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Abstract 

Approximate entropy (ApEn) and sample entropy (SampEn) are statistical methods designed to 

quantify the regularity or predictability of a time series. Although ApEn has been a prominent 

choice for use, it is currently unclear as to which method and parameter selection combination is 

optimal for its application in biomechanics. The goal of this thesis was to examine the difference 

between ApEn and SampEn  related to center of pressure (COP) data during standing balance 

tasks, while also refining tolerance r, to determine entropy optimization. Six participants 

completed five 30-second, feet together and tandem standing, trials under eyes-open and eyes-

closed conditions. Ground reaction force platform data (1200 Hz) was collected and downsampled 

to provide a 60 Hz COP time series. ApEn and SampEn were calculated using a constant pattern 

length, i.e., m = 2, and multiple values of r (tolerance). Four separate one-way analysis of variance  

analyses (ANOVA) were conducted for ApEn and SampEn in the anterior posterior (AP) and 

medial lateral (ML) directions. Dunnett's intervals were applied to the one-way ANOVA analyses 

to determine which conditions differed significantly. ApEn and SampEn provided comparable 

results in the predictability of patterns for different stability conditions, with increasing instability 

being associated with greater unpredictability. The selection of r had a relatively consistent effect 

on mean ApEn and SampEn values across r = 0.15 – 0.25*SD, where both entropy methods tended 

to decrease as r increased. Mean SampEn values were generally lower than ApEn values. The 

results suggest that both ApEn and SampEn indices were equally effective in quantifying the level 

of center of pressure signal regularity during quiet tandem standing postural balance tests.  

Keywords: approximate entropy, sample entropy, center of pressure, complexity, tolerance, 

downsampling 
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Abbreviations 

ApEn – approximate entropy  

COP – center of pressure 

EC – eyes closed 

EO – eyes open 

FT – feet together 

SampEn – sample entropy  

SD – standard deviation  

TanDB – tandem dominant foot in back 

TanDF – tandem dominant foot in front 
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Introduction  

Two commonly used methods for quantifying physiological data are approximate entropy 

(ApEn) and sample entropy (SampEn). Entropy is defined as the loss of information in a time 

series or signal, i.e., it quantifies the amount of uncertainty regarding the order of an output 

signal10. Within the past twenty years, the use of entropy methods to define predictability or 

regularity in human physiological and biomechanical data has become quite prevalent47. Entropy 

quantifies the likelihood of the next state of a system, based on what is known about the present 

state of a time series, and has been used to quantify physiological changes with aging2,41, as well 

as cardiovascular14,40 and respiratory pathology8,10,13. ApEn and SampEn are both also useful tools 

for understanding more about the function of changes in postural control system6,16,21,36,310 such as 

human gait mechanics50,51 and standing balance5,6,7,36,47,48. 

In 1991, Pincus developed approximate entropy as a mathematical instrument for measuring 

regularity to quantify levels of complexity within a time series31. It was meant to be a statistical 

measure of regularity whose foundations are similar and correctly quantifies finite data series47. 

ApEn was devised to quantify the rate of regularity in time data series, motivated by applications 

for relatively short, noisy data sets. Specifically, ApEn (and SampEn) have been shown to 

demonstrate changes in the complexity of various physiological signals such as chronic stroke28, 

electrocardiograms (ECG)4, electroencephalograms (EEG)49, heart rate variability30, and neural 

respiration signals8,19. Complex systems such as these do not equate to being unmeasurable. 

Information entropy has been used to quantify complex systems where a time series with repeated 

patterns and less randomness will produce small entropy values whereas a time series with more 

randomness will equate with larger entropy values29,40. Equally, lower ApEn values reflect that a 
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system is very persistent, repetitive, and predictive, with apparent patterns that repeat themselves 

throughout the series, while greater values of entropy mean independence between the data and 

greater randomness. So, it is more appropriate to use terms like probability, predictability, 

regularity, when describing the nature of a measurable complex system. In summary, the use of 

ApEn (and SampEn) was not meant to comprehensively analyze complex systems, but to 

statistically analyze the dynamics of time series related to complex systems12.  

When this understanding of entropy is applied to postural sway in human stability, changes in 

entropy may provide insight into the control of static and dynamic balance. Cavanaugh et al.7 

evaluated the effect of cognitive task performance on postural control during quiet standing, 

revealing changes in ApEn as changes in the randomness of COP data occurred. ApEn showed the 

evolution of its complexity, providing meaningful comparisons to the detection of subtle 

influences on postural control after cerebral concussion in the alteration of the complex nature of 

motor control. Similarly, Ramdani et al.36 analyzed the irregularity of postural sway during quiet 

standing comparing two sensory conditions using SampEn and concluded that the ability to 

successfully discriminate between levels of complexity, e.g., eyes open to eyes closed conditions, 

may provide insight toward characterizing the postural effects of aging and diseases. Hence, 

entropy provided researchers with the ability to quantify complexity within relatively short data 

sets based on meaningful experimental comparisons to control groups47.  

Approximate entropy is calculated over a scale of time. Both ApEn and SampEn methods 

utilize three input parameters: N is the data length, m is the length of the window of the different 

vector comparisons, and r is the tolerance, i.e., function criterion of similarity or type of signal 

filter. Given the input parameters, ApEn (m, r, and N)30 is denoted by: 



 
 

7 
 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚, 𝑟𝑟,𝑁𝑁) = − 1
𝑁𝑁−𝑚𝑚

∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴𝑖𝑖
𝐵𝐵𝑖𝑖

𝑁𝑁−𝑚𝑚
𝑖𝑖=1            (1) 

ApEn measures the logarithmic probability that nearby pattern runs remain close in the next 

incremental comparison7. 𝐵𝐵𝑖𝑖(r) is the probability that two sequences are similar for m points with 

self-counting and 𝐴𝐴𝑖𝑖(r) is probability that two sequences are similar for m + 1 matches with self-

counting. Self-counting suggests that given one template, that segment in the sequence is 

compared to all the blocks in the sequence, including itself. For ApEn, self-counting is needed in 

the calculation of conditional probabilities to ensure the logarithms remain finite. Statistically, 

selecting m and r as input parameters would be the equivalent of dividing the space of states into 

cells of width r, to estimate the conditional probabilities of the m-th order7. Higher m and smaller 

r describe details of sharper, more probabilistic parameters7. However, when dealing with 

stochastic processes, the analysis of conditional probabilities causes large values of m or minimal 

values of r  to produce statistically low estimates. Ultimately, the value of the estimate depends on 

m and r. Pincus29 suggested taking m as 2 and  r  as 0.2*SDx where SDx  is the standard deviation 

of the original data <x(n)>, i.e., 

𝑆𝑆𝐷𝐷𝑥𝑥 = � 1
𝑁𝑁−1

∑ �𝑥𝑥(𝐴𝐴) − 1
𝑁𝑁
∑ 𝑥𝑥(𝐴𝐴)𝑁𝑁
𝑛𝑛−1 �

2
𝑁𝑁
𝑛𝑛−1                                          (2) 

Pincus29 suggested that one of the advantages of ApEn is that the algorithm is finite for stochastic, 

noisy deterministic, and composite processes, i.e., models for complicated biological systems. It 

can differentiate between different mixed methods of deterministic and random components 

occurring with a different probability. ApEn is also robust to outliers because the pattern formed 

by wild points will rarely be repeated in the waveform32. An increasing ApEn corresponds to 

intuitively increasing process complexity in a biological modeling platform. However, the 
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limitations of ApEn include that the relative consistency is not guaranteed, and depending on the 

value of r, the ApEn values will change10. Additionally, the value of ApEn depends on the length 

of the data series. Lastly, the self-counting portion of the algorithm implies a statistical bias that is 

important in situations with small data sets, where when only a few or even no matches are present, 

the entopic result is biased toward zero10. 

Although the development of ApEn made a significant contribution to the understanding 

of complex physiological time series, its shortcomings may be significant. Richman and 

Moorman40 introduced SampEn as an algorithm to counteract the limitations of ApEn, claiming 

that SampEn, as a statistical alternative, solved the self-counting problem to eliminate that bias. 

Eliminating self-counting is justified given that entropy is conceived as a measure of the rate of 

information production. ApEn uses the whole series to determine its value, needing only a that a 

template vector find a match of length m + 1 to be defined7. SampEn contrasts with ApEn, where 

each template vector must find a match to be determined47. SampEn (m, r, and N) is defined as the 

negative value of the logarithm of the conditional probability that two similar sequences of m 

points remain identical at the next point m + 1, counting each vector over all the other vectors 

except on itself7. 

𝑆𝑆𝑆𝑆𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚, 𝑟𝑟,𝑁𝑁) = −𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴𝑚𝑚(𝑟𝑟)
𝐵𝐵𝑚𝑚(𝑟𝑟)        (3) 

𝐵𝐵𝑚𝑚(𝑟𝑟) is the probability that two sequences are similar for m points, 𝐴𝐴𝑚𝑚(𝑟𝑟) is the probability that 

two sequences are similar for m + 1 matches, the ratio is a conditional probability. The use of  

SampEn appears to quantify regularity more effectively and eliminates many of the problems 

associated with ApEn40. SampEn maintains the relative consistency and is also mostly independent 
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of the length of the series40. SampEn was created to address the bias and inconsistencies of ApEn, 

yet both methods retain similarities40. However, the literature is unclear about which method is 

preferable.  

Important consideration must be given to parameter selection, as these choices may have 

the greatest impact on the final entropy value even in the presence of noise52. Given a time series 

with N data points, the calculation of entropy requires a priori determination of two unknown 

parameters, embedding dimension m and threshold r20. Multiple pairings of parameter selections 

allow one to examine relative consistency where a better discrimination capacity can be 

accomplished. Incorrect parameter choice, and lack of due diligence in selecting m, r, N, can 

undermine the entropy results.  

The parameter N is the length of the data series. According to Yentes et al.51,  data sets 

larger than N = 200 points are recommended over data lengths that consist of less than 200 points. 

It appears that both ApEn and SampEn stabilize around 2000 points. When the sampling rate is 

too high, i.e., frequency collection rates greater than 1000 Hz, too much redundancy likely exists 

within the data, which tends to artificially decrease entropy values48. Redundancy, i.e., 

repetitiveness of or repeating values, results in a reduced entropy and more signal regularity 

secondary to the counting of repeated matches. The over-redundant data problem can be solved 

by downsampling overly redundant time series data sets. Although downsampling removes real 

data, sensitivity analyses have demonstrated that the loss of data does not impact the subsequent 

application of the revised data set21,50. Rhea et al.38, for instance, examined the effect of 

downsampling on metrics that measure the magnitudes and structure of COP displacement and 

velocity variability. The results suggested that excessive downsampling, e.g., to 25 Hz, artificially 



 
 

10 
 
 

altered standing center of pressure displacement and velocity SampEn values. When analyzing 

changes in CoP variability, it is therefore essential to differentiate between those caused by the 

neuromotor system and those caused by data processing methods. 

The parameter m determines the length of the sequences to be compared, and an estimation 

of its selection can be obtained by calculating the false closest neighbor20. Based on previous 

studies that include clinical applications, m = 1 or m = 2 appeared to produce good statistical 

validity for entropy calculations, where m = 2 was the most popular30,52. 

The third parameter, r, is the tolerance level for allowing similar patterns between two 

segments. It has been suggested that it be within 0.1-0.25 times the standard deviation (SD) for 

both deterministic and stochastic processes in order to be clinically useful25. These 

recommendations were largely based on its applications in heart rate analysis’4,19, neural processes 

as it relates to cognitive behaviors6, and long gait datasets50. Theoretically, with a greater r value,  

more randomized data are accepted, which produces a lower entropy value. With a smaller value 

of r, more similar data are rejected, only counting matches within a criterion thus producing a 

higher entropy value. Tipton’s48 work exposed the use of an unconventional r value. In the Tipton 

study, center of pressure data were analyzed at 1200 Hz, i.e., a very high sampling rate for purposes 

of estimating entropy. Because of the high sampling rate used by Tipton, a non-traditional method 

to determine r was used. Given the recommended range of r, authors4,19,20,50,51 have shown that for 

ApEn values vary significantly even within the defined range of r = 0.1 - 0.25*SD, suggesting 

that additional studies are needed to accurately tighten this range.  
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The purpose of this master’s thesis was to compare the analysis methods, ApEn and SampEn 

of the center of pressure data, to determine which entropy measure is less biased and most 

consistent. Center of pressure data were chosen because it represents a single measurement of the 

complex postural control mechanism used to maintain balance and incorporates all somatosensory 

and neuromotor inputs that influence stability48. ApEn and SampEn methods of analysis quantify 

these data regularity and unpredictability in its fluctuations over time and will determine an 

estimated baseline signal for different stability conditions. The goal was to examine distinctions 

in bias and consistency between ApEn and SampEn. We hypothesized that ApEn would be lower 

than SampEn for all calculations overall. Further, this study examined downsampling methods of 

the standing balance data to remove redundancy contained in high sampling rates, and to evaluate 

the effect of altering input tolerance r to determine the best r value for optimization.  

 

Materials and Methods  

Participants 

Eight participants, between 18 – 34 years of age, participated in this research study after 

voluntarily providing their signed informed consent. Center of pressure force plate data were 

collected from participants but participants whose COP data contained any signal dropout were 

omitted. Therefore, six participants’ data from the original cohort were included in the analysis. 

All participants were in good health and with no history of neurological or muscular disorders or 

injuries23. Before data collection commenced, foot dominance for each subject was determined 

based on the leg with which they preferred to kick a ball. This study was approved by the Grand 
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Valley State University Institutional Review Board (18-246-H), and data from a previous data 

collection were used in this study for the purpose of extending a prior analysis. 

 

Instrumentation 

Marker trajectories were captured at 120 Hz using Vicon Nexus v2.8 motion capture 

software (Vicon Motion System Ltd., Oxford Metrics, UK) and Vicon 16 MX and T40 cameras. 

Reflective markers were affixed to anatomical landmarks using two-sided hypoallergenic tape to 

track the movement trajectories of a modified Full-Body Plug-in-Gait model. Two floor embedded 

AMTI (Advanced Mechanical Technology Inc., Watertown, MA) force plates were used to 

synchronously collect ground reaction force data (1200 Hz). Data from six MA-411 surface pre-

amplifiers, using the 16-channel MA300-XVI  patient unit acquisition system (Motion Lab 

Systems Inc., Baton Rouge, LA) were synchronized with motion and ground force data to measure 

the electromyographic (EMG) signals of the medial gastrocnemius, soleus, and tibialis anterior 

bilaterally at a 1200 Hz sampling frequency. The MA300 has a fixed 10 – 1000 Hz (-3dB) 

bandwidth and uses a 500 Hz low-pass anti-aliasing filter.  

Only force plate data were analyzed for this study. The force plates were oriented with one 

directly in front of the other (Figure 1). Center pressure data were extracted using Vicon NEXUS 

motion capture software v2.8 (Oxford Metrics, Oxford, UK) and exported to Excel for later 

analysis.  
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Experimental Procedure 

Data for each trial were collected at 1200 Hz per second for 30 seconds until 5 successful trials 

were completed per stability condition (Table 1). Therefore, the time series of data collected 

totaled 36,000 data points. The standing postural condition of feet together with eyes open (EOFT) 

was defined as the most stable and hence was used as a baseline for all entropy comparisons. The 

subject was asked to hold this quiet standing position for thirty seconds without moving their body 

or stepping out of position. Balance tasks were performed barefoot with the arms positioned with 

the index finger pointed towards the shoulder on the same side of the body and the elbows pulled 

in and the knees extended. The subject then progressed through increasingly unstable balance 

conditions by changing visual status, with 2-minute breaks between each. Conditions included 

eyes open or closed, and changing foot position, i.e., feet together on force plate 5 or tandem stance 

using force plate 3 and 5 shown in Figure 1. 

 
Figure 1. Force plate foot placement for feet together and feet tandem standing balance 
conditions, where the x-axis (anterior posterior (AP) direction) y-axis ( medial lateral (ML) 
direction define the center of pressure orientation. Note:  D =dominant foot; ND = non dominant 
foot; DF = dominant foot forward; and DB = dominant foot back23,48 
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Table 1.    Quiet Standing Balance Conditions  

Balance Condition  Description 

EOFT Eyes Open, Feet Together 

ECFT Eyes Closed, Feet Together 

EOTanDF Eyes Open, Feet Tandem, Dominant Foot Forward 

ECTanDF Eyes Closed, Feet Tandem, Dominant Foot Forward 

EOTanDB Eyes Open, Feet Tandem, Dominant Foot Back 

ECTanDB Eyes Closed, Feet Tandem, Dominant Foot Forward 

 

Determining total body center of pressure from two force plates 

The extracted COP data files were analyzed using nonlinear analysis in the time and frequency 

domains. The tandem trial output data sets differed from the feet together trials in that two separate 

COP signals for tandem balance conditions were produced (one for data from each of the force 

plates), while feet together resulted in data from a single force plate. The two-column tandem trials 

were combined into one resultant COP to be directly compared to the feet together conditions 

using Equation 4.  

𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑒𝑒𝑒𝑒  =  𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿
𝐹𝐹𝑧𝑧𝑧𝑧

𝐹𝐹𝑧𝑧𝑧𝑧+𝐹𝐹𝑧𝑧𝑧𝑧
+ 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅

𝐹𝐹𝑧𝑧𝑧𝑧
𝐹𝐹𝑧𝑧𝑧𝑧+𝐹𝐹𝑧𝑧𝑧𝑧

                    (4) 

where 𝐶𝐶𝐶𝐶𝐶𝐶L and 𝐶𝐶𝐶𝐶𝐶𝐶R are the values of the COP signal from the left and right foot, respectively, 

and 𝐹𝐹zL and 𝐹𝐹zR are the vertical forces exerted on the force plates under the left and right foot, 

respectively41. The magnitude of the x and y axes of each subject and corresponding balance 

conditions were populated into curated databases. These data were then used for further estimation 
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of COP in the AP and ML directions using Approximate Entropy (ApEn) and Sample Entropy 

(SampEn). 

 

Downsampling and sensitivity analysis 

The total number of data points, N, required revaluation based on previous estimation by 

Tipton48. The original COP datasets, recorded at 1200 Hz for 30 seconds, produced 36,000 data 

points. Sampling data beyond 1000 Hz has been shown to lead to redundant information48. 

MATLAB’s built-in downsample function was used to decrease the 1200 Hz sample rate by  

keeping the first sample, and then every nth sample, i.e., 20, after the first. Consequently, N was 

downsampled from 36,000 data points by a factor of 20 to 1,800 data points. Simple downsampling 

typically exposes a system to aliasing; however, aliasing was not an issue because a fourth-order, 

zero-lag, low-pass Butterworth filter was applied with a cutoff frequency of 6 Hz via Nexus motion 

capture software v2.8 (Oxford Metrics, Oxford, UK) during preprocessing to eliminate any noise 

present in the signal that could not be attributed to each participant’s postural control mechanism48. 

Simple sensitivity analyses as illustrated in Figures 2  and 3 and Figures 4 and 5 demonstrate the 

change in the time series before (Figs. 2 and 4) and after (Figs. 3 and 5) downsampling from a 

representative participant from an eyes open feet together and eyes closed tandem standing 

postures, respectively. Observation of the figures suggest that elimination of data points by 

downsampling did not impact the revised data set. These results are due to signal preprocessing 

and elements of eliminating redundancy, as disclosed by sensitivity analysis. 
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Figure 2. Representative time series for raw center of pressure (COP) data of Subject 1 eyes 
open, feet together (EOFT) Trial 4, where N = 36,000 datapoints, in the anterior posterior (AP) 
and medial lateral (ML) directions, respectively. 
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Figure 3. Representative time series for downsampled center of pressure (COP) data of Subject 1 
eyes open, feet together (EOFT) Trial 4, where N = 1,800 datapoints, in the anterior posterior 
(AP) and medial lateral (ML) directions, respectively. 
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Figure 4. Representative time series for raw center of pressure (COP) data of Subject 1 eyes 
closed, feet tandem, dominant foot forward (ECTDF) Trial 29, where N = 36,000 datapoints, in 
the anterior posterior (AP) and medial lateral (ML) directions, respectively. 
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Figure 5. Representative time series for downsampled center of pressure (COP) data of Subject 1 
eyes closed, feet tandem, dominant foot forward (ECTDF) Trial 29, where N = 1,800 datapoints, 
in the anterior posterior (AP) and medial lateral (ML) directions, respectively. 

 

Determination of Approximate and sample entropy 

Approximate (ApEn) and SampEn were determined for all five trials under each condition 

using custom  MATLAB® (The MathWorks, Natick, MA) code. Given each COP time series, 

where N = 1800 datapoints, a sequence of m = 2 length vectors was formed. Comparisons were 

then made against each data segment that was 2 numbers long. Vectors were considered alike if 

vector components fell within a tolerance level, ±𝑟𝑟 ∗ 𝑆𝑆𝐷𝐷29. The similarity criteria were evaluated 

over a range of r = 0.05 – 0.3*SD. The total number of like vectors' logarithm sum was divided 

by 𝑁𝑁 −𝑚𝑚 + 1 to get the total number of like vectors, including a template comparison to itself51. 
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Looking one vector higher, m was raised by 1, i.e., (𝑚𝑚 + 1), the procedure was repeated. By 

deducting the conditional probabilities of 𝑚𝑚 + 1 from m, ApEn was calculated.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚, 𝑟𝑟,𝑁𝑁) = − 1
𝑁𝑁−𝑚𝑚

∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴𝑖𝑖
𝐵𝐵𝑖𝑖

𝑁𝑁−𝑚𝑚
𝑖𝑖=1            (5) 

SampEn uses a different approach. It uses the whole series together, requiring only that a 

template vector find a match of length 𝑚𝑚 + 1 to be defined33. This contrasts with ApEn where 

each template vector (including itself) must find a match to be defined. So, the use of SampEn 

eliminates many of the problems associated with ApEn, in that it is useful to quantify regularity in 

a system more effectively33. The same input parameters as ApEn were used, and vectors were 

deemed similar if both their tail and head fell under the predetermined tolerance level. The sum of 

the total number of like vectors for m points was divided by 𝑁𝑁 −𝑚𝑚 + 1 and defined as 𝐵𝐵𝑚𝑚(𝑟𝑟). 

Further, SampEn defined 𝐴𝐴𝑚𝑚(𝑟𝑟) as the subset of 𝐵𝐵𝑚𝑚(𝑟𝑟) that two sequences are similar for 𝑚𝑚 +

151. SampEn is then calculated as the conditional probability −ln (𝐴𝐴𝑚𝑚(𝑟𝑟)/𝐵𝐵𝑚𝑚(𝑟𝑟)).  

𝑆𝑆𝑆𝑆𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴(𝑚𝑚, 𝑟𝑟,𝑁𝑁) = −𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴𝑚𝑚(𝑟𝑟)
𝐵𝐵𝑚𝑚(𝑟𝑟)        (6) 

 

Statistical Analysis  

Trials and stability conditions were independent of one another due to the breaks given 

between each of them23. The subject's ability to rest and then reset allows for this assumption. Four 

separate one-way analysis of variance (ANOVA) tests were performed for ApEn and SampEn in 

each of the AP and ML axial directions. The ANOVA testing revealed that each one-way ANOVA 

assessed for a difference of means between the baseline and increasingly difficult stability 

conditions within each subject. Additionally, the one-way ANOVA tests were run with Dunnett's 
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intervals to determine which conditions varied significantly. This test compared the baseline EOFT 

condition to each increasingly less stable condition.  

 

Results  

Comparison of Approximate and Sample Entropy Time Series 

Approximate and sample entropy were determined for all trials and conditions, yet it was 

important to first examine the ApEn and SampEn values over the 30-second time series for m = 2, 

r = 0.02*SD for the purpose of establishing the fidelity of the data. Note that since N = 1800 data 

points each second of COP data consisted of 60 points. Figures 6 and 7 illustrate these data for one 

trial of an eyes open, feet together condition and one trial of an eyes closed feet tandem condition 

for one representative participant. Visual inspection of each plot suggest that the ApEn and 

SampEn magnitude of the values were comparable to each other and the spikes over the 30-second 

time series appeared similar. Having established this for a representative participant and trial it 

seemed appropriate to determine the mean ApEn and SampEn values for the purpose of further 

statistical analysis. 
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Figure 6. Representative time series for ApEn and SampEn calculated over thirty 60-point 
segments of Subject 1 eyes open, feet together (EOFT) Trial 03 COP data; where N = 1,800 
datapoints, m = 2, and r = 0.02*SD; in the anterior posterior (AP) and medial lateral (ML) 
directions, respectively. 
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Figure 7. Representative time series for ApEn and SampEn calculated over thirty 60-point 
segments of Subject 1 eyes closed, feet tandem, dominant foot back (ECTDB) Trial 19 COP 
data; where N = 1,800 datapoints, m = 2, and r = 0.02*SD; in the anterior posterior (AP) and 
medial lateral (ML) directions, respectively. 
 

Examination of ApEn and SampEn under different postural conditions 

Mean ApEn and SampEn values were obtained for all trials and conditions. Since one 

purpose of this study was to compare differences in the analysis methods in conjunction with the 

differing r parameter chosen, compilations of one-way ANOVAs with Dunnett’s Test outputs for 

each condition were compared to baseline. These 144 analyses were condensed into summary 

graphics where Figures 8 – 12 depict subjects by column Average ApEn and SampEn values, 

charted in orange and blue respectively, are plotted in either row, where groups were separated by 
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data in the medial lateral (ML) and anterior posterior (AP) direction, based on if the entropy value 

was significantly different from baseline. The upper “No” row demonstrate that differences in 

entropy, with respect to the confidence interval, were not significantly different from baseline. The 

lower “Yes” row demonstrates that difference in entropy values were significantly different from 

baseline. The stature of ‘significance’ is based on an equivalent of 720 tests at α = 0.05, where on 

average 36 “Yeses” are to be expected even if there are no statistically significant differences 

between the data. Notably there are a lot more than 36 significant instances found.  

 

 
Figure 8. One-way ANOVA with Dunnett’s Tests Outputs summary graphic, comparing the 
difference of eyes close, feet together (ECFT) trials of mean ApEn(orange) and SampEn(blue) 
values to baseline condition eyes open, feet together (EOFT), in the medial lateral (ML) and 
anterior posterior (AP) directions; where N = 1,800 datapoints, m = 2, and r ranges from 0.05-
0.3*SD, for all subjects. 
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Figure 9. One-way ANOVA with Dunnett’s Tests Outputs summary graphic, comparing the 
difference of eyes open, feet tandem, dominant foot forward (EOTDF) trials of mean 
ApEn(orange) and SampEn(blue) values to baseline condition eyes open, feet together (EOFT), 
in the medial lateral (ML) and anterior posterior (AP) directions; where N = 1,800 datapoints, m 
= 2, and r ranges from 0.05-0.3*SD, for all subjects. 
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Figure 10. One-way ANOVA with Dunnett’s Tests Outputs summary graphic, comparing the 
difference of eyes closed, feet tandem, dominant foot forward (ECTDF) trials of mean 
ApEn(orange) and SampEn(blue) values to baseline condition eyes open, feet together (EOFT), 
in the medial lateral (ML) and anterior posterior (AP) directions; where N = 1,800 datapoints, m 
= 2, and r ranges from 0.05-0.3*SD, for all subjects. 

 

 

 

 



 
 

27 
 
 

 
Figure 11. One-way ANOVA with Dunnett’s Tests Outputs summary graphic, comparing the 
difference of eyes open, feet tandem, dominant foot back (EOTDB) trials of mean ApEn(orange) 
and SampEn(blue) values to baseline condition eyes open, feet together (EOFT), in the medial 
lateral (ML) and anterior posterior (AP) directions; where N = 1,800 datapoints, m = 2, and r 
ranges from 0.05-0.3*SD, for all subjects. 
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Figure 12. One-way ANOVA with Dunnett’s Tests Outputs summary graphic, comparing the 
difference of eyes closed, feet tandem, dominant foot back (ECTDB) trials of mean 
ApEn(orange) and SampEn(blue) values to baseline condition eyes open, feet together (EOFT), 
in the medial lateral (ML) and anterior posterior (AP) directions; where N = 1,800 datapoints, m 
= 2, and r ranges from 0.05-0.3*SD, for all subjects. 
 

Assessment of each plot compares the “Yes” rows to the “No” rows in evaluating 

significance in the differences from baseline. Meaningful deviations from baseline conditions were 

found in the ML direction in cases of ECFT, EOTDB, ECTDB, EOTDF, and ECTDF. 

Considerable deviations were also found in the AP direction in cases of EOTDB, ECTDB, 

EOTDF, and ECTDF. The ECFT trials compared to baseline in the AP direction display majority 

insignificant results, implying there exists no tangible evidence that conditions were substantially 

different from baseline. The EOTanDB trails in both ML and AP directions, notably had the 

highest difference in entropy, and greatest amount of significances difference from baseline across 

all values of r. The consistent number of “Yeses” in Tandem trials suggest differences from 

baseline can be quantified for tandem standing. Overall, all trial mean entropy data assessed and 



 
 

29 
 
 

output into an ANOVA summary graphic, show that the significance of the difference from 

baseline is the equivalent, using either ApEn or SampEn approximation. Having determined that 

the significance of using either entropy calculation is equivalent when assessing the difference 

from baseline for all tandem trial data, it made sense to examine mean ApEn and SampEn entropy 

across varying r values. 

 

Examination of the changes in tolerance level, r, on ApEn and SampEn; bias and consistency  

Selection of parameters is the most important factor when evaluating entropy, and given r 

was determined using trial and error until reasonable values of ApEn were found in a previous 

study48, it was important to examine the effect of the r parameter for each entropy method. Figure 

13 displays mean ApEn and SampEn values for all stability conditions, where each column 

separated by participant numbers, rows depicted by each ML and AP axial direction, and ranged 

over values of r = 0.05 – 0.3*SD. Figure 14 illustrates participants by method are separated into 

each column, grouping all subjects. See Appendix B. ANOVA Data Tables for participants by 

method and conditions by method mean entropy values.  
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Figure 13. Summary plot of all mean ApEn (orange) and SampEn (blue) values of all trials of 
stability conditions, separated by participant, in the medial lateral (ML) and anterior posterior 
(AP) directions; where N = 1,800 datapoints, m = 2, across r range from 0.05-0.3*SD. 
 

 
Figure 14. Summary plot of all mean ApEn (orange) and SampEn (blue) values of all 
participants, separated by trials of stability conditions, in the medial lateral (ML) and anterior 
posterior (AP) directions; where N = 1,800 datapoints, m = 2, across r range from 0.05-0.3*SD. 
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Visual examinations of each plot indicate that ApEn and SampEn tended to decrease as r 

increased, with relative directionality evident between r = 0.15 – 0.25*SD. Outliers that distorted 

this line of regression were most prominent in the range r = 0.05 – 0.1*SD. Participants 4 and 5 

revealed notable outliers in the AP directions within this range as calculated by the SampEn. 

Coincidingly, less rejected matches revealed themselves in the lowest entropy values, where r = 

0.3*SD. Despite comparing mean entropy values across all values of r,  it does not appear that one 

method, i.e., ApEn and SampEn, is superior. 

 

Comparison of the magnitude of ApEn and SampEn  

Though the significance of the differences from baseline are consistent using either entropy 

calculation, differences in ApEn and SampEn values were apparent. This gave the purpose to 

directly compare outputs by taking the differences between the data derived from the ApEn and 

SampEn calculations in both medial lateral and anterior posterior directions. This comparison is 

shown in Figure 15 as a histogram of the SampEn and ApEn relationship of all the data, where the 

difference in value of the two calcuations are distributed across the x-axis, and the total number of 

calculations for all trials and conditions conducted are displayed on the y-axis. 
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Figure 15. SampEn versus ApEn histogram of each COP data timeseries of all subjects and 
stability conditions, including both the medial lateral (ML) and anterior posterior (AP) 
directions; where N = 1,800 datapoints, m = 2, across r range from 0.05-0.3*SD. 
 

Evidence of a right skewed histogram indicates that the sample-approximate relationship 

is primarily negative, i.e., SampEn on average is smaller than ApEn. Given the bias in the ApEn 

calculation, ApEn estimates were expected to converge closer to 0; therefore, this result 

contradicted initial hypotheses. The sample-approximate relationship is anticipated to be positive 

based on previous research; however, these results are unique to this study’s data set and should 

be reported. 

 

Discussion  

Understanding how a healthy brain responds to different stability conditions and utilizing the 

best method to measure those conditions is important when accurately comparing how a healthy 

brain responds versus how an injured brain responds to the same conditions. Previous research 

that has examined children and adults with mild traumatic brain injury, e.g., concussion, have 
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suggested that the use of the center of pressure (COP) data can be useful in delineating a normal 

from an abnormal response to the perturbations of static and dynamic balance5,6,35,36,37,46. Since it 

has been shown that the COP time series is non-linear, traditional methods of assessing various 

COP parameters, e.g., statistical use of means and standard deviation, have not been effective3. 

Previous work using non-linear methods, such as approximate and sample entropy, to study normal 

and pathological balance has been useful1,2,26,42. However, a consensus on the best methodological 

use of ApEn and SampEn has not yet been established. For example, previous work48 in our 

laboratory used ApEn to examine healthy college-aged participants to describe changes in ApEn 

under more and less stable standing positions. Based on the need described in the literature for 

more work using ApEn and SampEn, and the methodological limitations of the previous research 

in our laboratory, the purpose of this study was to compare ApEn and SampEn under various 

stability conditions, and when altering tolerance (i.e., r) values. The results revealed that even 

though SampEn tend to yield lower mean values than ApEn, both indices were equally effective 

in quantifying the regularity of a COP signal given that the significance of using either entropy 

calculation is equivalent when assessing the difference from baseline. Further, the selection of r 

had a relatively consistent effect with both entropic statistical analyses, as the similarity criterion 

was increasingly tightened, more similarities were rejected, and therefore larger entropy values.  

Tipton’s48 study was the most similar to ours in terms of the methodologies used to investigate 

conditions. Downsampling the COP data in this study was necessary because previously, entropy 

values were an artifact of quantifying an oversampled COP signal with an r value that was found 

through trial and error. Yentes et al.51 recommend, as best practice, when using ApEn or SampEn 

for the analysis of human gait data that N not exceed sampling data beyond 1000 Hz because  it’s 
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over this frequency that may lead to redundant information. In the current study, previous entropy 

estimates at 1200 Hz yielded low entropy values between 0.005 and 0.030, where N = 36,000 

consisted of many closely spaced data points with identical values. In a different study, Lubetsky 

et al.21 conducted sample entropy on COP data for prolonged standing tasks on normal and 

compliant surfaces. The study found that while down-sampling had increased SampEn values, it 

had an insignificant effect on the comparisons to the original datasets; however, if such procedures 

are performed, they should be well justified. In the present study, the waveforms were virtually 

identical when comparing the raw COP trial data to the downsampled trial data. Downsampling 

was necessary for the processing of our entropy results. Utilizing 1,800-point arrays, the entropy 

values in this study ranged from 0.08 to 0.90. However, it is suggested that it is essential for 

researchers to evaluate the influence that downsampling has on their particular dataset. 

Incorrect parameter selection of the vector length, m, threshold, r, or data length, N, can 

undermine the ApEn and SampEn discrimination capacity9. The embedding dimension, m = 2, 

and dataset length, N, were fixed input parameters in this study. Many approaches of calculating r 

have been suggested, including utilizing the standard deviation (SD) of the whole time series26,30, 

the standard error of the entropy values18, predefined tolerance levels15,45 and using a heuristic 

stochastic model9. Typically, it is suggested that for clinical data, r is to be set 0.02*SD when 

utilizing an entropy algorithm. In Tipton’s study (which use the same data set as the present study), 

only one value of r value was used. Therefore, one of the focusses of this study was placed on the 

filter parameter, r, to determine which or which are optimal for the objectives of this study. Center 

of pressure data sets demonstrated significant differences between the range of r values, r = 0.05, 

r = 0.1, r = 0.15, r = 0.2, r = 0.25, and r = 0.3 times standard deviation. Overall, the variations in 
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entropy values by ApEn and SampEn calculations as r changed imply that the usual choice of r = 

0.2*SD allows for contemplation. The stability of a metric is referred to as relative consistency. 

As r increased, ApEn and SampEn values decreased, where both calculations exhibited relative 

directional consistency; therefore, r had the same effect on both entropy calculations. In a different 

study Yentes et al.50, found that for walking trials of gait data SampEn decreased as r increased, 

which is consistent with our findings. However, for ApEn, different r values resulted in some 

variability50. For the current study, since ApEn showed relative consistency in a similar manner as 

SampEn, it is suggested that r be selected based on the individual study’s criteria for parameters, 

and then examine the relative consistency across r = 0.15, 0.2, and 0.25 times the standard 

deviation. 

Outliers and spikes were apparent in SampEn values for r = 0.05 and r = 0.1*SD due to the 

overly stringent conditions. In a study that evaluated the impact of abnormal spikes on the 

interpretation of entropy results in the context of biosignal analysis, Molina-Picó et al.25 suggested 

removing these results, as they can misrepresent the signal regularity. Therefore, it is illogical to 

assume that the anomalies exhibited by SampEn represent data that ApEn was incapable of 

detecting in any way. The obvious deviation of entropy values from the overall trend line of the 

data, within the range of r = 0.05 and r = 0.1*SD, suggests that such small entropy values should 

not be used, removing r = 0.05 and r = 0.1*SD from the list of recommendations for use. 

The performance of ApEn and SampEn calculations of standing balance condition-based 

time series were able to differentiate between circumstances that were different from the baseline 

EOFT condition, in that the tandem stance trials indicated higher entropy values. ECFT was not 

consistent enough in indicating entropy values that were significantly higher than the baseline 
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entropy values in this study. In a similar study assessing balance by altering visual conditions, 

Ramdani36 used SampEn to analyze human postural sway and was able to distinguish between 

eyes open and eyes closed conditions of participants standing on a single force plate. Importantly, 

in conditions with eyes closed, SampEn was lower than in conditions with eyes open. Some concur 

with these findings11, while others find them contradictory43. Given the equal significance in 

distinguishing between eyes closed, feet together (ECFT) and eyes open, feet together (EOFT) in 

our present study, it is suggested that ECFT condition not be a  method primarily used to 

differentiate ECFT from baseline conditions. 

All the participants showed a consistent significant difference from baseline under tandem 

conditions in both AP and ML directions. As expected, the tandem was the least stable condition, 

under both eyes open and eyes closed conditions. With tandem standing, placement of the 

dominant foot in the back or front did not seem to affect the entropy values. In contrast to other 

participants for tandem standing, participants 4 and 5 repeatedly exhibited insignificances when 

comparing ECTDF, EOTDB, and ECTDB trials to baseline in the one-way ANOVA with 

Dunnett’s Tests Outputs summary graphics; however, previously discussed outliers may 

contribute to this. Though clear significances are found for differentiating from baseline in both 

ApEn and SampEn, which entropic measure is “better”? Few studies have compared ApEn and 

SampEn for standing balance data by altering only the tolerance parameter. However, Yentes50 

investigated postural control of walking trials and evaluated various combinations of N, m, and r 

and concluded that SampEn appeared to be more trustworthy for brief data sets and demonstrated 

fewer difficulties with relative consistency. As opposed to Yentes et al.'s50findings that generally 

mean ApEn values were lower than mean SampEn values in the analysis of gait data, in the present 
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study it was found that mean SampEn values were lower. Given Our findings in that ApEn and 

SampEn are almost equally significant to distinguish from baseline for standing balance data, 

additional research needs to re-examine differences between ApEn and SampEn across similar 

values of m and r. 

There are several limitations to this study beyond its use of a small sample of healthy 

participants. First, differentiating comparisons between ApEn and SampEn might be feasible 

utilizing alternative statistical practices. Future studies may propose the use of significantly more 

sophisticated statistical methods that permit testing across subjects concerning ANOVA analysis. 

Researchers may also consider comparing the time frequency analysis of the anterior posterior and 

medial lateral directions of ApEn and SampEn when considering directional differences. Secondly, 

additional methodologies exist for determining an optimal r. In addition to a few methodological 

propositions of r, such as using the standard error of the entropy values18 and employing fixed 

tolerance values15, 45, I would propose comparing ApEn and SampEn using a method proposed by 

Chon et al9. In this study, the authors implement a heuristic stochastic model employing equations 

that autonomously determine the ApEnmax value, such that the accuracy of the entropic output is 

unaffected by the different data lengths. Lastly, the outcomes of this study may be influenced by 

the resolution of the selected downsampling technique. Typically, downsampling by selecting 

every nth point, rather than averaging across each window, introduces aliasing into the system. 

However, a low-pass Butterworth filter was implemented during preprocessing to mitigate this 

effect. Though the resulting COP waveforms of the unprocessed and downsampled data appeared 

to be identical in this study, the results should be compared to other sampling techniques, such as 
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the use of the MATLAB decimate function rather than downsample. Or evaluate the effect of 

obtaining a windowed average by downsampling an average of 20, 30, 40, etc. points at a time. 

This study's objective was to investigate the impact of varying the input parameter r, the 

similarity criterion, required for the calculations of both ApEn and SampEn, in order to determine 

the optimal choice. Choosing a suitable input r value is necessary to ensure relative consistency. 

The selection of r had a relatively consistent effect on both statistical analyses, as the similarity 

criterion was increasingly tightened, more similarities were rejected, resulting in larger entropy 

values. For optimal results, values between r = 0.15 and 0.25*SD are deemed optimal. It is these 

ranges of r values that the entropic data is less susceptible to outliers while maintaining a critical 

threshold in lieu of retaining low experimental error. Further, the purpose of this master’s thesis 

was to compare the analysis methods, ApEn and SampEn of center of pressure balance data, to 

determine which entropy measure is most consistent. ApEn and SampEn analysis methods 

accurately quantify the varying stability conditions, i.e., both methods could accurately decipher 

between the stability conditions appropriately. It can be concluded that both systems are highly 

predictable over time and share equivalent significance in terms of their ability to differentiate 

from baseline. Consequently, one estimation technique was not particularly “better” than the other. 

Since both methods of statistical data analysis produce the same overall pattern of results, it can 

be concluded that both indices were equally effective in quantifying the level of center of pressure 

signal regularity during quiet tandem standing postural balance tests and it is thereby suitable to 

use either methodology. However, it was discovered that mean SampEn values were typically 

lesser than ApEn values. In order to substantially advance the determination of the optimal 
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technique for clinically diagnosing concussions, additional research will be required to 

demonstrate what this really implies for our data. 
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Appendix A. ANOVA with Dunnett’s Test Figures 

Supplementary data associated with this master’s thesis can be found below. Participant 1 

serves as the representative for all subjects' one-way ANOVA statistics with Dunnett’s tests in 

Appendix A. The data from graphics such as those in Appendix A were compiled into summary 

graphics for methods section, Figures 8 – 12. 

 

 
Figure A.1. One-way ANOVA, mapping the 5 mean ApEn trial values in the anterior posterior 
(AP) direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet 
together (ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet tandem, 
dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward (EOTDF); and eyes 
closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); where N = 1,800 
datapoints, m = 2, and r = 0.15*SD. 
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Figure A.2. One-way ANOVA, mapping the 5 mean ApEn trial values in the medial lateral (ML) 
direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet together 
(ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet tandem, 
dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward (EOTDF); and 
eyes closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); where N = 1,800 
datapoints, m = 2, and r = 0.15*SD. 
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Figure A.3. One-way ANOVA, mapping the 5 mean ApEn trial values in the anterior posterior 
(AP) direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet 
together (ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet 
tandem, dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward 
(EOTDF); and eyes closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); 
where N = 1,800 datapoints, m = 2, and r = 0.2*SD. 
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Figure A.4. One-way ANOVA, mapping the 5 mean ApEn trial values in the medial lateral (ML) 
direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet together 
(ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet tandem, 
dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward (EOTDF); and 
eyes closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); where N = 1,800 
datapoints, m = 2, and r = 0.2*SD. 
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Figure A.5. One-way ANOVA, mapping the 5 mean ApEn trial values in the anterior posterior 
(AP) direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet 
together (ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet 
tandem, dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward 
(EOTDF); and eyes closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); 
where N = 1,800 datapoints, m = 2, and r = 0.25*SD. 
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Figure A.6. One-way ANOVA, mapping the 5 mean ApEn trial values in the medial lateral (ML) 
direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet together 
(ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet tandem, 
dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward (EOTDF); and 
eyes closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); where N = 1,800 
datapoints, m = 2, and r = 0.25*SD. 
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Figure A.7. One-way ANOVA, mapping the 5 mean SampEn trial values in the anterior posterior 
(AP) direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet 
together (ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet tandem, 
dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward (EOTDF); and eyes 
closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); where N = 1,800 
datapoints, m = 2, and r = 0.15*SD. 
 
 
 
 
 
 



 
 

47 
 
 

 
Figure A.8. One-way ANOVA, mapping the 5 mean SampEn trial values in the medial lateral 
(ML) direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet 
together (ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet 
tandem, dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward 
(EOTDF); and eyes closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); 
where N = 1,800 datapoints, m = 2, and r = 0.15*SD. 
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Figure A.9. One-way ANOVA, mapping the 5 mean SampEn trial values in the anterior posterior 
(AP) direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet 
together (ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet 
tandem, dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward 
(EOTDF); and eyes closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); 
where N = 1,800 datapoints, m = 2, and r = 0.2*SD. 
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Figure A.10. One-way ANOVA, mapping the 5 mean SampEn trial values in the medial lateral 
(ML) direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet 
together (ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet 
tandem, dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward 
(EOTDF); and eyes closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); 
where N = 1,800 datapoints, m = 2, and r = 0.2*SD. 
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Figure A.11. One-way ANOVA, mapping the 5 mean SampEn trial values in the anterior 
posterior (AP) direction for each stability condition; with Dunnett’s tests, comparing eyes closed, 
feet together (ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet 
tandem, dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward 
(EOTDF); and eyes closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); 
where N = 1,800 datapoints, m = 2, and r = 0.25*SD. 
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Figure A.12. One-way ANOVA, mapping the 5 mean SampEn trial values in the medial lateral 
(ML) direction for each stability condition; with Dunnett’s tests, comparing eyes closed, feet 
together (ECFT); eyes open, feet tandem, dominant foot back (EOTDB); eyes closed, feet 
tandem, dominant foot back (ECTDB); eyes open, feet tandem, dominant foot forward 
(EOTDF); and eyes closed, feet tandem, dominant foot forward (ECTDF); to baseline (EOFT); 
where N = 1,800 datapoints, m = 2, and r = 0.25*SD. 
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Appendix B. ANOVA Data Tables 

Supplementary data associated with this master’s thesis can be found below. Table B.1 and 

Table B.2 depict the associated ApEn and SampEn values plotted in Figures 13 and 14. Each mean 

entropy value is a result of a compilation of each of the columns, i.e., value of r, axis direction, 

participant, stability condition, and entropy estimation method.  

 

Table B.1.     All Subjects by Axis and Method Mean and Standard Deviation Data 
 

r Axis Subject Method mean std 
1 0.05 AP 1 Approximate 0.552923336033609 0.0488963051243597 
2 0.05 AP 1 Sample 0.513363004523101 0.0754283729720997 
3 0.05 AP 2 Approximate 0.573654693622424 0.0271048578781064 
4 0.05 AP 2 Sample 0.555312510534061 0.0462103755086795 
5 0.05 AP 4 Approximate 0.773897907699981 0.183724893881889 
6 0.05 AP 4 Sample 0.789084817867085 0.202248702651556 
7 0.05 AP 5 Approximate NA NA 
8 0.05 AP 5 Sample NA NA 
9 0.05 AP 6 Approximate 0.543356457836966 0.0490237753617992 
10 0.05 AP 6 Sample 0.496973395612704 0.0769347412887044 
11 0.05 AP 8 Approximate 0.574055805788667 0.0383543544455246 
12 0.05 AP 8 Sample 0.55617824887009 0.0681921869237874 
13 0.05 ML 1 Approximate 0.532937654547443 0.153309748577886 
14 0.05 ML 1 Sample 0.513974937202097 0.194325970349666 
15 0.05 ML 2 Approximate 0.594209164205528 0.0864580077985201 
16 0.05 ML 2 Sample 0.598869208020955 0.14416650843452 
17 0.05 ML 4 Approximate 0.914593728118234 0.208024389784852 
18 0.05 ML 4 Sample 1.05959078000325 0.334259652183477 
19 0.05 ML 5 Approximate NA NA 
20 0.05 ML 5 Sample NA NA 
21 0.05 ML 6 Approximate 0.573649856971166 0.0648231736059189 
22 0.05 ML 6 Sample 0.552868221749671 0.103898283656662 
23 0.05 ML 8 Approximate 0.619926536346686 0.0824860324099032 
24 0.05 ML 8 Sample 0.625694031364102 0.135668768455753 
25 0.1 AP 1 Approximate 0.448215894627326 0.0969965564832068 
26 0.1 AP 1 Sample 0.375800257292317 0.0928149762734519 
27 0.1 AP 2 Approximate 0.488664106635178 0.0598657503255546 
28 0.1 AP 2 Sample 0.415247057735097 0.0603946849773664 
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29 0.1 AP 4 Approximate 0.567474916011697 0.0674951459009477 
30 0.1 AP 4 Sample 0.507756510572 0.0740456583489741 
31 0.1 AP 5 Approximate NA NA 
32 0.1 AP 5 Sample NA NA 
33 0.1 AP 6 Approximate 0.434524366535238 0.0929176707999807 
34 0.1 AP 6 Sample 0.361046116190021 0.0890553086859567 
35 0.1 AP 8 Approximate 0.488806534591956 0.0873956779977639 
36 0.1 AP 8 Sample 0.4200755908704 0.0865508217796465 
37 0.1 ML 1 Approximate 0.404874158362073 0.192762801119961 
38 0.1 ML 1 Sample 0.351251734395586 0.180134099429366 
39 0.1 ML 2 Approximate 0.497240541960855 0.150571400929271 
40 0.1 ML 2 Sample 0.44167733872721 0.153063084087885 
41 0.1 ML 4 Approximate 0.724012860580689 0.192703471077284 
42 0.1 ML 4 Sample 0.689399718148441 0.210328197002203 
43 0.1 ML 5 Approximate NA NA 
44 0.1 ML 5 Sample NA NA 
45 0.1 ML 6 Approximate 0.462801212161836 0.121618643059573 
46 0.1 ML 6 Sample 0.398742435299288 0.117513438324011 
47 0.1 ML 8 Approximate 0.504738434619346 0.126702858792856 
48 0.1 ML 8 Sample 0.447999220908179 0.132658512628974 
49 0.15 AP 1 Approximate 0.331166920743155 0.0977156344566747 
50 0.15 AP 1 Sample 0.275587815871537 0.0837687624778456 
51 0.15 AP 2 Approximate 0.368904586523714 0.0676511602065315 
52 0.15 AP 2 Sample 0.307308752378951 0.0584798721351914 
53 0.15 AP 4 Approximate 0.423956400795699 0.0652935183933577 
54 0.15 AP 4 Sample 0.371413665346407 0.0688236995377513 
55 0.15 AP 5 Approximate NA NA 
56 0.15 AP 5 Sample NA NA 
57 0.15 AP 6 Approximate 0.311864233690721 0.0888345225970193 
58 0.15 AP 6 Sample 0.260436520563862 0.0766220258314184 
59 0.15 AP 8 Approximate 0.369898452376085 0.0923825418569759 
60 0.15 AP 8 Sample 0.311935991132178 0.0813270834234804 
61 0.15 ML 1 Approximate 0.311578828305287 0.184140234278394 
62 0.15 ML 1 Sample 0.262285487807663 0.15823408979534 
63 0.15 ML 2 Approximate 0.404553774931911 0.165596114970691 
64 0.15 ML 2 Sample 0.340858145272437 0.145166613101269 
65 0.15 ML 4 Approximate 0.578333770648374 0.166638880358923 
66 0.15 ML 4 Sample 0.517695366653017 0.162140589221939 
67 0.15 ML 5 Approximate NA NA 
68 0.15 ML 5 Sample NA NA 
69 0.15 ML 6 Approximate 0.34944517013498 0.131862873670127 
70 0.15 ML 6 Sample 0.2936829724187 0.11050134347345 
71 0.15 ML 8 Approximate 0.392663305443923 0.145553641702517 
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72 0.15 ML 8 Sample 0.336527434654231 0.130053955280431 
73 0.2 AP 1 Approximate 0.229989193447657 0.095439556431448 
74 0.2 AP 1 Sample 0.208093540150848 0.0691431029159029 
75 0.2 AP 2 Approximate 0.273942460731057 0.0591606081786695 
76 0.2 AP 2 Sample 0.232088390501253 0.0494807683376879 
77 0.2 AP 4 Approximate 0.319773546818795 0.0655011689461831 
78 0.2 AP 4 Sample 0.284060920026601 0.065389649428505 
79 0.2 AP 5 Approximate NA NA 
80 0.2 AP 5 Sample NA NA 
81 0.2 AP 6 Approximate 0.226197637843229 0.0706261219789934 
82 0.2 AP 6 Sample 0.193656589980495 0.0604156169763611 
83 0.2 AP 8 Approximate 0.274705903934411 0.0780543335198408 
84 0.2 AP 8 Sample 0.235549915301517 0.0678789954169452 
85 0.2 ML 1 Approximate 0.259524933281401 0.151202205497115 
86 0.2 ML 1 Sample 0.203724010669376 0.132990871182964 
87 0.2 ML 2 Approximate 0.326523945594658 0.153225836609389 
88 0.2 ML 2 Sample 0.269548834700058 0.12704735547884 
89 0.2 ML 4 Approximate 0.47189137870991 0.155219919881618 
90 0.2 ML 4 Sample 0.409149942460809 0.139219384241739 
91 0.2 ML 5 Approximate NA NA 
92 0.2 ML 5 Sample NA NA 
93 0.2 ML 6 Approximate 0.265912195267243 0.117716028732856 
94 0.2 ML 6 Sample 0.224154224914164 0.0944933745582462 
95 0.2 ML 8 Approximate 0.307407840344365 0.139878313456619 
96 0.2 ML 8 Sample 0.260273957945955 0.116950811373516 
97 0.25 AP 1 Approximate 0.186741690269226 0.065558389891597 
98 0.25 AP 1 Sample 0.162993488953873 0.0562979323549168 
99 0.25 AP 2 Approximate 0.208154703830785 0.0488285231253674 
100 0.25 AP 2 Sample 0.181527870854991 0.0409101571597724 
101 0.25 AP 4 Approximate 0.2458249755349 0.0574401252167571 
102 0.25 AP 4 Sample 0.223689535314665 0.0571197554314075 
103 0.25 AP 5 Approximate NA NA 
104 0.25 AP 5 Sample NA NA 
105 0.25 AP 6 Approximate 0.17102255372337 0.054005379375082 
106 0.25 AP 6 Sample 0.150608224521617 0.0471764402357288 
107 0.25 AP 8 Approximate 0.209211649452499 0.0614182315540103 
108 0.25 AP 8 Sample 0.183791996389714 0.0546864600108072 
109 0.25 ML 1 Approximate 0.193929612507069 0.133641956388092 
110 0.25 ML 1 Sample 0.163011561472537 0.110695625914642 
111 0.25 ML 2 Approximate 0.264358145625547 0.133504137866843 
112 0.25 ML 2 Sample 0.217632259556432 0.107825895936438 
113 0.25 ML 4 Approximate 0.391345291029995 0.143730107625575 
114 0.25 ML 4 Sample 0.333627456449931 0.122075236518685 
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115 0.25 ML 5 Approximate NA NA 
116 0.25 ML 5 Sample NA NA 
117 0.25 ML 6 Approximate 0.207186730634017 0.0980794582018656 
118 0.25 ML 6 Sample 0.176988769866324 0.0782941305485083 
119 0.25 ML 8 Approximate 0.244696727592634 0.124487145447648 
120 0.25 ML 8 Sample 0.207408219078263 0.101614949747247 
121 0.3 AP 1 Approximate 0.147413586034671 0.0518672659890784 
122 0.3 AP 1 Sample 0.131962574805219 0.0459571907503602 
123 0.3 AP 2 Approximate 0.16388583641981 0.0390441019200517 
124 0.3 AP 2 Sample 0.146801678879389 0.0337274095388648 
125 0.3 AP 4 Approximate 0.194206631964223 0.0476272709196575 
126 0.3 AP 4 Sample 0.180739110430945 0.0481953037370043 
127 0.3 AP 5 Approximate NA NA 
128 0.3 AP 5 Sample NA NA 
129 0.3 AP 6 Approximate 0.134879717826831 0.0416876733790984 
130 0.3 AP 6 Sample 0.12168185097051 0.0374015752515928 
131 0.3 AP 8 Approximate 0.164974361215884 0.0477887043158255 
132 0.3 AP 8 Sample 0.148274547353833 0.0438802271151863 
133 0.3 ML 1 Approximate 0.156971276857867 0.110095250592128 
134 0.3 ML 1 Sample 0.133732045614251 0.092158732785613 
135 0.3 ML 2 Approximate 0.216016175947946 0.113356088509414 
136 0.3 ML 2 Sample 0.17941797306955 0.091253195428536 
137 0.3 ML 4 Approximate 0.328574546195869 0.129810217731111 
138 0.3 ML 4 Sample 0.278120656533204 0.10725972063412 
139 0.3 ML 5 Approximate NA NA 
140 0.3 ML 5 Sample NA NA 
141 0.3 ML 6 Approximate 0.16591360343697 0.0799861047818259 
142 0.3 ML 6 Sample 0.143981036209407 0.0646059827742168 
143 0.3 ML 8 Approximate 0.199078641904989 0.107871255326046 
144 0.3 ML 8 Sample 0.169858737868292 0.0878226919358317 

 

Table B.2.    Conditions by Axis and Method Mean and Standard Deviation Data 
 

r Axis Condition Method mean std 
1 0.05 AP ECFT Approximate 0.615446673585895 0.169093235110817 
2 0.05 AP ECFT Sample 0.580214089499568 0.199021823941436 
3 0.05 AP ECTDB Approximate NA NA 
4 0.05 AP ECTDB Sample NA NA 
5 0.05 AP ECTDF Approximate 0.594363845494992 0.0221672593236419 
6 0.05 AP ECTDF Sample 0.586488512105544 0.0447277591604153 
7 0.05 AP EOFT Approximate 0.587716078648704 0.189821927006716 
8 0.05 AP EOFT Sample 0.534773836071416 0.226848466546936 
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9 0.05 AP EOTDB Approximate 0.626824610678242 0.123532524458569 
10 0.05 AP EOTDB Sample 0.611232690255824 0.156626155034266 
11 0.05 AP EOTDF Approximate 0.590217410341068 0.0348647167159653 
12 0.05 AP EOTDF Sample 0.579906841048275 0.0600261134756815 
13 0.05 ML ECFT Approximate 0.609174901449631 0.191514606156255 
14 0.05 ML ECFT Sample 0.577913808971904 0.240535136725473 
15 0.05 ML ECTDB Approximate NA NA 
16 0.05 ML ECTDB Sample NA NA 
17 0.05 ML ECTDF Approximate 0.701660921000785 0.119905466423849 
18 0.05 ML ECTDF Sample 0.765063521649689 0.197208870541617 
19 0.05 ML EOFT Approximate 0.553029788779079 0.241374268367437 
20 0.05 ML EOFT Sample 0.511906513474842 0.282350754201994 
21 0.05 ML EOTDB Approximate 0.746297053124038 0.264366907464697 
22 0.05 ML EOTDB Sample 0.835454520263187 0.446693873974837 
23 0.05 ML EOTDF Approximate 0.670481593173265 0.131675637805314 
24 0.05 ML EOTDF Sample 0.727134821186554 0.2227647217722 
25 0.1 AP ECFT Approximate 0.456242755943474 0.100340577839872 
26 0.1 AP ECFT Sample 0.378321230873911 0.0968529837431867 
27 0.1 AP ECTDB Approximate NA NA 
28 0.1 AP ECTDB Sample NA NA 
29 0.1 AP ECTDF Approximate 0.525054281199565 0.0446363766126562 
30 0.1 AP ECTDF Sample 0.459824150996151 0.0540321343500852 
31 0.1 AP EOFT Approximate 0.375494033641188 0.120400066317457 
32 0.1 AP EOFT Sample 0.309460277788605 0.111990799713221 
33 0.1 AP EOTDB Approximate 0.511694226384145 0.0654797919568866 
34 0.1 AP EOTDB Sample 0.440855849565787 0.0788975313729291 
35 0.1 AP EOTDF Approximate 0.513915472559543 0.0467065695385829 
36 0.1 AP EOTDF Sample 0.445901835566377 0.0614488773256967 
37 0.1 ML ECFT Approximate 0.404748255912342 0.139078140706425 
38 0.1 ML ECFT Sample 0.346114267493604 0.130752850738477 
39 0.1 ML ECTDB Approximate NA NA 
40 0.1 ML ECTDB Sample NA NA 
41 0.1 ML ECTDF Approximate 0.618061578251138 0.118180138649981 
42 0.1 ML ECTDF Sample 0.572730135955645 0.132101293709322 
43 0.1 ML EOFT Approximate 0.338577642188683 0.175820068500834 
44 0.1 ML EOFT Sample 0.290059610379686 0.158441042685206 
45 0.1 ML EOTDB Approximate 0.632050253618183 0.252243138484633 
46 0.1 ML EOTDB Sample 0.577264605626455 0.28122788302594 
47 0.1 ML EOTDF Approximate 0.591074350893299 0.133873488251142 
48 0.1 ML EOTDF Sample 0.543130431989346 0.153326895759643 
49 0.15 AP ECFT Approximate 0.317727666704173 0.0776354623159107 
50 0.15 AP ECFT Sample 0.261555770389475 0.0662947808289264 
51 0.15 AP ECTDB Approximate NA NA 
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52 0.15 AP ECTDB Sample NA NA 
53 0.15 AP ECTDF Approximate 0.41876901929844 0.061204036869183 
54 0.15 AP ECTDF Sample 0.357917839374826 0.0589140959294864 
55 0.15 AP EOFT Approximate 0.238357227130369 0.0836575322073203 
56 0.15 AP EOFT Sample 0.200788497674001 0.0723956852100691 
57 0.15 AP EOTDB Approximate 0.385525853546339 0.0621370724389266 
58 0.15 AP EOTDB Sample 0.325434825645317 0.0639396148194999 
59 0.15 AP EOTDF Approximate 0.396388655647414 0.0587380510550414 
60 0.15 AP EOTDF Sample 0.337146252345819 0.0623000887991572 
61 0.15 ML ECFT Approximate 0.26432042432904 0.106935187310751 
62 0.15 ML ECFT Sample 0.227563915350218 0.091576528004677 
63 0.15 ML ECTDB Approximate NA NA 
64 0.15 ML ECTDB Sample NA NA 
65 0.15 ML ECTDF Approximate 0.526353790179524 0.125396075045685 
66 0.15 ML ECTDF Sample 0.459097688853714 0.122009177186753 
67 0.15 ML EOFT Approximate 0.214790672338941 0.12035928414717 
68 0.15 ML EOFT Sample 0.186966416656634 0.103337038594578 
69 0.15 ML EOTDB Approximate 0.499184322686777 0.212831856781852 
70 0.15 ML EOTDB Sample 0.431496255731315 0.210675281843379 
71 0.15 ML EOTDF Approximate 0.494223660375179 0.137825217613009 
72 0.15 ML EOTDF Sample 0.428180011716297 0.137768476263633 
73 0.2 AP ECFT Approximate 0.211851797605485 0.072321625176192 
74 0.2 AP ECFT Sample 0.191537073954868 0.0489272910230612 
75 0.2 AP ECTDB Approximate NA NA 
76 0.2 AP ECTDB Sample NA NA 
77 0.2 AP ECTDF Approximate 0.323947093287654 0.0627097583240227 
78 0.2 AP ECTDF Sample 0.280251149918314 0.0562058109209532 
79 0.2 AP EOFT Approximate 0.165030719179868 0.0585189928969483 
80 0.2 AP EOFT Sample 0.143709332858276 0.0510872379940733 
81 0.2 AP EOTDB Approximate 0.285563359750933 0.054166028000021 
82 0.2 AP EOTDB Sample 0.245350334742472 0.0524208537819914 
83 0.2 AP EOTDF Approximate 0.298941071486615 0.0578673405310776 
84 0.2 AP EOTDF Sample 0.257696017505767 0.0576902549027792 
85 0.2 ML ECFT Approximate 0.201088624662743 0.0752666981198356 
86 0.2 ML ECFT Sample 0.163613930974187 0.067970584651304 
87 0.2 ML ECTDB Approximate NA NA 
88 0.2 ML ECTDB Sample NA NA 
89 0.2 ML ECTDF Approximate 0.442166452956038 0.129500060220738 
90 0.2 ML ECTDF Sample 0.37523239536124 0.11597570879329 
91 0.2 ML EOFT Approximate 0.149425677916381 0.0840580041878042 
92 0.2 ML EOFT Sample 0.132867407869736 0.071971769706746 
93 0.2 ML EOTDB Approximate 0.397673106299343 0.18424453003594 
94 0.2 ML EOTDB Sample 0.336678392962461 0.170365676436763 
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95 0.2 ML EOTDF Approximate 0.408686960217003 0.13995417051965 
96 0.2 ML EOTDF Sample 0.344976072136868 0.126658075167603 
97 0.25 AP ECFT Approximate 0.170478168814785 0.0442232980524086 
98 0.25 AP ECFT Sample 0.147957144102735 0.0374696738875929 
99 0.25 AP ECTDB Approximate NA NA 
100 0.25 AP ECTDB Sample NA NA 
101 0.25 AP ECTDF Approximate 0.251764144067622 0.0558148364681049 
102 0.25 AP ECTDF Sample 0.223529111796983 0.0495546725525944 
103 0.25 AP EOFT Approximate 0.12340644104425 0.0425677296083877 
104 0.25 AP EOFT Sample 0.110442639127105 0.0381334824537455 
105 0.25 AP EOTDB Approximate 0.216963189650859 0.0445380277615436 
106 0.25 AP EOTDB Sample 0.19141978090801 0.0425491654078806 
107 0.25 AP EOTDF Approximate 0.229773397175633 0.0498813997147656 
108 0.25 AP EOTDF Sample 0.202526494279519 0.0496301903180321 
109 0.25 ML ECFT Approximate 0.139909743891459 0.0619350377984523 
110 0.25 ML ECFT Sample 0.125883444130559 0.0524948279074408 
111 0.25 ML ECTDB Approximate NA NA 
112 0.25 ML ECTDB Sample NA NA 
113 0.25 ML ECTDF Approximate 0.369055784167554 0.126237157050676 
114 0.25 ML ECTDF Sample 0.310403284501171 0.108135874823766 
115 0.25 ML EOFT Approximate 0.112376507273484 0.0621317543503756 
116 0.25 ML EOFT Sample 0.101634558800668 0.0536047920425661 
117 0.25 ML EOTDB Approximate 0.320944709267668 0.159828141276398 
118 0.25 ML EOTDB Sample 0.270258550765251 0.141637217247445 
119 0.25 ML EOTDF Approximate 0.338105756724756 0.135308770941955 
120 0.25 ML EOTDF Sample 0.28309100151512 0.115277541711683 
121 0.3 AP ECFT Approximate 0.134302820395314 0.0336873938061658 
122 0.3 AP ECFT Sample 0.119260052001676 0.0294757680394505 
123 0.3 AP ECTDB Approximate NA NA 
124 0.3 AP ECTDB Sample NA NA 
125 0.3 AP ECTDF Approximate 0.199655209774259 0.0466416895643456 
126 0.3 AP ECTDF Sample 0.182112496237088 0.04205408807522 
127 0.3 AP EOFT Approximate 0.0978094282532174 0.0323626112783335 
128 0.3 AP EOFT Sample 0.0892037423352866 0.0298435032348492 
129 0.3 AP EOTDB Approximate 0.170911455476799 0.0357141178716424 
130 0.3 AP EOTDB Sample 0.154511214465163 0.0345399689921685 
131 0.3 AP EOTDF Approximate 0.181579494875872 0.0410319917069211 
132 0.3 AP EOTDF Sample 0.163636000480095 0.0415007349082736 
133 0.3 ML ECFT Approximate 0.111193452490954 0.048173989658354 
134 0.3 ML ECFT Sample 0.101550176393256 0.0416250531101957 
135 0.3 ML ECTDB Approximate NA NA 
136 0.3 ML ECTDB Sample NA NA 
137 0.3 ML ECTDF Approximate 0.309914710556836 0.119386552888959 
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138 0.3 ML ECTDF Sample 0.260774020604223 0.099268136612955 
139 0.3 ML EOFT Approximate 0.0893767048750164 0.0482604035843592 
140 0.3 ML EOFT Sample 0.0817352480809925 0.0421309354408963 
141 0.3 ML EOTDB Approximate 0.263296360895647 0.137944776188303 
142 0.3 ML EOTDB Sample 0.222444063464105 0.119281330826695 
143 0.3 ML EOTDF Approximate 0.281882236387636 0.124585738437153 
144 0.3 ML EOTDF Sample 0.236233335293836 0.102861273053559 
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Appendix C. Code 

C.1 Downsampling COP Data 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: Downsample_COP.m 
% Author: Jayla Wesley 
% Notes: this script file loads subject data into a usable structure for  
% further analysis 
%   1. Cx is the Anterior-Posterior direction 
%   2. Cy is the Medial Lateral direction 
%   3. Downsampling by a factor of 20, 1200Hz to 60Hz 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc; close all; clear; 
 
% load trial condition 
filtdata = readmatrix('C:\Users\jmwesley\OneDrive - Newkirk Electric Associates, 
Inc\Documents\GVSU Masters 22\EGR 695 Masters Thesis\Subject 01\Subject 01 Trial Data 
Raw\SB01_Trial04.csv'); 
 
% separate COP data into axial vectors 
Cx_filt = filtdata(6:36005,18); 
Cy_filt = filtdata(6:36005,19); 
Cz_filt = filtdata(6:36005,20); 
t1 = linspace(1,30,36000); 
 
% downsample by factor of 20 
Cx_filtds = downsample(Cx_filt,20); 
Cy_filtds = downsample(Cy_filt,20); 
Cz_filtds = downsample(Cz_filt,20); 
t2 = linspace(1,30,1800); 
 
% plot generation 
figure(1) 
subplot(1,2,1), plot(t1,Cx_filt) 
xlabel('Time(s)','FontSize', 12), ylabel('AP Distance from Origin (mm)','FontSize', 
12); 
subplot(1,2,2), plot(t1,Cy_filt) 
xlabel('Time(s)','FontSize', 12), ylabel('ML Distance from Origin 
(mm)','FontSize',12); 
 
figure(2) 
subplot(1,2,1), plot(t2,Cx_filtds) 
xlabel('Time(s)','FontSize', 12), ylabel('AP Distance from Origin (mm)','FontSize', 
12); 
subplot(1,2,2), plot(t2,Cy_filtds) 
xlabel('Time(s)','FontSize', 12), ylabel('ML Distance from Origin 
(mm)','FontSize',12); 

 

C.2 Approximate Entropy Function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [AE] = ApEntr( data, dim, r ) 
% Title: ApEntr(data,m,R): returns the approximate entropy value, function 
% Adapted from Jenna Yentes [44]. 
% inputs - data, single column (transpose COP) time series 
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%        - m, length of vectors to be compared 
%        - R, filter for accepting matches (as a proportion of the 
%          standard deviation) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% variable declaration 
r = r*std(data);   % tolerance, r, times the standard deviation 
N = length(data);  % data length 
phim = zeros(1,2); % phi m and phi m + 1 
 
% ApEn calculation 
for j = 1:2 
    m = dim+j-1;                      % define vector length 
    phi = zeros(1,N-m+1); 
    dataMat = zeros(m,N-m+1); 
    for i = 1:m 
        dataMat(i,:) = data(i:N-m+i); % divide data series into blocks 
    end 
    for i = 1:N-m+1                   % calculate the conditional probability of each 
vector 
        tempMat = abs(dataMat - repmat(dataMat(:,i),1,N-m+1));  
        AorB = any( (tempMat > r),1); % count m and m + 1 matches within tolerance 
r*SD 
        phi(i) = sum(~AorB)/(N-m+1);  % sum of natural log for ea cond. proab m and m 
+ 1 
    end 
    phim(j) = sum(log(phi))/(N-m+1);  % sum of natural log for ea cond. prob divide by 
N - m + 1 and N-m 
end 
AE = phim(1)-phim(2);                 % phi m - phi m + 1  
End 
 
 

C.3  Sample Entropy Function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [SE] = SampEntr(data, m, R) 
% Title: SampEntr(data,m,R): returns the sample entropy value, function 
% Adapted from Jenna Yentes [44]. 
% inputs: - data, single column (transpose COP) time series 
%         - m, length of vectors to be compared 
%         - R, filter for accepting matches (as a proportion of the 
%          standard deviation) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% variable declaration 
r = R * std(data); % tolerance, r, times the standard deviation 
N = length(data);  % data length 
 
dij=zeros(N-m,m+1); 
dj=zeros(N-m,1); 
dj1=zeros(N-m,1); 
Bm=zeros(N-m,1); 
Am=zeros(N-m,1); 
 
% SampEn calculation 
for i = 1:N-m 
    for k = 1:m+1 
        dij(:,k) = abs(data(1+k-1:N-m+k-1)-data(i+k-1)); 
    end 
    dj = max(dij(:,1:m),[],2); % divide series into m blocks  
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    dj1 = max(dij,[],2);       % divide series into m + 1 blocks  
    d = find(dj<=r);           % count m matches within tolerance r*SD 
    d1 = find(dj1<=r);         % count m + 1 matches within tolerance r*SD 
    nm = length(d)-1;          % subtract the self-match 
    Bm(i) = nm/(N-m);          % number of similar vector for m points 
    nm1 = length(d1)-1;        % subtract the self-match 
    Am(i) = nm1/(N-m);         % number of similar vector for m + 1 matches 
end 
Bmr = sum(Bm)/(N-m); % sum of natural log for cond. prob two sequences  
                     % are similar for m points divided by N - m 
 
Amr = sum(Am)/(N-m); % sum of natural log for cond. prob two sequences  
                     % are similar for m + 1 matched divided by N - m 
 
SE = -log(Amr/Bmr); % negative natural log of A/B  
end 

 

C.4  ApEn and SampEn over Time Series 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: ApEn_SampEn_TimeSeries.m 
% Author Jayla Wesley 
% Notes: this script file loads subject data into a usable structure for  
% further analysis 
%   1. Cx is the Anterior-Posterior direction 
%   2. Cy is the Medial Lateral Direction 
%   3. Downsampling by a factor of 20, 1200Hz to 60Hz 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all; clear all; clc; 
 
filtdata = readmatrix('C:\Users\jmwesley\OneDrive - Newkirk Electric Associates, 
Inc\Documents\GVSU Masters 22\EGR 695 Masters Thesis\Subject 01\Subject 01 Trial Data 
Raw\SB01_Trial19.csv'); 
 
Cx_filt = filtdata(6:36005,27); 
Cy_filt = filtdata(6:36005,28); 
Cz_filt = filtdata(6:36005,29); 
 
% downsample the data 1200Hz to 60Hz 
Cx_filtds = downsample(Cx_filt,20); 
Cy_filtds = downsample(Cy_filt,20); 
Cz_filtds = downsample(Cz_filt,20); 
 
 
%% Center of Pressure (COP) Calculation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Get COP data by window - choose filtered because overtime difference is 
insignificant. 
% 1 second %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x1 = Cx_filtds(1:60);    % 1 second of data 1-60 
y1 = Cy_filtds(1:60); 
z1 = Cz_filtds(1:60); 
 
% 2 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x2 = Cx_filtds(61:120);  % 1 second of data 61-120 
y2 = Cy_filtds(61:120); 
z2 = Cz_filtds(61:120); 
 
% 3 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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x3 = Cx_filtds(121:180); % 1 second of data 121-180 
y3 = Cy_filtds(121:180); 
z3 = Cz_filtds(121:180); 
 
% 4 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x4 = Cx_filtds(181:240); % 1 second of data 180-240 
y4 = Cy_filtds(181:240); 
z4 = Cz_filtds(181:240); 
 
% 5 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x5 = Cx_filtds(241:300); % 1 second of data 240-300 
y5 = Cy_filtds(241:300); 
z5 = Cz_filtds(241:300); 
 
% 6 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x6 = Cx_filtds(301:360); % 1 second of data 300-360 
y6 = Cy_filtds(301:360); 
z6 = Cz_filtds(301:360); 
 
% 7 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x7 = Cx_filtds(361:420); % 1 second of data 361-420 
y7 = Cy_filtds(361:420); 
z7 = Cz_filtds(361:420); 
 
% 8 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x8 = Cx_filtds(421:480); % 1 second of data 421-480 
y8 = Cy_filtds(421:480); 
z8 = Cz_filtds(421:480); 
 
% 9 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x9 = Cx_filtds(481:540); % 1 second of data 481-540 
y9 = Cy_filtds(481:540); 
z9 = Cz_filtds(481:540); 
 
% 10 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x10 = Cx_filtds(541:600); % 1 second of data 541-600 
y10 = Cy_filtds(541:600); 
z10 = Cz_filtds(541:600); 
 
% 11 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x11 = Cx_filtds(601:660); % 1 second of data 601-660 
y11 = Cy_filtds(601:660); 
z11 = Cz_filtds(601:660); 
 
% 12 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x12 = Cx_filtds(661:720); % 1 second of data 661-720 
y12 = Cy_filtds(661:720); 
z12 = Cz_filtds(661:720); 
 
% 13 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x13 = Cx_filtds(721:780); % 1 second of data 721-780 
y13 = Cy_filtds(721:780); 
z13 = Cz_filtds(721:780); 
 
% 14 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x14 = Cx_filtds(781:840); % 1 second of data 781-840 
y14 = Cy_filtds(781:840); 
z14 = Cz_filtds(781:840); 
 
% 15 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x15 = Cx_filtds(841:900); % 1 second of data 841-900 
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y15 = Cy_filtds(841:900); 
z15 = Cz_filtds(841:900); 
 
% 16 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x16 = Cx_filtds(901:960); % 1 second of data 901-960 
y16 = Cy_filtds(901:960); 
z16 = Cz_filtds(901:960); 
 
% 17 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x17 = Cx_filtds(961:1020); % 1 second of data 961-1020 
y17 = Cy_filtds(961:1020); 
z17 = Cz_filtds(961:1020); 
 
% 18 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x18 = Cx_filtds(1021:1080); % 1 second of data 1021-1080 
y18 = Cy_filtds(1021:1080); 
z18 = Cz_filtds(1021:1080); 
 
% 19 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x19 = Cx_filtds(1081:1140); % 1 second of data 1081-1140 
y19 = Cy_filtds(1081:1140); 
z19 = Cz_filtds(1081:1140); 
 
% 20 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x20 = Cx_filtds(1141:1200); % 1 second of data 1141-1200 
y20 = Cy_filtds(1141:1200); 
z20 = Cz_filtds(1141:1200); 
 
% 21 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x21 = Cx_filtds(1201:1260); % 1 second of data 1201-1260 
y21 = Cy_filtds(1201:1260); 
z21 = Cz_filtds(1201:1260); 
 
% 22 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x22 = Cx_filtds(1261:1320); % 1 second of data 1261-1320 
y22 = Cy_filtds(1261:1320); 
z22 = Cz_filtds(1261:1320); 
 
% 23 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x23 = Cx_filtds(1321:1380); % 1 second of data 1321-1380 
y23 = Cy_filtds(1321:1380); 
z23 = Cz_filtds(1321:1380); 
 
% 24 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x24 = Cx_filtds(1381:1440); % 1 second of data 1381-1440 
y24 = Cy_filtds(1381:1440); 
z24 = Cz_filtds(1381:1440); 
 
% 25 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x25 = Cx_filtds(1441:1500); % 1 second of data 1441-1500 
y25 = Cy_filtds(1441:1500); 
z25 = Cz_filtds(1441:1500); 
 
% 26 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x26 = Cx_filtds(1501:1560); % 1 second of data 1501-1560 
y26 = Cy_filtds(1501:1560); 
z26 = Cz_filtds(1501:1560); 
 
% 27 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x27 = Cx_filtds(1561:1620); % 1 second of data 15611-1620 
y27 = Cy_filtds(1561:1620); 
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z27 = Cz_filtds(1561:1620); 
 
% 28 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x28 = Cx_filtds(1621:1680); % 1 second of data 1621-1680 
y28 = Cy_filtds(1621:1680); 
z28 = Cz_filtds(1621:1680); 
 
 
% 29 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x29 = Cx_filtds(1681:1740); % 1 second of data 1681-1740 
y29 = Cy_filtds(1681:1740); 
z29 = Cz_filtds(1681:1740); 
 
% 30 seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x30 = Cx_filtds(1741:1800); % 1 second of data 1741-1800 
y30 = Cy_filtds(1741:1800); 
z30 = Cz_filtds(1741:1800); 
 
 
%% Entropy Variable Declaration 
dim = 2; % embedded dimension = 2 
r = 0.2; % tolerance 
 
% Sample Entropy(SampEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%%%%% 
% AP direction 
SE1_AP = SampEntr(x1',dim,r); 
SE2_AP = SampEntr(x2',dim,r); 
SE3_AP = SampEntr(x3',dim,r); 
SE4_AP = SampEntr(x4',dim,r); 
SE5_AP = SampEntr(x5',dim,r); 
SE6_AP = SampEntr(x6',dim,r); 
SE7_AP = SampEntr(x7',dim,r); 
SE8_AP = SampEntr(x8',dim,r); 
SE9_AP = SampEntr(x9',dim,r); 
SE10_AP = SampEntr(x10',dim,r); 
SE11_AP = SampEntr(x11',dim,r); 
SE12_AP = SampEntr(x12',dim,r); 
SE13_AP = SampEntr(x13',dim,r); 
SE14_AP = SampEntr(x14',dim,r); 
SE15_AP = SampEntr(x15',dim,r); 
SE16_AP = SampEntr(x16',dim,r); 
SE17_AP = SampEntr(x17',dim,r); 
SE18_AP = SampEntr(x18',dim,r); 
SE19_AP = SampEntr(x19',dim,r); 
SE20_AP = SampEntr(x20',dim,r); 
SE21_AP = SampEntr(x21',dim,r); 
SE22_AP = SampEntr(x22',dim,r); 
SE23_AP = SampEntr(x23',dim,r); 
SE24_AP = SampEntr(x24',dim,r); 
SE25_AP = SampEntr(x25',dim,r); 
SE26_AP = SampEntr(x26',dim,r); 
SE27_AP = SampEntr(x27',dim,r); 
SE28_AP = SampEntr(x28',dim,r); 
SE29_AP = SampEntr(x29',dim,r); 
SE30_AP = SampEntr(x30',dim,r); 
 
%ML direction 
SE1_ML = SampEntr(y1',dim,r); 
SE2_ML = SampEntr(y2',dim,r); 
SE3_ML = SampEntr(y3',dim,r); 
SE4_ML = SampEntr(y4',dim,r); 
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SE5_ML = SampEntr(y5',dim,r); 
SE6_ML = SampEntr(y6',dim,r); 
SE7_ML = SampEntr(y7',dim,r); 
SE8_ML = SampEntr(y8',dim,r); 
SE9_ML = SampEntr(y9',dim,r); 
SE10_ML = SampEntr(y10',dim,r); 
SE11_ML = SampEntr(y11',dim,r); 
SE12_ML = SampEntr(y12',dim,r); 
SE13_ML = SampEntr(y13',dim,r); 
SE14_ML = SampEntr(y14',dim,r); 
SE15_ML = SampEntr(y15',dim,r); 
SE16_ML = SampEntr(y16',dim,r); 
SE17_ML = SampEntr(y17',dim,r); 
SE18_ML = SampEntr(y18',dim,r); 
SE19_ML = SampEntr(y19',dim,r); 
SE20_ML = SampEntr(y20',dim,r); 
SE21_ML = SampEntr(y21',dim,r); 
SE22_ML = SampEntr(y22',dim,r); 
SE23_ML = SampEntr(y23',dim,r); 
SE24_ML = SampEntr(y24',dim,r); 
SE25_ML = SampEntr(y25',dim,r); 
SE26_ML = SampEntr(y26',dim,r); 
SE27_ML = SampEntr(y27',dim,r); 
SE28_ML = SampEntr(y28',dim,r); 
SE29_ML = SampEntr(y29',dim,r); 
SE30_ML = SampEntr(y30',dim,r); 
 
SampEn2_AP = [SE1_AP SE2_AP SE3_AP SE4_AP SE5_AP SE6_AP SE7_AP SE8_AP SE9_AP SE10_AP 
SE11_AP SE12_AP SE13_AP SE14_AP SE15_AP SE16_AP SE17_AP SE18_AP SE19_AP SE20_AP 
SE21_AP SE22_AP SE23_AP SE24_AP SE25_AP SE26_AP SE27_AP SE28_AP SE29_AP SE30_AP]; 
tS_AP = 1:length(SampEn2_AP); 
 
SampEn2_ML = [SE1_ML SE2_ML SE3_ML SE4_ML SE5_ML SE6_ML SE7_ML SE8_ML SE9_ML SE10_ML 
SE11_ML SE12_ML SE13_ML SE14_ML SE15_ML SE16_ML SE17_ML SE18_ML SE19_ML SE20_ML 
SE21_ML SE22_ML SE23_ML SE24_ML SE25_ML SE26_ML SE27_ML SE28_ML SE29_ML SE30_ML]; 
tS_ML = 1:length(SampEn2_ML); 
 
% Approximate Entropy(ApEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%%%%% 
% AP direction 
AP1_AP = ApEntr(x1',dim,r); 
AP2_AP = ApEntr(x2',dim,r); 
AP3_AP = ApEntr(x3',dim,r); 
AP4_AP = ApEntr(x4',dim,r); 
AP5_AP = ApEntr(x5',dim,r); 
AP6_AP = ApEntr(x6',dim,r); 
AP7_AP = ApEntr(x7',dim,r); 
AP8_AP = ApEntr(x8',dim,r); 
AP9_AP = ApEntr(x9',dim,r); 
AP10_AP = ApEntr(x10',dim,r); 
AP11_AP = ApEntr(x11',dim,r); 
AP12_AP = ApEntr(x12',dim,r); 
AP13_AP = ApEntr(x13',dim,r); 
AP14_AP = ApEntr(x14',dim,r); 
AP15_AP = ApEntr(x15',dim,r); 
AP16_AP = ApEntr(x16',dim,r); 
AP17_AP = ApEntr(x17',dim,r); 
AP18_AP = ApEntr(x18',dim,r); 
AP19_AP = ApEntr(x19',dim,r); 
AP20_AP = ApEntr(x20',dim,r); 
AP21_AP = ApEntr(x21',dim,r); 
AP22_AP = ApEntr(x22',dim,r); 



 
 

67 
 
 

AP23_AP = ApEntr(x23',dim,r); 
AP24_AP = ApEntr(x24',dim,r); 
AP25_AP = ApEntr(x25',dim,r); 
AP26_AP = ApEntr(x26',dim,r); 
AP27_AP = ApEntr(x27',dim,r); 
AP28_AP = ApEntr(x28',dim,r); 
AP29_AP = ApEntr(x29',dim,r); 
AP30_AP = ApEntr(x30',dim,r); 
 
%ML direction 
AP1_ML = ApEntr(y1',dim,r); 
AP2_ML = ApEntr(y2',dim,r); 
AP3_ML = ApEntr(y3',dim,r); 
AP4_ML = ApEntr(y4',dim,r); 
AP5_ML = ApEntr(y5',dim,r); 
AP6_ML = ApEntr(y6',dim,r); 
AP7_ML = ApEntr(y7',dim,r); 
AP8_ML = ApEntr(y8',dim,r); 
AP9_ML = ApEntr(y9',dim,r); 
AP10_ML = ApEntr(y10',dim,r); 
AP11_ML = ApEntr(y11',dim,r); 
AP12_ML = ApEntr(y12',dim,r); 
AP13_ML = ApEntr(y13',dim,r); 
AP14_ML = ApEntr(y14',dim,r); 
AP15_ML = ApEntr(y15',dim,r); 
AP16_ML = ApEntr(y16',dim,r); 
AP17_ML = ApEntr(y17',dim,r); 
AP18_ML = ApEntr(y18',dim,r); 
AP19_ML = ApEntr(y19',dim,r); 
AP20_ML = ApEntr(y20',dim,r); 
AP21_ML = ApEntr(y21',dim,r); 
AP22_ML = ApEntr(y22',dim,r); 
AP23_ML = ApEntr(y23',dim,r); 
AP24_ML = ApEntr(y24',dim,r); 
AP25_ML = ApEntr(y25',dim,r); 
AP26_ML = ApEntr(y26',dim,r); 
AP27_ML = ApEntr(y27',dim,r); 
AP28_ML = ApEntr(y28',dim,r); 
AP29_ML = ApEntr(y29',dim,r); 
AP30_ML = ApEntr(y30',dim,r); 
 
ApEn2_AP = [AP1_AP AP2_AP AP3_AP AP4_AP AP5_AP AP6_AP AP7_AP AP8_AP AP9_AP AP10_AP 
AP11_AP AP12_AP AP13_AP AP14_AP AP15_AP AP16_AP AP17_AP AP18_AP AP19_AP AP20_AP 
AP21_AP AP22_AP AP23_AP AP24_AP AP25_AP AP26_AP AP27_AP AP28_AP AP29_AP AP30_AP]; 
tA_AP = 1:length(ApEn2_AP); 
 
ApEn2_ML = [AP1_ML AP2_ML AP3_ML AP4_ML AP5_ML AP6_ML AP7_ML AP8_ML AP9_ML AP10_ML 
AP11_ML AP12_ML AP13_ML AP14_ML AP15_ML AP16_ML AP17_ML AP18_ML AP19_ML AP20_ML 
AP21_ML AP22_ML AP23_ML AP24_ML AP25_ML AP26_ML AP27_ML AP28_ML AP29_ML AP30_ML]; 
tA_ML = 1:length(ApEn2_ML); 
 
%% PLOT GENERATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(1) 
subplot(2,2,1), plot(tA_AP, ApEn2_AP) 
xlabel('Time (s)','FontSize', 12), ylabel('ApEn (AP)','FontSize', 12),ylim([0 .6]); 
subplot(2,2,2), plot(tA_ML, ApEn2_ML) 
xlabel('Time (s)','FontSize', 12), ylabel('ApEn (ML)','FontSize', 12),ylim([0 .6]); 
subplot(2,2,3), plot(tS_AP, SampEn2_AP) 
xlabel('Time (s)','FontSize', 12), ylabel('SampEn (AP)','FontSize', 12),ylim([0 .6]); 
subplot(2,2,4), plot(tS_ML, SampEn2_ML) 
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xlabel('Time (s)','FontSize', 12), ylabel('SampEn (ML)','FontSize', 12),ylim([0 
.6]); 
 

C.5  ApEn and SampEn Averages 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: ApEn_SampEn_Averages.m 
% Author Jayla Wesley 
% Notes: this script file loads subject data into a usable structure for  
% further analysis. estimates the average of entire data set EOFT: Trials 2 - 6 
%   1. Cx is the Anterior-Posterior direction 
%   2. Cy is the Medial Lateral Direction 
%   3. Downsampling by a factor of 20, 1200Hz to 60Hz 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all; clear; clc; 
 
%% Trial 02 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
filtdata2 = readmatrix('C:\Users\jmwesley\OneDrive - Newkirk Electric Associates, 
Inc\Documents\GVSU Masters 22\EGR 695 Masters Thesis\Subject 04\Subject 04 Trial Data 
Raw\SB04_Trial02.csv'); 
Cx_filt = filtdata2(4:36003,9); 
Cy_filt = filtdata2(4:36003,10); 
Cz_filt = filtdata2(4:36003,11); 
 
% downsample the data 1200Hz to 60Hz 
Cx_filtds = downsample(Cx_filt,20); 
Cy_filtds = downsample(Cy_filt,20); 
Cz_filtds = downsample(Cz_filt,20); 
 
x = Cx_filtds(1:1800);  
y = Cy_filtds(1:1800); 
z = Cz_filtds(1:1800); 
 
% Calculate Center of Pressure 
data_COPAP = x'; % get transpose for time series AP calculation 
data_COPML = y'; % get transpose for time series ML calculation 
 
% Entropy Variable Declaration Trial 2 
dim = 2; % embedded dimension = 2 
r = 0.2; % tolerance 
 
% Sample Entropy(ApEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%%%%%%% 
% ranging r values 
SampEntropy22ML = SampEntr(data_COPML,dim,r); 
SampEntropy22AP = SampEntr(data_COPAP,dim,r); 
 
% r = .05 
r = 0.05; % tolerance 
SampEntropy052ML = SampEntr(data_COPML,dim,r); 
SampEntropy052AP = SampEntr(data_COPAP,dim,r); 
% r = .1 
r = 0.1; % tolerance 
SampEntropy12ML = SampEntr(data_COPML,dim,r); 
SampEntropy12AP = SampEntr(data_COPAP,dim,r); 
% r = .15 
r = 0.15; % tolerance 
SampEntropy152ML = SampEntr(data_COPML,dim,r); 
SampEntropy152AP = SampEntr(data_COPAP,dim,r); 



 
 

69 
 
 

% r = .25 
r = 0.25; % tolerance 
SampEntropy252ML = SampEntr(data_COPML,dim,r); 
SampEntropy252AP = SampEntr(data_COPAP,dim,r); 
% r = .3 
r = 0.3; % tolerance 
SampEntropy32ML = SampEntr(data_COPML,dim,r); 
SampEntropy32AP = SampEntr(data_COPAP,dim,r); 
 
% Approximate Entropy(ApEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%% 
% ranging r values 
r = 0.2; % tolerance 
AproxEntropy22ML = ApEntr(data_COPML,dim,r); 
AproxEntropy22AP = ApEntr(data_COPAP,dim,r); 
 
% r = .05 
r = 0.05; % tolerance 
AproxEntropy052ML = ApEntr(data_COPML,dim,r); 
AproxEntropy052AP = ApEntr(data_COPAP,dim,r); 
% r = .1 
r = 0.1; %tolerance 
AproxEntropy12ML = ApEntr(data_COPML,dim,r); 
AproxEntropy12AP = ApEntr(data_COPAP,dim,r); 
% r = .15 
r = 0.15; % tolerance 
AproxEntropy152ML = ApEntr(data_COPML,dim,r); 
AproxEntropy152AP = ApEntr(data_COPAP,dim,r); 
% r = .25 
r = 0.25; % tolerance 
AproxEntropy252ML = ApEntr(data_COPML,dim,r); 
AproxEntropy252AP = ApEntr(data_COPAP,dim,r); 
% r = .3 
r = 0.3; %tolerance 
AproxEntropy32ML = ApEntr(data_COPML,dim,r); 
AproxEntropy32AP = ApEntr(data_COPAP,dim,r); 
 
 
 
%% Trial 03 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
filtdata3 = readmatrix('C:\Users\jmwesley\OneDrive - Newkirk Electric Associates, 
Inc\Documents\GVSU Masters 22\EGR 695 Masters Thesis\Subject 04\Subject 04 Trial Data 
Raw\SB04_Trial03.csv'); 
Cx_filt = filtdata3(4:36003,9); 
Cy_filt = filtdata3(4:36003,10); 
Cz_filt = filtdata3(4:36003,11); 
 
Cx_filtds = downsample(Cx_filt,20); 
Cy_filtds = downsample(Cy_filt,20); 
Cz_filtds = downsample(Cz_filt,20); 
 
% Center of Pressure (COP) Calculation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x = Cx_filtds(1:1800); % 1 second of data 1-60 
y = Cy_filtds(1:1800); 
z = Cz_filtds(1:1800); 
 
% Calculate Center of Pressure 
data_COPAP = x'; % get transpose for time series AP calculation 
data_COPML = y'; % get transpose for time series ML calculation 
 
% Entropy Variable Declaration Trial 3 
dim = 2; % embedded dimension = 2 
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r = 0.2; % tolerance 
 
% Sample Entropy(ApEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%%%%%%% 
% range of r values 
SampEntropy23ML = SampEntr(data_COPML,dim,r); 
SampEntropy23AP = SampEntr(data_COPAP,dim,r); 
 
% r = .05 
r = 0.05; % tolerance 
SampEntropy053ML = SampEntr(data_COPML,dim,r); 
SampEntropy053AP = SampEntr(data_COPAP,dim,r); 
% r = .1 
r = 0.1; % tolerance 
SampEntropy13ML = SampEntr(data_COPML,dim,r); 
SampEntropy13AP = SampEntr(data_COPAP,dim,r); 
% r = .15 
r = 0.15; % tolerance 
SampEntropy153ML = SampEntr(data_COPML,dim,r); 
SampEntropy153AP = SampEntr(data_COPAP,dim,r); 
% r = .25 
r = 0.25; % tolerance 
SampEntropy253ML = SampEntr(data_COPML,dim,r); 
SampEntropy253AP = SampEntr(data_COPAP,dim,r); 
% r = .3 
r = 0.3; % tolerance 
SampEntropy33ML = SampEntr(data_COPML,dim,r); 
SampEntropy33AP = SampEntr(data_COPAP,dim,r); 
 
% Approximate Entropy(ApEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%% 
% range of r values 
r = 0.2; % tolerance 
AproxEntropy23ML = ApEntr(data_COPML,dim,r); 
AproxEntropy23AP = ApEntr(data_COPAP,dim,r); 
 
% r = .05 
r = 0.05; % tolerance 
AproxEntropy053ML = ApEntr(data_COPML,dim,r); 
AproxEntropy053AP = ApEntr(data_COPAP,dim,r); 
% r = .1 
r = 0.1; %tolerance 
AproxEntropy13ML = ApEntr(data_COPML,dim,r); 
AproxEntropy13AP = ApEntr(data_COPAP,dim,r); 
% r = .15 
r = 0.15; % tolerance 
AproxEntropy153ML = ApEntr(data_COPML,dim,r); 
AproxEntropy153AP = ApEntr(data_COPAP,dim,r); 
% r = .25 
r = 0.25; % tolerance 
AproxEntropy253ML = ApEntr(data_COPML,dim,r); 
AproxEntropy253AP = ApEntr(data_COPAP,dim,r); 
% r = .3 
r = 0.3; %tolerance 
AproxEntropy33ML = ApEntr(data_COPML,dim,r); 
AproxEntropy33AP = ApEntr(data_COPAP,dim,r); 
 
 
 
%% Trial 04 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
filtdata4 = readmatrix('C:\Users\jmwesley\OneDrive - Newkirk Electric Associates, 
Inc\Documents\GVSU Masters 22\EGR 695 Masters Thesis\Subject 04\Subject 04 Trial Data 
Raw\SB04_Trial04.csv'); 
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Cx_filt = filtdata4(4:36003,9); 
Cy_filt = filtdata4(4:36003,10); 
Cz_filt = filtdata4(4:36003,11); 
 
Cx_filtds = downsample(Cx_filt,20); 
Cy_filtds = downsample(Cy_filt,20); 
Cz_filtds = downsample(Cz_filt,20); 
 
% Center of Pressure (COP) Calculation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x = Cx_filtds(1:1800); % 1 second of data 1-60 
y = Cy_filtds(1:1800); 
z = Cz_filtds(1:1800); 
 
data_COPAP = x'; % get transpose for time series AP calculation 
data_COPML = y'; % get transpose for time series ML calculation 
 
% Entropy Variable Declaration Trial 4 
dim = 2; % embedded dimension = 2 
r = 0.2; % tolerance 
 
% Sample Entropy(ApEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%%%%%%% 
% ranges of r 
SampEntropy24ML = SampEntr(data_COPML,dim,r); 
SampEntropy24AP = SampEntr(data_COPAP,dim,r); 
 
% r = .05 
r = 0.05; % tolerance 
SampEntropy054ML = SampEntr(data_COPML,dim,r); 
SampEntropy054AP = SampEntr(data_COPAP,dim,r); 
% r = .1 
r = 0.1; % tolerance 
SampEntropy14ML = SampEntr(data_COPML,dim,r); 
SampEntropy14AP = SampEntr(data_COPAP,dim,r); 
% r = .15 
r = 0.15; % tolerance 
SampEntropy154ML = SampEntr(data_COPML,dim,r); 
SampEntropy154AP = SampEntr(data_COPAP,dim,r); 
% r = .25 
r = 0.25; % tolerance 
SampEntropy254ML = SampEntr(data_COPML,dim,r); 
SampEntropy254AP = SampEntr(data_COPAP,dim,r); 
% r = .3 
r = 0.3; % tolerance 
SampEntropy34ML = SampEntr(data_COPML,dim,r); 
SampEntropy34AP = SampEntr(data_COPAP,dim,r); 
 
% Approximate Entropy(ApEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%% 
% ranges of r 
r = 0.2; % tolerance 
AproxEntropy24ML = ApEntr(data_COPML,dim,r); 
AproxEntropy24AP = ApEntr(data_COPAP,dim,r); 
 
% r = .05 
r = 0.05; % tolerance 
AproxEntropy054ML = ApEntr(data_COPML,dim,r); 
AproxEntropy054AP = ApEntr(data_COPAP,dim,r); 
% r = .1 
r = 0.1; %tolerance 
AproxEntropy14ML = ApEntr(data_COPML,dim,r); 
AproxEntropy14AP = ApEntr(data_COPAP,dim,r); 
% r = .15 
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r = 0.15; % tolerance 
AproxEntropy154ML = ApEntr(data_COPML,dim,r); 
AproxEntropy154AP = ApEntr(data_COPAP,dim,r); 
% r = .25 
r = 0.25; % tolerance 
AproxEntropy254ML = ApEntr(data_COPML,dim,r); 
AproxEntropy254AP = ApEntr(data_COPAP,dim,r); 
% r = .3 
r = 0.3; %tolerance 
AproxEntropy34ML = ApEntr(data_COPML,dim,r); 
AproxEntropy34AP = ApEntr(data_COPAP,dim,r); 
 
 
 
%% Trial 05 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
filtdata5 = readmatrix('C:\Users\jmwesley\OneDrive - Newkirk Electric Associates, 
Inc\Documents\GVSU Masters 22\EGR 695 Masters Thesis\Subject 04\Subject 04 Trial Data 
Raw\SB04_Trial05.csv'); 
Cx_filt = filtdata5(4:36003,9); 
Cy_filt = filtdata5(4:36003,10); 
Cz_filt = filtdata5(4:36003,11); 
 
Cx_filtds = downsample(Cx_filt,20); 
Cy_filtds = downsample(Cy_filt,20); 
Cz_filtds = downsample(Cz_filt,20); 
 
% Center of Pressure (COP) Calculation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x = Cx_filtds(1:1800); % 1 second of data 1-60 
y = Cy_filtds(1:1800); 
z = Cz_filtds(1:1800); 
 
data_COPAP = x'; % get transpose for time series AP calculation 
data_COPML = y'; % get transpose for time series ML calculation 
 
% Entropy Variable Declaration Trial 5 
dim = 2; % embedded dimension = 2 
r = 0.2; % tolerance 
 
% Sample Entropy(SampEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%%%%%%% 
% ranges of r 
SampEntropy25ML = SampEntr(data_COPML,dim,r); 
SampEntropy25AP = SampEntr(data_COPAP,dim,r); 
 
% r = .05 
r = 0.05; % tolerance 
SampEntropy055ML = SampEntr(data_COPML,dim,r); 
SampEntropy055AP = SampEntr(data_COPAP,dim,r); 
% r = .1 
r = 0.1; % tolerance 
SampEntropy15ML = SampEntr(data_COPML,dim,r); 
SampEntropy15AP = SampEntr(data_COPAP,dim,r); 
% r = .15 
r = 0.15; % tolerance 
SampEntropy155ML = SampEntr(data_COPML,dim,r); 
SampEntropy155AP = SampEntr(data_COPAP,dim,r); 
% r = .25 
r = 0.25; % tolerance 
SampEntropy255ML = SampEntr(data_COPML,dim,r); 
SampEntropy255AP = SampEntr(data_COPAP,dim,r); 
% r = .3 
r = 0.3; % tolerance 
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SampEntropy35ML = SampEntr(data_COPML,dim,r); 
SampEntropy35AP = SampEntr(data_COPAP,dim,r); 
 
% Approximate Entropy(ApEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%% 
% ranges of r 
r = 0.2; % tolerance 
AproxEntropy25ML = ApEntr(data_COPML,dim,r); 
AproxEntropy25AP = ApEntr(data_COPAP,dim,r); 
 
% r = .05 
r = 0.05; % tolerance 
AproxEntropy055ML = ApEntr(data_COPML,dim,r); 
AproxEntropy055AP = ApEntr(data_COPAP,dim,r); 
% r = .1 
r = 0.1; %tolerance 
AproxEntropy15ML = ApEntr(data_COPML,dim,r); 
AproxEntropy15AP = ApEntr(data_COPAP,dim,r); 
% r = .15 
r = 0.15; % tolerance 
AproxEntropy155ML = ApEntr(data_COPML,dim,r); 
AproxEntropy155AP = ApEntr(data_COPAP,dim,r); 
% r = .25 
r = 0.25; % tolerance 
AproxEntropy255ML = ApEntr(data_COPML,dim,r); 
AproxEntropy255AP = ApEntr(data_COPAP,dim,r); 
% r = .3 
r = 0.3; %tolerance 
AproxEntropy35ML = ApEntr(data_COPML,dim,r); 
AproxEntropy35AP = ApEntr(data_COPAP,dim,r); 
 
 
 
%% Trial 06 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
filtdata6 = readmatrix('C:\Users\jmwesley\OneDrive - Newkirk Electric Associates, 
Inc\Documents\GVSU Masters 22\EGR 695 Masters Thesis\Subject 04\Subject 04 Trial Data 
Raw\SB04_Trial6.csv'); 
Cx_filt = filtdata6(4:36003,9); 
Cy_filt = filtdata6(4:36003,10); 
Cz_filt = filtdata6(4:36003,11); 
 
Cx_filtds = downsample(Cx_filt,20); 
Cy_filtds = downsample(Cy_filt,20); 
Cz_filtds = downsample(Cz_filt,20); 
 
% Center of Pressure (COP) Calculation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x = Cx_filtds(1:1800); % 1 second of data 1-60 
y = Cy_filtds(1:1800); 
z = Cz_filtds(1:1800); 
 
data_COPAP = x'; % get transpose for time series AP calculation 
data_COPML = y'; % get transpose for time series ML calculation 
 
% Entropy Variable Declaration Trial 6 
dim = 2; % embedded dimension = 2 
r = 0.2; % tolerance 
 
% Sample Entropy(SampEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%%%%%%% 
% ranges of r 
SampEntropy26ML = SampEntr(data_COPML,dim,r); 
SampEntropy26AP = SampEntr(data_COPAP,dim,r); 
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% r = .05 
r = 0.05; % tolerance 
SampEntropy056ML = SampEntr(data_COPML,dim,r); 
SampEntropy056AP = SampEntr(data_COPAP,dim,r); 
% r = .1 
r = 0.1; % tolerance 
SampEntropy61ML = SampEntr(data_COPML,dim,r); 
SampEntropy61AP = SampEntr(data_COPAP,dim,r); 
% r = .15 
r = 0.15; % tolerance 
SampEntropy156ML = SampEntr(data_COPML,dim,r); 
SampEntropy156AP = SampEntr(data_COPAP,dim,r); 
% r = .25 
r = 0.25; % tolerance 
SampEntropy256ML = SampEntr(data_COPML,dim,r); 
SampEntropy256AP = SampEntr(data_COPAP,dim,r); 
% r = .3 
r = 0.3; % tolerance 
SampEntropy36ML = SampEntr(data_COPML,dim,r); 
SampEntropy36AP = SampEntr(data_COPAP,dim,r); 
 
% Approximate Entropy(ApEn) Calculation (Function) %%%%%%%%%%%%%%%%%%%%%%%% 
% ranges of r 
r = 0.2; % tolerance 
AproxEntropy26ML = ApEntr(data_COPML,dim,r); 
AproxEntropy26AP = ApEntr(data_COPAP,dim,r); 
 
% r = .05 
r = 0.05; % tolerance 
AproxEntropy056ML = ApEntr(data_COPML,dim,r); 
AproxEntropy056AP = ApEntr(data_COPAP,dim,r); 
% r = .1 
r = 0.1; %tolerance 
AproxEntropy61ML = ApEntr(data_COPML,dim,r); 
AproxEntropy61AP = ApEntr(data_COPAP,dim,r); 
% r = .15 
r = 0.15; % tolerance 
AproxEntropy156ML = ApEntr(data_COPML,dim,r); 
AproxEntropy156AP = ApEntr(data_COPAP,dim,r); 
% r = .25 
r = 0.25; % tolerance 
AproxEntropy256ML = ApEntr(data_COPML,dim,r); 
AproxEntropy256AP = ApEntr(data_COPAP,dim,r); 
% r = .3 
r = 0.3; %tolerance 
AproxEntropy36ML = ApEntr(data_COPML,dim,r); 
AproxEntropy36AP = ApEntr(data_COPAP,dim,r); 
 
 
 
%% Results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
format long  
 
[AproxEntropy052ML AproxEntropy053ML AproxEntropy054ML AproxEntropy055ML 
AproxEntropy056ML AproxEntropy12ML AproxEntropy13ML AproxEntropy14ML 
AproxEntropy15ML AproxEntropy61ML AproxEntropy152ML AproxEntropy153ML 
AproxEntropy154ML AproxEntropy155ML AproxEntropy156ML AproxEntropy22ML 
AproxEntropy23ML AproxEntropy24ML AproxEntropy25ML AproxEntropy26ML 
AproxEntropy252ML AproxEntropy253ML AproxEntropy254ML AproxEntropy255ML 
AproxEntropy256ML AproxEntropy32ML AproxEntropy33ML AproxEntropy34ML 
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AproxEntropy35ML AproxEntropy36ML] 
 
[AproxEntropy052AP AproxEntropy053AP AproxEntropy054AP AproxEntropy055AP 
AproxEntropy056AP AproxEntropy12AP AproxEntropy13AP AproxEntropy14AP  
AproxEntropy15AP AproxEntropy61AP AproxEntropy152AP AproxEntropy153AP 
AproxEntropy154AP AproxEntropy155AP AproxEntropy156AP AproxEntropy22AP 
AproxEntropy23AP AproxEntropy24AP AproxEntropy25AP AproxEntropy26AP 
AproxEntropy252AP AproxEntropy253AP AproxEntropy254AP AproxEntropy255AP  
AproxEntropy256AP AproxEntropy32AP AproxEntropy33AP AproxEntropy34AP 
AproxEntropy35AP 
AproxEntropy36AP] 
 
[SampEntropy052ML SampEntropy053ML SampEntropy054ML SampEntropy055ML 
SampEntropy056ML SampEntropy12ML SampEntropy13ML SampEntropy14ML 
SampEntropy15ML SampEntropy61ML SampEntropy152ML SampEntropy153ML 
SampEntropy154ML SampEntropy155ML SampEntropy156ML SampEntropy22ML 
SampEntropy23ML SampEntropy24ML SampEntropy25ML SampEntropy26ML 
SampEntropy252ML SampEntropy253ML SampEntropy254ML SampEntropy255ML 
SampEntropy256ML SampEntropy32ML SampEntropy33ML SampEntropy34ML 
SampEntropy35ML SampEntropy36ML] 
 
[SampEntropy052AP SampEntropy053AP SampEntropy054AP SampEntropy055AP 
SampEntropy056AP SampEntropy12AP SampEntropy13AP SampEntropy14AP 
SampEntropy15AP SampEntropy61AP SampEntropy152AP SampEntropy153AP 
SampEntropy154AP SampEntropy155AP SampEntropy156AP SampEntropy22AP 
SampEntropy23AP SampEntropy24AP SampEntropy25AP SampEntropy26AP 
SampEntropy252AP SampEntropy253AP SampEntropy254AP SampEntropy255AP 
SampEntropy256AP SampEntropy32AP SampEntropy33AP SampEntropy34AP 
SampEntropy35AP SampEntropy36AP] 
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