014)

1. The high frequency peak (HiFP) was selected as the spectral peak of the HFO. This HiFP

was selected in the spectral range from fmin (HiFP) = 60 Hz to 500 Hz. For the HFO in

figure 7, the HiFP is 116 Hz because there is a spectral peak at that frequency.

29

2. The trough is defined as the minimum in the range between fmin (trough) = 40 Hz and

the HiFP. For the HFO in Figure 3.6 there is a visible power gap around 80 Hz. The

trough frequency is therefore 83 Hz.

3. The low frequency peak (LoFP) is defined as the closest local maximum below the

trough. For figure 7, this is 47 Hz.

30

Figure 7: Time-frequency space representation of an HFO

31

These three frequency bins were used to distinguish HFOs in the instantaneous spectrum at

each time point with the FWHM. To qualify as an HFO, the trough of sufficient depth

Power (Trough)/Power (HiFP) < 0.8

and a HiFP peak of sufficient height

Power (HiFP)/Power (LoFP) > Rthr = 0.5

These two conditions have to be satisfied by all instantaneous power spectra within the FWHM.

The EEG channels were ranked depending on total number of HFOs detected over two hours of

study, and the channels with HFO rates higher than half the maximum rate contributed to the

HFO region.

The method described above, which was originally written in MATLAB for prior graduate

research, can now be thought of as a code block, the HFO detection block. From this point on,

that block can be inserted into different workflows using iEEG signals as inputs. The following

sections will cover how the MATLAB block was converted to a Python block, and then how this

new open source version of the block was plugged into a more efficient processing framework

for EMU clinicians in partnership with researchers at GVSU.

3.2 Performance optimization

There are two main ways in which we focused on optimizing the HFO detection algorithm.

As stated above, if we think about the algorithm as a block that takes an input of raw iEEG data

and outputs the HFO count of that data, then by optimizing the block itself, it can more

efficiently analyze multiple channels of iEEG data. This is the first method and is shown in figure

32

8 below. By optimizing the HFO detection block, this could speed up the time it takes for the

algorithm to process one 2-hour channel of data. This area was not the focus of performance

optimization. To truly do this well would require a Python developer who knows the

efficiencies of the code and could then optimizing each section of the algorithm. While this is a

beneficial exercise, it should be the focus of future work as this system gets closer to

production level.

Figure 8: HFO detection algorithm flow chart

The areas that were explored deal more with a process re-arrangement and how we

think about arriving at the final output that the researcher or clinician use. Since we are

sampling between 1000 Hz and 2000 Hz, one channel from one 2-hour file becomes a very large

dataset, anywhere from 7,200,000 to 14,400,000 data points, and this is just for one channel.

Bring in 88 channels, we have over 1 billion data points. Trying to come up with a more

efficient way to process a 2-hour file is not only helpful, it is necessary. The way we attempted

33

to solve this was to add an extra step into the process flow as a channel modification block.

Within this block we attempted three different ways to either reduce total channels, or

randomly sample the channels with the goal of processing less data. From here the HFO

detection algorithm is run on the modified channels and our processing speeds are much faster

since we are reducing the data size by up to a factor of 100 in some instances.

Figure 9: New process flow with extra screening stage added in.

For the channel aggregation method, the hypothesis was that if we could identify

groups of electrodes that were similar, we could average these signals over the full 2-hour

sample to decrease the total number of channels we would run through. Instead of processing

all 88, there would be anywhere from 5-15 new aggregated channels to process. To test this

idea, we looked at electrodes that were all on the same grid array and would then be on the

same region when placed on the brain. After averaging the grid arrays below the 6 modified

channels were run through the HFO detection algorithm to see if any patterns emerged

between the top HFO channels from the full analysis and the grid array regions.

34

Table 2: Table from (Islam, 2015) showing location of grid arrays for patient WDH-022

The other two methods that were explored focused on random sampling of each

channel. The assumption being made was if a channel had multiple HFOs across the whole

signal, then by taking a random subset of the signal and running that through, it should still

have more HFOs relative to the other channels, and ultimately be identified as a channel of

interest even without processing the whole 2 hour signal.

35

Figure 10: Diagram of how each channel was randomly sampled. Each channel is 120 minutes long and samples
range from 1 to 30 minutes.

The final method that was explored was a stratified random sampling approach, which

samples across intervals added in to make the sampling more uniform across the entire signal.

Figure 11: Diagram showing how each channel is broken into intervals before sampling.

36

By adding in this modification block we were able to greatly reduce the overall computation

time of a 2-hour data file. In the results section we will discuss by how much we were able to

reduce the computation time, and any trade-offs in resolution that were seen.

3.3 Development Tools

Open source development languages, such as Python, give the programmer flexibility and

the ability to test and iterate through multiple solutions quickly. Jupyter Notebooks are

another tool that we used to test out a framework for quick and agile development. Jupyter is

an open source web application that allows interactive computing across multiple languages.

Using these notebooks in combination with Python allowed us to create and test process flows

that could allow for rapid prototyping between GVSU students and Spectrum researchers.

Using interactive widgets within our code, we can test different user interfaces and also

graphical outputs with the clinicians and researchers to see which versions are the easiest to

use and also understand.

37

Figure 12: Example of a user interface built within Jupyter to test different optimization methods.

38

4 Results

4.1 Example Data

In order to validate how well the Python HFO detection version compared against the

HFO detection version written in MATLAB, we ran two iEEG datasets through each and

compared the results. The first dataset that was collected from (Brunos, et al., 2014) and was

sampled at 2000 Hz. In both the Brunos paper and prior graduate work (Islam, 2015) each

detected a total of 7 HFOs over a 30 second period. Figure 13 below is taken from (Islam, 2015)

and clearly shows the 7 locations where HFOs were detected. These data sets were used to see

how closely the Python version matched the “gold-standard” (Islam, 2015) version.

Figure 13: (a) 30 s example iEEG data sampled at 2000 Hz (b) Example data after 80 to 488 Hz band-pass filtering

In the Python version, the same filtered chart was generated and the HFO location was marked

with red vertical lines. Since HFO 1 and 2 are so close, the lines overlap, however the same 7

HFOs were detected in the Python version as well.

39

Figure 14: Filtered 30 s iEEG data sample using the Python HFO detection method. The vertical red bars indicate
where HFOs were detected

In order to make sure the Python version is not only identifying the HFO location, but also the

frequency content of each, we compared our results to the HFO result table in (Islam, 2015).

Table 3: Tables comparing time location and frequency content between (Islam, 2015) version (top) and open source
Python version (bottom)

40

4.2 Spectrum Health Epilepsy Monitoring Unit Data

The second file that was used to test the Python version came from the Epilepsy

Monitoring Unit at Spectrum. This file was from Patient ID WDH-022 and the data was

collected in October of 2014. A description of where the clinician identified the SOZ is detailed

in Table 4.

Table 4: Table from (Islam, 2015) showing information about the patient file used to test the open source HFO
detection algorithm

The 2-hour file from WDH-022 above was ran through both versions of the HFO detection

algorithm. Each version identified the HFOs in all 88 channels along with their frequency

content. The output of each was a bar chart showing channels across the x-axis and HFO count

along the y-axis. As can be seen in the figure below, the open source Python version matches

the MATLAB version almost perfectly. It is consistently lower by about 5%, which the reasons

for will be reviewed in the discussion section. This is one way to compare the output, but a

more realistic way is not to look at the exact HFO counts, but the channels with the highest HFO

counts since these will be what the clinician uses to help identify the SOZ. If we look at the top

20 channels with the highest HFO counts from the MATLAB version, our Python version

41

identifies the exact same 20 channels as having the highest HFO counts. Based on these results,

we can confidently say that the Python version can be used as a replacement HFO detection

method for the MATLAB version moving forward.

Figure 15: Bar charts comparing HFO counts across channels for the MATLAB and Python versions of the HFO
detection algorithm

42

4.3 Performance optimization

As was mentioned in the Methodology section, processing time becomes an issue when

trying to analyze a 2-hour file. For reference, running a full 2-hour file through the MATLAB

HFO detection algorithm on the GVSU Blade server took between 4-5 hours. To run the same

file through the Python HFO detection algorithm on a very large personal server took almost 3-

4 times as long, anywhere between 15-18 hours. The Blade server specifications on-line state

that it has up to 48 CPUs and 256GB of RAM, whereas the personal server has 8 CPUs and 64GB

of RAM. This server size difference probably accounts for most of the processing time

difference, which means clinicians and researchers in the future, who probably have machines

with 4 CPUs and 16-32GB of RAM, will run into processing times lasting days. Based on that,

this tool doesn’t become practical and an exploration of ways to decrease processing time

becomes necessary.

As was mentioned in the methodology section. Three methods of processing time

reduction were explored. The first was an aggregation method. Averaging out the signals from

the electrodes in the array gave us 6 channels which were then run through the HFO detection

algorithm. For the grid array D, 60 HFOs were detected, C had 67, A had 53, B had 31, E had 52

and F had 51. It took approximately 10 minutes to run all 6 aggregated channels through the

HFO detection algorithm. These outputs were much lower than expected and for the most part

there wasn’t one array that was drastically different than the others. Array C and D were the

highest and if we look at the 20 highest individual channels, most of them are in the C or D grid,

however this may just be a function of C and D also having the most electrodes on their arrays.

43

Reasons for this method not having the resolution we hoped for will be reviewed more in the

discussion section.

The other processing time reduction methods were two ways to randomly sample the full

signal. In the first approach, we looked at 4 different interval durations, 30 minutes, 15

minutes, 5 minutes and 1 minute. For each channel we randomly selected a subset from it, and

ran that through the HFO detection algorithm, we then compared the highest 20 channels

based on HFO count to the highest 20 channels on the full signal.

Table 5: Comparing top 20 channels based on HFO count for each sample subset

44

Each sample subset correctly identified over 50% of the top HFO channels when compared to

the full signal. This becomes even more impressive when looking at the time required to run

each subset through the HFO detection algorithm.

Table 6: Approximate time it took to run 88 channels through the HFO detection algorithm using various sample
subsets

For the stratified random sampling method, we broke each channel into 5 intervals and

then took a random 1-minute sample within each interval to run through the HFO detection

algorithm. The HFO count for each sample was added together for what was effectively a 5-

minute sample. Processing time was a little longer compared to the 5-minute signal with no

intervals, approximately 40 minutes verse 30 minutes, however, the output looked much more

promising.

45

Table 7: Comparing top 20 channels based on HFO count for each sample subset with 5-minute interval method.

In this table, the top 10 channels are colored a dark green and channels 11-20 are colored light

green. For the 5 x 1-minute interval method, of the first 10 channels identified, all of them are

within the top 20 from the full analysis, and 7 out of 10 are within the top 10 from the full

analysis. There is a distinct drop off after the top 11 channels which we will discuss further in

the next section. While the aggregation method for time reduction needs continued

exploration, the random sampling methods have potential to greatly reduction processing time

for clinicians.

46

5 Discussion

Based on preliminary results there seems to be high potential to use an open source

language, such as Python, in combination with Jupyter to build out a seizure analysis tool. Not

only were we able to translate the MATLAB HFO detection algorithm to Python, we were then

able to build on it in numerous ways and also test different user interfaces and visual outputs.

This is the true benefit of open source development tools. A developer can continuously build

the latest algorithms into their software, but also have the flexibility to change them for their

specific application. In this instance, the HFO detection algorithm is primarily to help identify

channels of interest, not necessarily to identify each HFO with 100% accuracy and because of

this we are able to focus on building out the screening aspects of the tool more. With further

researchers, clinicians might decide that they also need to understand the frequency content of

each HFO in the channel, and we would able to modify this tool to also accomplish this.

Another benefit of using a language like Python is its popularity. There are millions of

developers creating free packages for the language and publishing them for everyone to use.

For this HFO detection algorithm both (Brunos, et al., 2014) and (Islam, 2015) used a Stockwell

transform or s-transform, which is a generalized short-time Fourier transform, to identify

frequency content of the HFO over the specified window. This is a function that comes with the

MATLAB signal processing toolbox and is straight-forward to use, however it was more difficult

to find a similar function in Python. While this may be considered a limitation, we were able to

find the same function, written for Python, on a GitHub repository, free for anyone to use.

After verifying the accuracy was within 1-2Hz, I was able to build this into our algorithm and get

results within 5% of the MATLAB version. Since the functions weren’t identical, we believe this

47

is the reason for the small difference in overall HFO detections, but the difference was

consistent and could be compensated for in future versions.

Since this is meant to be a tool used by clinicians, speed and processing time become top

priorities for development. In the results section we discussed two methods to try and deal

with this. The aggregation method seemed promising at first, however, by averaging the

signals this mostly likely smoothed them to the point that the high frequency content was

removed. This would explain why only 50-60 HFOs were detected in the aggregated signals

while some of the highest individual channels had over 1000. One way to try and get better

resolution would be to reduce the number of signals aggregated into one channel. Some of the

grid arrays contained 32 electrodes which would lend itself to signal smoothing, and maybe

only 2-3 channels per aggregated signal would make more sense, but at this point the time

reductions starts to become minimal and ultimately may not be worth the loss of signal

information to averaging. For long term development, stratified random sampling has the most

potential for significant processing time reduction.

From Table 5 we can see that each sampling subset identifies at least 50% of the top 20

channels (as identified by the full data analysis gold standard) for HFOs, and all of them identify

the topmost channel. Even the 1-minute subset identifies the top 5 channels within the 20.

These results help initiate a conversation about what is most important for the clinician to see

when using this tool. Do they need to perfectly identify the top 20 channels, or maybe just the

channels that are outliers? By zeroing in on what is most beneficial for the SOZ detection, we

can start to tune the algorithm accordingly.

48

Combining 1-minute samples across equally spaced intervals appears to be an option that

has good resolution with greatly reduced processing time. Using 5 intervals, the algorithm

identified 7 of the top 10 HFO channels and took roughly 40 minutes to run through the entire

86 channels. Compared to almost 18 hours for the full 2-hour analysis. It is interesting to note

that after the top 11 channels, none of the other 12-20 spots identify a top HFO channel. It

seems that for this method to work, there needs to be a certain number of HFOs within the

channel. It is unclear what the number of HFOs needs to be but should be the subject of future

work.

49

6 Future Work

One area of focus for future research should be around algorithm optimization, specifically

parallel processing methods. Since the detection algorithm is on a for loop and performs the

same operation on each channel in series, we should be able to leverage more cores and have

the algorithm running in parallel. One Python package that allows an individual to use all their

computer cores for processes like this is called DASK and should be explored (DASK, 2020).

Figure 16: HFO detection algorithm with parallel processing built in

Another area that needs to be explored is how the researchers and clinicians would use the

output from the HFO Detection Algorithm. Now that we have an actual development tools, we

could have discussions with the EMU team and change the algorithm in real-time. This would

give us more tangible feedback and would also make it easier for the clinicians to understand

50

what features they have at their disposal. The focus of this research was around HFO

detection, but there are many other ways that we can visualize and analyze the EEG signals that

can also be incorporated into a tool like this.

The addition of features like network connectivity become much easier by embracing

python and Jupyter as a development framework. We can also begin to tweak parameters

within the original HFO detection algorithm. For example, some of the rejection rations are

based on real HFO parameters and can be tuned to the researcher or clinician. They may find

that a higher peak, or lower trough is more appropriate to identify an HFO which can be easily

changed with this new tool. New functions and modules can be added in quickly by multiple

researchers, students, and teachers providing a truly collaborative and adaptive tool.

51

7 Conclusions

This thesis contributes to bridging the gap between industry and academia and shows that

we can take the work done by previous GVSU graduates, translate it into an open source

version, and quickly iterate and build upon it to meet the needs of the researchers working in

the Spectrum Epilepsy Monitoring Unit.

We have shown that the Python version we developed gets comparable accuracy to the

MATLAB version from prior graduate work (Islam, 2015) as well as speed when balancing for

server specifications. From here we were able to explore the suite of open source development

tools available with Python and Jupyter and laid out a framework for future development.

Using these tools, students and teachers can began to rapidly prototype different algorithms

related to data coming out of the EMU and work with clinicians and researchers to test better

ways to visualize and use the output coming out of these tools.

Moving forward it will be the responsibility of the clinicians, doctors, teachers and students

to embrace the use of these tools for the greatest impact. By making these processes standard

practice, sharing ideas and methodologies will become second nature. Spectrum Health will

have access to the latest advancements in signal and image processing while the GVSU students

will be receiving invaluable experience and helping to create a real impact in patients’ lives.

52

8 Appendices

8.1 Full HFO Count Table

HFO Count with subsets

Channels Full Sample (Riazul) Full Sample (Cody) 30 minutes 15 minutes 5 minutes 1 minute 5 - 1-minute
intervals

C18 1131 1075 3 61 1 27 73

B4 1418 1299 372 63 42 12 58

C12 960 886 371 204 73 12 48

D14 999 937 196 70 47 10 41

C19 538 496 77 76 8 9 31

D1 841 789 120 96 16 9 24

C27 183 167 108 95 1 0 20

C5 406 377 62 20 18 0 19

D2 213 200 15 9 1 0 17

C21 191 173 90 41 0 0 15

C20 327 285 13 6 10 2 11

F1 57 57 6 3 1 0 10

C7 45 42 3 2 1 0 10

E4 63 58 7 2 9 0 9

D28 53 53 40 3 0 0 8

C26 85 83 7 2 0 8 7

D18 68 64 1 0 1 0 7

C22 59 56 3 1 7 0 7

A1 88 85 13 22 2 0 5

D11 81 73 6 6 2 1 5

C24 56 54 2 1 0 1 5

C11 323 300 17 7 2 11 4

C10 318 278 6 48 16 0 4

C4 196 174 29 10 2 1 4

C25 181 165 41 9 5 1 4

A4 167 154 82 11 3 0 4

C28 142 120 88 5 1 0 4

D10 91 86 1 62 1 1 4

B2 37 37 1 0 1 0 4

D5 155 146 13 5 6 1 3

D22 134 122 10 12 0 11 3

C9 119 109 70 10 2 0 3

C17 118 115 23 19 2 1 3

F3 56 54 40 2 1 0 3

53

D7 49 46 2 1 0 0 3

C13 116 108 61 2 0 0 2

F2 67 64 4 37 1 0 2

C30 55 52 3 19 0 0 2

E3 54 52 4 2 1 0 2

C14 53 50 38 32 0 2 2

B3 231 224 105 22 9 0 1

C3 149 134 9 4 1 1 1

A3 74 73 5 3 2 0 1

D23 67 63 10 0 1 0 1

D17 64 62 5 0 1 0 1

D26 64 63 3 0 0 0 1

D31 63 58 42 2 0 0 1

D25 61 55 2 1 1 5 1

D27 58 56 6 1 0 8 1

F4 58 55 43 2 1 0 1

E2 57 54 5 2 0 0 1

D29 56 51 8 4 1 0 1

E6 56 51 39 2 0 0 1

C31 53 53 4 13 0 0 1

D21 52 49 1 3 0 0 1

D30 52 49 6 15 1 0 1

E1 51 49 4 21 2 7 1

F8 48 47 32 2 3 0 1

F5 46 46 3 1 19 0 1

B1 37 37 32 0 0 0 1

A2 34 34 23 1 1 0 1

D3 147 131 13 9 5 0 0

D4 106 99 5 2 3 0 0

D9 97 85 65 0 0 0 0

C29 86 78 5 0 0 0 0

D12 74 66 7 5 0 1 0

C2 73 70 35 4 1 0 0

D13 73 71 2 1 0 0 0

C1 67 62 8 3 0 9 0

D6 66 65 43 3 17 0 0

D19 64 59 6 0 19 0 0

D24 58 54 6 2 0 0 0

C16 55 54 3 1 0 0 0

D20 55 50 2 3 1 0 0

E5 55 52 17 15 2 0 0

54

D15 53 53 40 2 1 0 0

F6 53 51 4 2 1 0 0

C32 52 50 3 2 0 0 0

C6 51 47 4 2 0 0 0

D8 51 48 37 0 1 0 0

C15 50 49 3 11 0 3 0

C23 50 45 1 2 0 0 0

F7 50 46 3 11 0 0 0

D32 49 46 5 2 4 0 0

D16 48 44 31 2 0 0 0

C8 43 43 2 1 1 0 0

55

8.2 Python HFO Detection Code

HFO Detection Notebook
GVSU Biomedical Engineering- November 30th, 2020

Before using this notebook, go to the Kernal tab above and select 'Restart & Run All'. The interactive widgets will allow the user to change the
number of channels to analyze, the number of intervals to break each channel into, and finally the sample size used within each interval to
calculate the number of HFOs. This notebook and code were developed for the Biomedical Engineering department at GVSU as a part of the
thesis for Cody Dean.

#import all packages and set options for the notebook and the cell outputs
import warnings
warnings.filterwarnings('ignore')

from IPython.display import HTML, display
from ipywidgets import interact, interactive, fixed, interact_manual, Button, Layout, IntSlider
import ipywidgets as widgets

import pandas as pd
import numpy as np
from numpy import random
import time

import scipy.special
from scipy import signal
from stockwell import st
import pyedflib

from bokeh.plotting import figure, show, output_notebook, save, output_file, reset_output
from bokeh.models import HoverTool, value, LabelSet, Legend, ColumnDataSource, Range1d
from bokeh.transform import dodge

pd.set_option('display.max_columns', 999)
pd.set_option('display.max_rows', 999)

#Load data from edf file and convert to a pandas dataframe for easier use
f = pyedflib.EdfReader('BA2681LD_1-1.edf')
n = f.signals_in_file
signal_labels = f.getSignalLabels()
Fs = int(f.samplefrequency(0))
Indices = np.arange(n)
#convert edf data into dataframe
df = pd.DataFrame(columns=signal_labels)
for i in Indices:
 df[signal_labels[i]] = f.readSignal(i)
#drop all channels we don't need for this analysis
df.drop(['E','DC01','DC02','DC03','DC04','EEG Mark1','EEG Mark2','REF','REF','ECG','ECG','Events/Markers']
, axis=1, inplace=True)

#for this current version we will reference data that is already loaded, for future versions we can explor
e loading that data within a separte function and ipywidgets
#This will also reference data from the file loaded such as sampling frequency
def HFO_Detection(Channels,Intervals,Samples):
 #full limit goes to 86
 start = time.time()
 HFOcount = []
 sig_length = df.shape[0]
 interval_len = int(sig_length/Intervals)

 for col in list(df.columns[0:Channels]):
 hfocount=0 #initialize hfocounter for intervals
 #sample is in minutes times 60 seconds/minutes

56

 seconds = Samples * 60
 #period is seconds times sampling frequency to get total data points
 period = seconds * Fs
 #generate random number with enough space on end to be able to rand select last data point
 #add a 1 for when 120 minutes is selected, this will be randint(0,0) without, don't think it will
affect other samples
 #using array of intervals to select a random sample within each one
 for i in np.arange(0,Intervals):
 x = random.randint(i*interval_len,((i+1)*interval_len-period)+1)
 results = nbt_doHFO_revised4(df[col][x:x+period])
 #put this in to remove blank rows, not sure why those are adding, need to revisit
 results = results[results['start'] > 0]
 #count hfos for each interval, sum up for total for channel
 hfocount = hfocount+results.shape[0]

 HFOcount.append({'Channel':col, 'HFO count':hfocount})

 HFOcount = pd.DataFrame(HFOcount)
 #need to reset notebook each time so it plots a new chart when Run Algorithm is selected
 reset_output()
 output_notebook()

 channels = HFOcount['Channel']
 counts = HFOcount['HFO count']

 p = figure(x_range=channels, title='Number of HFOs per Channel - Top 10 channels from full file analys
is are marked in red', plot_width=1550, plot_height=600, background_fill_color="grey")

 p.vbar(x=channels, top=counts, width=0.9, line_color='white')
 # add a circle for the top 10 HFO channels from initial analysis of full file
 p.circle(['B4','C18','D14','C12','D1','C19','C5','C20','C11','C10'], [1,1,1,1,1,1,1,1,1,1], size=10, c
olor="red", alpha=0.5)

 p.y_range.start = 0
 p.xaxis.axis_label = 'Channels'
 p.xaxis.major_label_text_font_size = '6pt'
 p.xaxis.major_label_text_font_style = 'bold'
 p.yaxis.axis_label = 'HFO Count'
 p.grid.grid_line_color="white"

 show(p)
 end = time.time()
 print('It took approximately %s seconds for the HFO Detection Algorithm to analyze the selected data'
%(round(end-start,2)))

 return;

#main function that allows us to dynamically set variables
im = interact_manual(HFO_Detection, Channels=np.arange(1,87), Intervals=np.arange(1,21), Samples=[('2 Hour
s',120),('30 minutes',30),('15 minutes',15),('5 minutes',5),('1 minutes',1)])
im.widget.children[3].description = 'Run Algorithm'
display(im)

#automatic time-frequency algorithm for detection of HFOs
#This was translated to python from the origianl publication at http://www.plosone.org/article/info%3Adoi%
2F10.1371%2Fjournal.pone.0094381
===
def nbt_doHFO_revised4(Signal):
 #set initial parameters - 30sec
 #fs = 2000
 #hp = 80
 #lp = 500

 #set initial parameters - BA2681LD_1-1
 fs = 1000
 hp = 80
 lp = 488

 #set initial parameters - 11.edf

57

 #fs = 200
 #hp = 58
 #lp = 62

 channel_name = 'Test'
 time_thr = np.ceil(0.006*fs)

 #parameters for filtering
 Fst1 = (hp-10)/(fs/2)
 Fp1 = hp/(fs/2)
 Fp2 = lp/(fs/2)
 Fst2 = (lp+10)/(fs/2)
 Ast1 = 40
 Ap = 0.5
 Ast2 = 40

 #merge IoEs
 maxIntervalToJoin = 0.01*fs #10 ms

 #reject events with less than 6 peaks
 minNumberOscillations = 6
 dFactor = 2

 #Stage 2
 bound_min_peak = 40 #Hz, minimum boundary for the lowest ("deepest") point
 ratio_thr = 0.5 #threshold for ratio
 min_trough = 0.2 #20%
 limit_fr = 500
 start_fr = 60 #limits for peak frequencies

 # 1. filtering ---a
 #see end of notebook for notes on conversion
 wp = [Fp1,Fp2]
 ws = [Fst1,Fst2]
 gpass = Ap
 gstop = Ast1

 #bandpass filter
 [b,a] = signal.iirdesign(wp, ws, gpass, gstop, analog=False, ftype='ellip')
 Signal_filtered = signal.filtfilt(b,a,Signal)

 # 2. envelope ---
 env = np.abs(signal.hilbert(Signal_filtered))

 # 3. threshold ---
 #THR = 3 * np.std(env) + np.mean(env) - use this threshold for 30sec file
 THR = 27.19761355 #use this threshold for 2 hour EMU files

 # 4. Stage 1 - detection of EoIs ---
 #assign the first and last positions at 0 point
 env[0] = 0
 env[-1] = 0

 pred_env = np.zeros(len(env))
 pred_env[1:len(env)] = env[0:len(env)-1]
 pred_env[0] = pred_env[1]

 if np.size(pred_env,0) != np.size(env,0):
 pred_env = pred_env.T

 #np.where is python equivalent to matlab find(), returns index where conditions are true
 #for some reason returns array in one cell, explore later, but if we take the first element that gives
us what we want
 t1 = np.where((pred_env < (THR/2)) & (env >= (THR/2)))[0] #find zero crossings rising
 t2 = np.where((pred_env > (THR/2)) & (env <= (THR/2)))[0] #find zero crossings falling

 trig = np.where((pred_env < THR) & (env >= THR))[0] #check if envelope crosses the THR level rising
 trig_end = np.where((pred_env >= THR) & (env < THR))[0] #check if envelope crosses the THR level falli
ng

58

 Detections = pd.DataFrame(0.0, index=range(len(trig)), columns=['channel_name','start','peak','stop','
peakAmplitude'])
 nDetectionCounter = 0

 # check every trigger point, where envelope crosses the threshold,
 # find start and end points (t1 and t2), t2-t1 = duration of event;
 # start and end points defined as the envelope crosses half of the
 # threshold for each EoIs

 for i in np.arange(0,len(trig)):

 if ((trig_end[i] - trig[i]) >= time_thr):

 nDetectionCounter = nDetectionCounter + 1
 #not sure why it is buried in layers of arrays, add the index at the end to get out int
 k = np.where((t1 <= trig[i]) & (t2 >= trig[i]))[0][0] #find the starting and end points of env
elope
 Detections['channel_name'][nDetectionCounter-1]=channel_name

 #check if it does not start before 0 moment
 if t1[k] > 0:
 Detections['start'][nDetectionCounter-1] = t1[k]
 else:
 Detections['start'][nDetectionCounter-1] = 1

 #check if it does not end after last moment
 if t2[k] <= len(env):
 Detections['stop'][nDetectionCounter-1] = t2[k]
 else:
 Detections['stop'][nDetectionCounter-1] = len(env)

 #calculate the max and where it occurs
 peakAmplitude = np.max(env[t1[k]:t2[k]])
 ind_peak = np.argmax(env[t1[k]:t2[k]])

 Detections['peak'][nDetectionCounter-1] = (ind_peak + t1[k])
 Detections['peakAmplitude'][nDetectionCounter-1] = peakAmplitude

 if (nDetectionCounter > 0):

 joinedDetections = joinDetections(Detections,trig)

 checkedOscillations = checkOscillations(joinedDetections, Signal_filtered)

 PSvalidated = PS_validation_all(checkedOscillations, Signal, env)

 else:
 PSvalidated = Detections

 return PSvalidated;

===
Any EoI that are close to each other and almost indistinguishable, are merged into one EoI
def joinDetections(Detections,trig):

 warnings.filterwarnings("ignore")
 #Merge EoIs with inter-event-interval less than 10 ms into one EoI
 nOrigDetections = len(Detections)
 #merge IoEs
 fs = 1000
 maxIntervalToJoin = 0.01*fs #10 ms

 #fill result with first detection
 joinedDetections = pd.DataFrame(0.0, index=range(len(trig)), columns=['channel_name','start','peak','s
top','peakAmplitude'])
 joinedDetections['channel_name'][0] = Detections['channel_name'][0]
 joinedDetections['start'][0] = Detections['start'][0]
 joinedDetections['stop'][0] = Detections['stop'][0]

59

 joinedDetections['peak'][0] = Detections['peak'][0]
 joinedDetections['peakAmplitude'][0] = Detections['peakAmplitude'][0]
 nDetectionCounter = 0

 for n in np.arange(1,nOrigDetections):

 #join detection
 if (Detections['start'][n] > joinedDetections['start'][nDetectionCounter]):
 nDiff = Detections['start'][n] - joinedDetections['stop'][nDetectionCounter]

 if (nDiff < maxIntervalToJoin):
 joinedDetections['stop'][nDetectionCounter] = Detections['stop'][n]

 if (joinedDetections['peakAmplitude'][nDetectionCounter] < Detections['peakAmplitude'][n])
:
 joinedDetections['peakAmplitude'][nDetectionCounter] = Detections['peakAmplitude'][n]
 joinedDetections['peak'][nDetectionCounter] = Detections['peak'][n]

 else:
 #initialize struct
 nDetectionCounter = nDetectionCounter + 1
 joinedDetections['channel_name'][nDetectionCounter] = Detections['channel_name'][n]
 joinedDetections['start'][nDetectionCounter] = Detections['start'][n]
 joinedDetections['stop'][nDetectionCounter] = Detections['stop'][n]
 joinedDetections['peak'][nDetectionCounter] = Detections['peak'][n]
 joinedDetections['peakAmplitude'][nDetectionCounter] = Detections['peakAmplitude'][n]

 #clear out zero rows, probably not efficient code, just trying to get everything working at this point
 joinedDetections = joinedDetections.replace(0,np.nan).dropna()
 #should go back and figure out why these go to floats
 joinedDetections['start'] = joinedDetections['start'].astype(int)
 joinedDetections['stop'] = joinedDetections['stop'].astype(int)
 joinedDetections['peak'] = joinedDetections['peak'].astype(int)

 return joinedDetections;

===
HFO needs to have a sufficient number of oscillations - this funtion verifies and cleans out ones that d
on't
def checkOscillations(Detections, Signal):

 # Reject events not having a minimum of 6 peaks above 2 SD
 # ---
 # set parameters
 #reject events with less than 6 peaks
 channel_name = 'HLI-HL2'
 minNumberOscillations = 6
 dFactor = 2
 nDetectionCounter = -1
 AbsoluteMean = np.mean(np.abs(Signal))
 AbsoluteStd = np.std(np.abs(Signal))
 checkedOscillations = pd.DataFrame(0.0, index=range(len(Detections)), columns=['channel_name','start',
'stop','peak',
 'peakHFOFrequency','troughFr
equency',
 'peakLowFrequency','peakAmpl
itude'])

 for n in np.arange(len(Detections)):
 #get EEG for interval
 #add 1 since python indexes to 1 before last value
 intervalEEG = Signal[Detections['start'][n]:Detections['stop'][n]+1]
 # compute abs values for oscillation interval
 absEEG = np.abs(intervalEEG)
 #look for zeros
 zeroVec = np.where(np.multiply(intervalEEG[0:-1],intervalEEG[1:])<0)[0]
 nZeros = np.size(zeroVec)

 nMaxCounter = 0;

60

 if (nZeros > 0):
 #look for maxima with sufficient amplitude between zeros
 for ii in np.arange(nZeros-1):

 lStart = zeroVec[ii]
 lEnd = zeroVec[ii+1]
 dMax = np.max(absEEG[lStart:lEnd])

 if (dMax > AbsoluteMean + dFactor + AbsoluteStd):
 nMaxCounter = nMaxCounter + 1

 if (nMaxCounter >= minNumberOscillations):
 nDetectionCounter = nDetectionCounter + 1
 checkedOscillations['channel_name'][nDetectionCounter] = Detections['channel_name'][n]
 checkedOscillations['start'][nDetectionCounter] = Detections['start'][n]
 checkedOscillations['stop'][nDetectionCounter] = Detections['stop'][n]
 checkedOscillations['peak'][nDetectionCounter] = Detections['peak'][n]
 checkedOscillations['peakHFOFrequency'][nDetectionCounter] = 0
 checkedOscillations['troughFrequency'][nDetectionCounter] = 0
 checkedOscillations['peakLowFrequency'][nDetectionCounter] = 0
 checkedOscillations['peakAmplitude'][nDetectionCounter] = Detections['peakAmplitude'][n]

 if (nDetectionCounter < 0):
 checkedOscillations['channel_name'][0] = channel_name
 checkedOscillations['start'][0] = -1
 checkedOscillations['stop'][0] = -1
 checkedOscillations['peak'][0] = -1
 checkedOscillations['peakHFOFrequency'][0] = 0
 checkedOscillations['troughFrequency'][0] = 0
 checkedOscillations['peakLowFrequency'][0] = 0
 checkedOscillations['peakAmplitude'][0] = 0

 checkedOscillations = checkedOscillations.iloc[checkedOscillations['channel_name'].nonzero()[0]]
 #should go back and figure out why these go to floats
 checkedOscillations['start'] = checkedOscillations['start'].astype(int)
 checkedOscillations['stop'] = checkedOscillations['stop'].astype(int)
 checkedOscillations['peak'] = checkedOscillations['peak'].astype(int)

 return checkedOscillations;

Stage 2 - recognition of HFOs among EoIs

#===
def PS_validation_all(Detections, Signal, env):

 # set parameters
 channel_name = 'HLI-HL2'
 fs = 1000
 bound_min_peak = 40 #Hz, minimum boundary for the lowest ("deepest") point
 ratio_thr = 0.5 #threshold for ratio
 min_trough = 0.2 #20%
 limit_fr = 500
 start_fr = 60 #limits for peak frequencies
 #THR = 3 * np.std(env) + np.mean(env)
 THR = 27.19761355 #use this threshold for 2 hour EMU files
 nDetectionCounter = -1
 PSvalidated = pd.DataFrame(0.0, index=range(len(Detections)), columns=['channel_name','start','stop','
peak',
 'peakHFOFrequency','troughFr
equency',
 'peakLowFrequency','peakAmpl
itude'])

 for n in np.arange(len(Detections)):

 if ((Detections['peak'][n] != -1) & ((Detections['stop'][n]-Detections['start'][n]) < fs*1)):
 #find the sec interval where the peak occurs

61

 det_start = Detections['peak'][n]-Detections['start'][n]
 det_stop = Detections['stop'][n]-Detections['peak'][n]

 #define 0.5 sec interval where HFOs occur and take for
 #analysis 0.1 sec before + interval (0.5 sec) + 0.4 sec after
 #in total 1 sec around an HFO is analyzed

 if (np.floor(Detections['peak'][n]/(fs/2)) == 0): #peak occured in first 0.5 sec

 det_peak = Detections['peak'][n]
 intervalST = Signal[0:fs]
 interval_env = env[0:fs]

 elif (np.floor(Detections['peak'][n]/(fs/2)) == len(Signal)/(fs/2)-1): #peak occured last 0.5
sec

 det_peak = np.mod(Detections['peak'][n], fs)
 intervalST = Signal[(len(Signal)-fs) : len(Signal)]
 interval_env = env[(len(Signal)-fs) : len(Signal)]

 else: #peak occured in middle of signal

 det_peak = int(np.mod(Detections['peak'][n], (fs/2))+np.floor(0.1*fs))
 t_peak_interval = int(np.floor(Detections['peak'][n] / (fs/2)))
 intervalST = Signal[int(t_peak_interval*fs/2-np.floor(0.1*fs)) : int(t_peak_interval*fs/2+
np.ceil(0.9*fs))]
 interval_env = env[int(t_peak_interval*fs/2-np.floor(0.1*fs)) : int(t_peak_interval*fs/2+n
p.ceil(0.9*fs))]

 #--
 # Python version uses stockwell transform package from github https://github.com/claudiodsf/st
ockwell.git. Verify with MATLAB version is within 1-2Hz
 STSignal = st.st(intervalST, 0, limit_fr)

 #***********************
 #*****ADDED AN UPPER LIMIT TO INDICES SO WE WEREN'T ACCESSING THE
 #ST TRANSFORM OR ENVELOPE OUTSIDE ITS LENGTH
 #*******************
 upper_index=len(interval_env)

 #---
 # analyze instantaneous power spectra
 true_HFO = 0 # counter for recognized HFOs

 for tcheck in np.arange(np.max([det_peak-det_start,]), np.min([det_peak+det_stop,upper_index])
):

 #check if the envelope is above half of the peak+threshold
 if (interval_env[tcheck] > (0.5*(Detections['peakAmplitude'][n] + THR))):

 #for maximum upper start_f frequency
 maxV = np.max(np.abs(STSignal[start_fr:,tcheck])) #HFO peak
 maxF = np.argmax(np.abs(STSignal[start_fr:,tcheck]))
 maxF = maxF + start_fr+1

 #search for minimum before found maximum
 minV = np.min(np.abs(STSignal[bound_min_peak:maxF, tcheck])) #the trough
 minF = np.argmin(np.abs(STSignal[bound_min_peak:maxF, tcheck])) #the trough
 minF = minF+bound_min_peak+1

 #print(tcheck,minF,minV,maxF,maxV)

 #check for sufficient difference
 #set signal to look through to x so we can pull peaks out if it
 x = STSignal[0:minF, tcheck]
 if np.size(np.abs(x)) == 0:
 peaks=[]
 else:
 peak_loc = signal.find_peaks(np.abs(x))[0] #this find the location of the peak, to

62

find the actual value you need x[peaks]
 peaks = x[peak_loc]

 if np.size(peaks) == 0:
 fpeaks=np.floor(minF/2)
 peaks = np.abs(STSignal[fpeaks, tcheck])
 ratio_HFO=0
 ratio_LowFr=0
 else:
 ratio_HFO = float(10*np.log10(maxV) - 10*np.log10(minV)) #ratio between HFO peak a
nd the trough
 ratio_LowFr = float(10*np.log10(peaks[-1]) - 10*np.log10(minV)) #ratio between Low
Frequency peak and the trough

 #check the difference and check for sufficient trough
 if ((upper_index>0)&(ratio_HFO>(ratio_thr*ratio_LowFr))&(ratio_HFO>(min_trough*10*np.l
og10(maxV)))&(maxF<500)):
 true_HFO=true_HFO+0
 else:
 true_HFO=true_HFO+1

 if ((upper_index > 0) & (true_HFO==0)): #all conditions are satisfied
 #search for peak
 tcheck = det_peak
 maxF = np.argmax(np.abs(STSignal[start_fr:,tcheck]))
 maxF = maxF + start_fr+1 #try to understand why change -1 to +1, maybe python indexing?

 #search for minimum before found maximum
 minF = np.argmin(np.abs(STSignal[bound_min_peak:maxF, tcheck])) #the trough
 minF = minF+bound_min_peak+1

 #check for sufficient difference
 #fpeaks=[]
 #fpeaks.append(signal.find_peaks_cwt(np.abs(STSignal[0:minF, tcheck]),np.arange(1, 2))[0])
#low frequency peak
 fpeaks = signal.find_peaks(np.abs(STSignal[0:minF, tcheck]))[0]

 nDetectionCounter = nDetectionCounter + 1

 #times are translates to seconds
 PSvalidated['channel_name'][nDetectionCounter] = Detections['channel_name'][n]
 PSvalidated['start'][nDetectionCounter] = Detections['start'][n]/fs
 PSvalidated['stop'][nDetectionCounter] = Detections['stop'][n]/fs
 PSvalidated['peak'][nDetectionCounter] = Detections['peak'][n]/fs
 PSvalidated['peakHFOFrequency'][nDetectionCounter] = maxF
 PSvalidated['troughFrequency'][nDetectionCounter] = minF

 if (np.size(fpeaks) != 0):
 PSvalidated['peakLowFrequency'][nDetectionCounter] = fpeaks[-1]
 else:
 PSvalidated['peakLowFrequency'][nDetectionCounter] = 0

 PSvalidated['peakAmplitude'][nDetectionCounter] = Detections['peakAmplitude'][n]

 if (nDetectionCounter < 0):
 PSvalidated['channel_name'][0] = channel_name
 PSvalidated['start'][0] = -1
 PSvalidated['stop'][0] = -1
 PSvalidated['peak'][0] = -1
 PSvalidated['peakHFOFrequency'][0] = 0
 PSvalidated['troughFrequency'][0] = 0
 PSvalidated['peakLowFrequency'][0] = 0
 PSvalidated['peakAmplitude'][0] = 0

 return PSvalidated;

63

#function used to test out channel aggregating idea to speed up processing time
def channel_mean(dataframe):
 df_mean = pd.DataFrame(columns = ['D','C','A','B','E','F'])

 D = ['D1','D2','D3','D4','D5','D6','D7','D8','D9','D10','D11','D12','D13','D14','D15','D16','D17','D18
','D19','D20','D21','D22','D23','D24','D25','D26','D27','D28',
 'D29','D30','D31','D32']
 C = ['C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11','C12','C13','C14','C15','C16','C17','C18
','C19','C20','C21','C22','C23','C24','C25','C26','C27','C28',
 'C29','C30','C31','C32']
 A = ['A1','A2','A3','A4']
 B = ['B1','B2','B3','B4']
 E = ['E1','E2','E3','E4','E5','E6']
 F = ['F1','F2','F3','F4','F5','F6','F7','F8']

 df_mean['D']=dataframe[D].mean(axis=1)
 df_mean['C']=dataframe[C].mean(axis=1)
 df_mean['A']=dataframe[A].mean(axis=1)
 df_mean['B']=dataframe[B].mean(axis=1)
 df_mean['E']=dataframe[E].mean(axis=1)
 df_mean['F']=dataframe[F].mean(axis=1)

 return df_mean;

64

9 References

(2020). Retrieved from Johns Hopkins Medicine: https://www.hopkinsmedicine.org/health/conditions-
and-diseases/epilepsy/epilepsy-causes

(2020). Retrieved from Open Notes: https://www.opennotes.org/about/

(2020). Retrieved from DASK: https://dask.org/

Brunos, S., Hilfiker , P., Sürücü, O., Scholkmann, F., Krayenbühl, N., & et, a. (2014). Human Intracranial
High Frequency Oscillations (HFOs) Detected by Automatic Time-Frequency Analysis. PLoS ONE.
doi:doi:10.1371/journal.pone.0094381

Buzsaki, G., Horvath, Z., Urioste, R., & et, a. (1992). High-Frequency Network Oscillation in the
Hippocampus. Science, 256(5059), 1025-1027.

Cardenas, R., & et, a. (2017). Mendel,MD: A user-friendly open-source web tool for analyzing WES and
WGS in the diagnosis of patients with Mendelian disorders. PLOS Computational Biology.

Cimbàlnìk, J., Hewitt, A., Worrell, G., & Stead, M. (2018). The CS algorithm: A novel method for high
frequency oscillation detection in EEG. J Neurosci Methods., 6-16.

Clay, R. P. (2011, October 11). An Open Source Approach to Medical Research. Retrieved from Stanford
Social Innovation Review:
https://ssir.org/articles/entry/interview_an_open_source_approach_to_medical_research

Elahian, B., Yeasin, M., Mudigoudar, B., Wheless, J., & Babajani-Feremi, A. (2017). Identifying seizure
onset zone from electrocorticographic recordings: A machine learning approach based on phase
locking value. Seizure, 51, 35-42. Retrieved from https://doi.org/10.1016/j.seizure.2017.07.010.

Fisher, R. S. (2014, April 15). A Revised Definition of Epilepsy. Retrieved from www.epilepsy.com:
https://www.epilepsy.com/article/2014/4/revised-definition-epilepsy

Islam, R. (2015). Human Intracranial High Frequency Oscillation Detection Using Time Frequency
Analysis and Its Relation to the. Masters Theses.

Kneller, A. (2016, January 18). How to address the culture gap between academia and industry in
biomedicine. Retrieved from Novartis: https://www.novartis.com/stories/from-our-labs/how-
address-culture-gap-between-academia-and-industry-biomedicine

Malladi, R., Kalamangalam, G., Tandon, N., & Aazhang, B. (2016). Identifying Seizure Onset Zone from
the Causal Connectivity Inferred Using Directed Information. IEEE.

Navarrete, M., Alvarado-Rojas, C., Quyen, M., & Valderrama, M. (2016). RIPPLELAB: A Comprehensive
Application for the Detection, Analysis and Classification of High Frequency Oscillations in
Electroencephalographic Signals. PLOS One, 27.

Noachtar, S., & Rèmi, J. (2009). The role of EEG in epilepsy: A critical review. Epilepsy & Behavior, 22-33.

65

Price, L. (2018, August 1). The Digital Health Hype Cycle 2018. Retrieved from healthcare.digital:
https://www.healthcare.digital/single-post/2018/02/20/The-Digital-Health-Hype-Cycle-2018

Scheuer, M., & WIlson, S. (2014). Data analysis for continuous EEG monitoring in the ICU: seeing the
forest and the trees. Journal of Clinical Neurophysiology, 353-78.

Sirven, J. I., & Shafer O. Patricia, R. M. (2014, January 21). What is Epilepsy? Retrieved from
www.epilepsy.com: https://www.epilepsy.com/learn/about-epilepsy-basics/what-epilepsy

Siwicki, B. (2018, July 23). How one medical group uses AI, machine learning to improve value-based
care. Retrieved from Health IT News: https://www.healthcareitnews.com/news/how-one-
medical-group-uses-ai-machine-learning-improve-value-based-care

The Economist. (2018, February 1). A revolution in health care is coming. Retrieved from The Economist:
https://www.economist.com/leaders/2018/02/01/a-revolution-in-health-care-is-coming

Treatments for Epilepsy. (2019). Retrieved from www.spectrumhealth.org:
https://www.spectrumhealth.org/patient-care/neurosciences/epilepsy-and-
seizures/epilepsy/epilepsy-treatment

	An investigation into the development of a low cost, easy to use seizure analysis tool.
	ScholarWorks Citation

	Microsoft Word - Cody_Dean_Thesis_20210203

