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ABSTRACT 
 

Virtualization is now becoming an industry standard for modern embedded systems.  

Modern embedded systems can now support multiple applications on a single hardware platform 

while meeting power and cost requirements.  Virtualization on an embedded system is achieved 

through the design of the hardware-software interface.  Instruction set architecture, ISA, defines 

the hardware-software interface for an embedded system.  At the hardware level the ISA, 

provides extensions to support virtualization.  

In addition to an ISA that supports hypervisor extensions it is equally important to 

provide a hypervisor completely capable of exploiting the benefits of virtualization for securing 

modern embedded systems.  Currently there does not exist a commercial hardware design that 

leverages the RISC-V ISA hypervisor extension co-designed with an open-source microkernel. 

This research describes an implementation of the seL4 open-source microkernel with the 

latest version of the RISC-V hypervisor extension (H-extension v0.6.1) specification in a Rocket 

chip soft core.  The combination of open ISA, open-source OS and open-source hardware 

enables hardware and software co-design for securing embedded applications.   

The implication of this research provides a meaningful evaluation of RISC-V with the 

seL4 open-source microkernel by providing an open-source hardware implementation on a Zynq 

Ultrascale+ MPSoC ZCU102 to assist the RISC-V community towards implementation and 

evaluation of hypervisor technology such as seL4. 
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CHAPTER 1: INTRODUCTION 
 

Virtualization has enabled embedded systems to meet the demands of market pressure to 

minimize size, weight, power, and cost (SWaP-C).  Powerful multicore architectures provide the 

ability to isolate virtual machines (VMs) that perform safety-critical functions concurrent to non-

safety critical functions [1].  

This thesis presents the first public implementation of a virtualized system targeting a quad-core 

RISC-V softcore utilizing the seL4 microkernel.  The softcore was designed using open-source 

tools to generate a bitstream that executes on the FPGA fabric of a Xilinx ZCU102 ZynqMP 

Ultrascale+ development board.  

The reference architecture evaluated in this thesis consists of executing a single guest virtual 

machine executing a feature rich operating system, Linux.  Performance and benchmarking were 

collected to compare the Rocketchip softcore vs the ARM Cortex A-53 hardcore. 

 
1.1 Problem Statement 

 
Despite the logical CPU and memory isolation provided by existing hypervisor layers, 

there are several challenges and difficulties in proving strong isolation, due to the reciprocal 

interference caused by micro-architectural resources (e.g., last-level caches, interconnects, and 

memory controllers) shared among virtual machines (VM) [2, 3].  Currently Intel and ARM are 

working on implementations of microarchitectures to bolster strong isolation mechanism, 

however, these architectures are proprietary [4, 5] RISC-V is an open-source instruction set 

architecture (ISA).  As part of the RISC-V privileged architecture specification, hardware 

virtualization support is specified through the hypervisor extension (H-extension) [6]. The H-

extension specification used in this design is currently at version 0.6.1. To date, the H-extension 
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has achieved function completeness with KVM and Xvisor in QEMU as well as one public 

implementation as a softcore on a ZCU104 development kit [5].  The goal of this thesis is to 

provide the first virtualized reference design utilizing the secure seL4 microkernel targeted for a 

RISC-V softcore running on a ZCU102. 

 
1.2 Scope 

 
This thesis presents a reference architecture implementing two microarchitectures of equal 

caliber: a quadcore RISC-V Rocketchip and a quadcore Cortex A-53 ARM processor.  Each 

implementation will contain a single virtual machine running the feature rich operating system 

(OS) Linux.  Benchmarking is performed on both implementations to gain a comparison of 

performance. 

 
1.3 Layout of Thesis 

 
The following section will provide background information in the form of a literature review 

for kernels, virtualization, seL4, formal methods, and RISC-V.  This background information 

will provide the baseline information needed to conceptualize the reference architecture 

implemented.  The third section will cover details of the implementation on both the RISC-V 

softcore and the ARM Cortex A-53; it also will outline the tools used to generate the bitstream 

for the RISC-V softcore.  The fourth section will cover the tests performed to evaluate 

performance of the reference design for both architectures.  Performance metrics are measured 

from each guest operating system during real time.  The final section discusses future work, 

improvements, and a summary of results. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 RISC-V 
 

RISC-V is an open-source instruction set architecture (ISA) that originated from the 

University of California Berkely [6, 7].  As indicated by the name, the ISA was developed on 

Reduced Instruction Set Computer principles. This ISA seeks to provide a base ISA and optional 

application-specific instructions to support software engineers with the ability to add additional 

instructions to meet project specific requirements [7].  The open-source nature of the ISA is what 

ultimately allows hardware and software engineers the flexibility to create custom instructions as 

compared to the closed-source counterparts ARM and x86.  Over the last decade RISC-V has 

made significant strides in becoming a universal ISA that supports a variety of processor types 

from embedded SoCs to high performance server platforms [2, 3].  This survey provides an 

overview of the state-of-art for RISC-V and the development ecosystem. 

2.1.1 Base ISA  
 

The RISC-V ISA extends four primary integer variants that include: RV32I (for 32bit), 

RV32E (for 32-bit with 16 registers), RV64I (for 64-bit), and RV128I (for 128-bit) [9].  These 

base instructions provide the necessary requirements to bootstrap a processor and execute a 

minimal operating system.  Data stored in memory utilizes the little-endian system and 

represents signed integer values with the two’s complement. 

Functionality with the RISC-V ISA is expanded by leveraging the extension modules [9].  

For example, the M module provides multiplication and division instructions.  Table 1 below 

provides an overview of each ISA extension module. 
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Table 1: RISC-V Extension Modules 
RISC-V ISA Extension Description 
M Enables multiplication and division 

A Enables atomic instructions 

F Enables floating point instructions 

D Enables double precision floating point instructions 

G Enables modules M, A, F, D. 

Q Quad precision floating-point instructions 

L Decimal floating-point instructions 

C Compressed instructions 

B Bit manipulation instructions 

J Dynamically translated languages support 

T Transactional memory support 

P Packed-single Instruction Multiple Data 

V Vector operation instructions 

N User-level interrupt support 

H Hypervisor support 

S Supervisor level instructions 

  

 The extensions modules can be enabled during compile time to extend the requisite 

functionality needed by the design.  A system designer has the complete ability to leverage 

additional custom instructions to add to this list so long as the hardware architecture can support 

it. 

2.1.2 Instruction Format 
 
 For this thesis, the rest of this overview will focus on the RV64I since that is what is 

applicable for this study.  There are six formats for RV64I in the RISC-V architecture.  They 

include [9]: 
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• R-Type (Register Type): This format is used for arithmetic and logical operations that 
involve two source registers and one destination register.  The R-Type instruction format 
has the following fields: 

o Opcode (6 bits): Specifies the operation to be performed. 
o rd (5 bits): Destination Register 
o funct3 (3 bits): Function code that further specifies the operation. 
o rs1 (5 bits): Source register 1. 
o rs2 (5 bits): source register 2. 
o funct7 (7 bits): Additional function code. 

 
• I-Type (Immediate type): This format is used for instructions that involve an immediate 

value and one source/destination register.  The I-Type instruction format has the 
following fields: 

o Opcode (6 bits): Specifies the operation to be performed. 
o rd (5 bits): Destination Register 
o funct3 (3 bits): Function code that further specifies the operation. 
o rs1 (5 bits): Source Register 1. 
o imm [11:0]: Immediate value. 

 
• S-Type (Store Type): This format is used for storing data from a register to memory.  The 

S-Type instruction format has the following fields: 
o Opcode (6 bits): Specifies the operation to be performed. 
o imm [11:5] (7 bits): immediate value (offset) used for memory addressing 
o funct3 (3 bits): function code that further specifies the operation. 
o rs1 (5 bits): Source register. 
o rs2 (5 bits): Register containing the data to be stored. 
o imm [4:0] (5 bits): immediate value (offset) used for memory addressing. 

 
• B-Type (Branch Type): this format is used for conditional branching. instructions.  The 

B-Type instruction format has the following fields: 
o Opcode (6 bits): Specifies the operation to be performed. 
o imm [12|10:5] (7 bits): immediate value (offset) used for memory addressing 
o funct3 (3 bits): function code that further specifies the operation. 
o rs1 (5 bits): Source register. 
o rs2 (5 bits): Register containing the data to be stored. 
o imm [4:1|11] (5 bits): immediate value (offset) used for memory addressing. 

 
• U-Type (Upper Immediate Type): This format is used for instructions with wider 

immediate values.  The U-Type instruction format has the following fields: 
o Opcode (6 bits): Specifies the operation to be performed. 
o rd (5 bits): Destination register. 
o imm [31:12] (20 bits): Upper immediate value. 

 
• J-Type (Jump Type): This format is used for unconditional branching instructions.  The J-

Type instruction format has the following fields: 
o Opcode (6 bits): Specifies the operation to be performed. 
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o rd (5 bits): Destination register. 
o imm [20|10:1|19:12] (21 bits): Immediate value (offset) used for jumping. 

 
 

The primary instruction format listed above can be extended by a hardware/software engineer 

by introducing additional formats and instructions.  The next section focuses on the RISC-V 

privilege level concept. 

2.1.3 Privilege Level 
  

 The RISC-V privilege level model allows the operating system the ability to change its 

execution privilege status.  RISC-V supports three privilege levels of execution, any attempt of 

software to perform an operation outside of its designated privilege level is not permitted [6].  

This allows the protection of software stacks from executing unauthorized instructions.  If a 

piece of software were to attempt to execute an instruction outside of its privilege level, then a 

system exception would occur which would cause the underlying kernel or operating system to 

intervene. 

 The highest privilege level in RISC-V is the Machine-Mode (M-Mode).  This level is 

inherently trusted as it executes closest to the hardware.  This access provides an operating 

system with the ability to manage and configure all the hardware resources of a platform.  The 

next privilege level includes the supervisor-Mode (S-Mode).  S-Mode is intended for OS usage.  

Finally, User-Mode (U-Mode) is typically used for applications to execute within the User Space 

of the system.  This would be the formal or business logic that executes on an embedded system 

or performance computer. 

 In recent years RISC-V has extended the use of three additional modes: Hypervisor-

Supervisor-Mode, Virtual-User-Mode, and Virtual-Supervisor-Mode [6].  These additional 
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modes support the virtualization of platforms built with the RISC-V ISA.  The next section 

covers details of the RISC-V Virtualization extensions. 

2.1.3.1 RISC-V Virtualization Extensions 
 

Very similar to the ARMv8 [10, 11, 12], the RISC-V virtualization extensions are a set of 

hardware features and instructions that are designed to support efficient and secure virtualization 

within the RISC-V architecture [6, 10] .  These extensions provide the same capabilities as 

mentioned with the ARMv8 to enable VMMs for running multiple guest VMs [13].  The RISC-V 

privilege model is employed to implement the virtualization extensions.  A hardware 

acceleration thread, or hart, contains all the state information mandated by the RISC-V ISA: 

program counter (PC) and registers that track the virtualized extensions and respective execution 

mode [9]. 

In the RISC-V privilege model the modes of privilege include U, S, M, VU, VS [6].  Table 2 

below provides a brief overview and description of each of these modes. 
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Table 2: RISC-V Virtualization Privilege Model 

Virtualizati

on Mode 

Nominal 

Privilege 

Abbreviatio

n 

Name Two-Stage 

Translation 

0 U U-Mode User mode Off 

0 S HS-Mode Hypervisor-

extended 

supervisor 

mode 

Off 

0 M M-Mode Machine 

mode 

Off 

1 U VU-Mode Virtual user 

mode 

On 

1 S VS-Mode Virtual-

supervisor 

mode 

On 

 

 The current virtualization mode, denoted V indicates whether the hart is currently 

executing in a guest.  When V=1, the hart is either in virtual VS-mode, or in VU-mode atop a 

guest OS running in VS-mode.  When V=0, the hart is either in M-mode, in HS-mode, or in U-

mode atop an OIS running in HS-mode.  The virtualization mode also indicates whether two-

stage address translation is active (V=1) or inactive (V=0). 

 The hypervisor extensions add a stage of address translation, from guest physical 

addresses to supervisor physical addresses, to virtualize the memory and memory mapped I/O 

subsystems for a guest operating system.  In this case HS-mode will act the same as S-mode, but 

with additional instructions and controls status registers (CSRs) that control the new stage of 

address translation and support hosting a guest OS in VS-mode. 

 An OS or hypervisor running in HS-mode uses the supervisor CSRs to interact with the 
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exception, interrupt, and address-translation subsystems.  Additional CSRs are provided to HS-

mode, but not to VS-mode to manage two-stage address translation and to control the behavior of 

VS-mode guest. 

 
2.1.4 Registers 
 
 RISC-V utilizes 32 registers: x0-0x31 [9].  These registers specifically address the 

Application Binary Interface, return address and stack pointer, temporary values, and persistent 

values, and function arguments, and return value.  Table 3 below provides a description of the 

RISC-V registers and gives a summary of their purpose. 

Table 3: RISC-V Registers 
Register Description 

Zero Always hardwired and always holds the value 0 to 

simplify the ISA 

ra Holds return address 

sp Holds stack pointer 

t0-t6 Holds temporary values that are not guaranteed to 

persist after a function call 

s0-s11 Hold persistent values across function calls 

a0-a1 Hold the first two arguments of a function and return 

value 

a2-a7 Holds any remaining arguments 
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2.1.4 Control and Status Register 
 
 The Control and Status Registers (CSRs) are the RISC-V system registers that operate 

and control the platform’s current state [6].  CSRs can be read or written to by specific CSR 

instructions and are reserved for M-Mode execution.  A RISC-V implementation, however, may 

contain additional CSRs that are accessible to additional privilege levels.  If a different privilege 

level attempts to access a CSR and does not have authorization, then an illegal instruction 

exception is thrown. 

 
2.1.5 Exceptions and Interrupts 
 
 The RISC-V ISA utilizes a trap model for exceptions and interrupts.  During runtime if 

an exception or an interrupt occurs the processor provides a mechanism that invokes an 

unscheduled procedure call to a random address [9]. 

 Traps are separated into two categories: synchronous and asynchronous.  Synchronous 

traps are exceptions resulting from an instruction execution.  For example, a synchronous trap 

may occur if software attempts to access an invalid memory address.  An asynchronous trap is an 

interrupt and is considered an external event that occur asynchronously to the instruction stream.  

RISC-V considers three sources of interrupts: software, timer, and external interrupts.  Software 

generated interrupts give software engineers the ability to interrupt the CPU.  Timer interrupts 

occur when a hardware thread (HART) time comparator meets the interrupt condition set by the 

software engineer.  External interrupts are asserted by the platform level controller (PLIC) and 

can be the result of external hardware used to interface with the platform. 

 The rest of this section provides an overview of development frameworks used to design 

RISC-V based SoCs. 
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2.1.6 Rocketchip Softcore 
  
 The Rocketchip softcore is an open-source RISC-V implementation that serves as a 

versatile and customizable platform for designing SoC solutions [14, 15].  This review aims to 

provide an overview of the features, and applications of the Rocketchip softcore.  The 

Rocketchip provides a system designer with the ability to configure and customize a RISC-V 

based softcore with specific requirements [15].  Because of the open-source nature of the 

Rocketchip a designer can configure system features such as cache size, number of cores, ISA 

extensions; it is also flexible in that it can integrate with other IP blocks to create complete SoC 

solutions.  The Rocketchip can integrate custom IP blocks such as memory controllers, I/O 

interfaces, accelerators, and peripherals.  An example of a Rocketchip design is given below in 

Figure 1.  The example demonstrates a dual core Rocket system where each core comes 

equipped with a page table walker, L1 instruction cache, and data cache. 

 

Figure 1: Example Rocketchip Design Generated from Chipyard[14] 
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Each Rocket tile interfaces to the system bus that extends the L2 cache banks and are 

interconnected to the memory bus.  The memory bus in this design is responsible for interfacing 

with the DRAM controller via the AXI converter.  Memory mapped IO devices on the control 

bus provide control for the platform level interrupt controller, controller level interrupts, 

BootROM, etc. 

 This Rocketchip design is just one example of how a system designer can implement an 

open source SoC and develop a RISC-V based design.  The process of taking this concept and 

generating synthesizable Verilog to test on hardware involved using the open-source framework 

known as Chipyard.  The following section provides details on Chipyard and how it is used to 

create designs such as the one presented in Figure 1. 

2.1.7 Chipyard 
 
 Chipyard is a framework for designing and evaluating full-system hardware.  It is 

composed of a collection of tools and libraries designed to provide an integration between open-

source and commercial tools for the development of SoCs [16, 17].  The framework consists of 

register transfer language (RTL) core generators for RISC-V processor cores. 

 Chipyard relies on software tooling such as the construction hardware in Scala embedded 

language (Chisel) [16].  Chisel is a hardware description language that uses the Scala semantics 

to describe digital electronics and circuits.  The goal of Chisel is to facilitate advanced circuit 

generation and design reuse for both ASIC and FGPA digital logic designs. 

 Hardware construction primitives are written in the Scala programming language and 

provides the ability to architect and generate complex parameterizable systems [18].  Chisel can 

be used to generate synthesizable Verilog with the Flexible Internal Representation for RTL tool 

(FIRRTL) [19].  FIRRTL is an intermediate representation for digital circuits design as a 



22  

platform for writing circuit level transformations.  The FIRRTL compiler can analyze a code 

written in Chisel to produce valid Verilog. 

2.2 Kernel 

 
The kernel is the minimum amount of software that resides in memory to facilitate full control 

over the CPU, Memory, and all hardware peripherals [20].  The kernel arbitrates data flow from 

computer hardware to the applications executing in real time.  Applications perform read and 

write operations on hardware via system level calls that are handled by the kernel [20, 21].  

Figure 2 below illustrates the interface between the hardware of a system to the application layer. 

 
Figure 2: Kernel Interface to Hardware and Software[22] 

  
From Figure 2 the flow of data flows from the hardware layer through the kernel to the 

application layer. 

There are two common kernel architectures the monolithic kernel and microkernel [20, 21, 

22].  The work conducted in this thesis research focuses specifically on microkernel architecture 

and the following section provides an overview into what a microkernel is. 

2.2.1 Microkernel  
 

Microkernels are a prominent design choice for embedded system development [23].  This 

review provides insight into the design principles, advantages, and challenges associated with 
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implementing a microkernel for an embedded system design. 

In recent years microkernels have gained a significant amount of momentum in the field of 

operating system design [1, ,13, 24].  Microkernel design, as the name suggests, revolve around 

the idea that the kernel should provide the minimum functionality to bootstrap the system and 

delegate services that manage hardware resources to user-space components.   

Microkernels strive for minimalizing its software footprint by only implementing essential 

functions within the kernel.  A kernel’s core functionality can be thought of as: scheduling, inter-

process communication, and memory management.  Keeping the minimalization aspect of 

microkernel design intact results in an easier to understand codebase that is easier to verify and 

maintain. 

Part of what makes microkernel design a good fit for embedded system development is 

modularity.  Designing an embedded system with a microkernel requires that the system is 

structured and broken into separate independent component.  Each separate component handles 

specific system services.  For example, a file system component would be solely responsible for 

interfacing with non-volatile storage hardware within a system.  The kernel would provide the 

necessary scheduling, IPC, and memory management that allows the file system component to 

efficiently perform its intended tasks.  Other examples of independent components for an 

embedded system architecture could include device drivers for interfacing with digital sensors, 

network protocols to provide network connectivity and many more.  Providing clear separate 

between the kernel and user space components allows for easier debugging, maintenance, and 

extensibility of the system. 

When a user-space component requires communication between components the microkernel 

provides mechanisms in the form of IPC.  Communication typically takes place in the form of 
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message passing by exchanging requests, responses, and notifications.  This loose coupling 

enables individual components the ability to integrate into a larger functional role while 

maintaining isolation that enables fault tolerant design.  Figure 3 below illustrates a high-level 

concept of microkernel design for an embedded system. 

 

Figure 3: Example Microkernel Architecture 

In the illustration provided from Figure 3 above this example contains at the base a CPU, 

Memory, and I/O hardware peripherals.  The microkernel executes as the next layer above this 

hardware and provides the basic mechanisms for IPC, memory management, and scheduling.  To 

enable complete functionality of the hardware peripherals the user-space components execute on 

top of the kernel to orchestrate system functionality such as file access, I/O access, etc. 

In addition to modularity, microkernel design also provides the ability for a system designer to 

employ policy-driven design and protect address spaces.  Policy driven design enforces decisions 

about resource allocation, scheduling, and security to be made outside of the kernel.  User-space 

components would be designed to account for the specific policy configuration of the system and 

execute in concurrency with the rest of the user-space components to ensure that policies are 

adhered to.  To ensure proper isolation microkernels can also employ protected address spaces.  

This adds an additional layer of security and fault tolerance design as it prevents direct access to 

memory from a component that may otherwise have unauthorized access.  Both policy-driven 

design and protection of memory addresses are two ways that a microkernel can bolster the 
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security posture of a system. 

An example of a microkernel that employs these design principles discussed is the seL4 

microkernel [1, 13, 24].  The seL4 microkernel is considered the world’s most secure and 

efficient microkernel [13, 25].  The next section provides an overview and details about what 

makes this microkernel so unique. 

 
2.2.2 seL4 
 

seL4 is a third-generation microkernel that is based on the L4 family of microkernels [13, 25, 26].  It 

was influenced by the EROS projects and features abstraction for virtual address spaces, thread 

scheduling, and IPC.  seL4 is the first OS kernel with a machine-checked functional correctness proof at 

the source code level [8, 13, 25, 26].  The formal proof of correctness ensures that the source code 

compiled and intended to execute on a system is indeed “defect-free”, making seL4 a strong candidate for 

building safety-critical and secure systems. 

The seL4 proof chain consists of a model that includes properties for confidentiality, integrity, and 

availability.  These properties feed into the abstract model which define the parameters of what the 

system is capable of.  This abstract model is an obfuscated version of the C implementation which results 

in the machine-checked binary code that is intended to execute on a target platform.  Figure 4 below 

illustrates seL4’s proof chain. 

 



26  

 

Figure 4: sel4 Proof Chain[25, 26] 

 The core of seL4’s verification is the functional correctness proof, which claims that the 

C implementation is free of defects.  The formal specification of the kernel’s functionality is 

expressed in a mathematical language called higher order logic (HOL).  The HOL specification 

is represented by the abstract model in Figure 4 above.  The C-implementation is then a 

refinement of the abstract model, meaning that the possible behaviors of the C code are a subset 

of those allowed by the abstract model.  Kernel behavior is expressed by the abstracted 

specification, thus preventing the kernel from behaving in ways that are not allowed by the 

specification.  This allows a kernel such as seL4 to shield itself from attacks such as stack 

smashing, null pointer dereference, and any code injection or control flow-hijacking [25, 26]. 

 As a part of the formally verified proof seL4 also provides a way to additionally verify 

that the executable binary produced by the compiler.  This is an additional security step that 

prevents malicious compilers from building in Trojans and back doors to the OS [25, 26].  Figure 

5 below illustrates the translation validation proof chain. 
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Figure 5: Translation Validation Proof Chain[25, 26] 

 
The proof chain illustrated in Figure 5 is an automatic process that happens in multiple stages.  

A formal model of the processor’s ISA formalizes the binary in the theorem prover.  The 

formalized ISA feeds the dissembler, written as a HOL theorem, to translate the low-level 

representation in a graph language that represents the control flow.  The formalized C program is 

then translated into the same graph language which allows for comparison of two programs to 

assess for equivalent representation [25, 26]. 

As mentioned previously, seL4 implements security properties into the abstract model to 

bolster the security posture of a system designed with seL4.  This allows seL4 to integrate 

policy-driven design that allows an architect the ability to prevent an unauthorized read/writes to 

sensitive data, modifications, and unauthorized use of resources [25, 26].  In addition to a policy-

driven design seL4 comes with a unique mechanism known as capabilities.  Capability-based 

access control for authorization is what sets seL4 apart from other L4 kernels.  Think of a 

capability as a pointer with access rights.  Figure 6 below illustrates a high-level example of a 

capability. 
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Figure 6: Capability Representation[25, 26] 

 

seL4 defines three kinds of capabilities: 

• Capabilities that control access to kernel objects such as thread control blocks (TCBs) 

• Capabilities that control access to abstract resources such as interrupt control 

• Untyped capabilities that are responsible for ranges and allocations. 

Capabilities, again, provide that level of fine-grained control of a system for a designer to 

implement a policy-driven approach to embedded system design. 

 In addition to being a microkernel, seL4 is also a hypervisor.  It is completely capable of 

executing virtual machines that support feature rich operating systems such as Linux [25, 26].  

When executing as a hypervisor, the seL4 microkernel executes in hypervisor mode.  To support 

virtualization of a guest virtual machine (VM), the kernel deploys what is known as a virtual 

machine monitor (VMM) to assist with handling system calls and events from the guest VM.  

The VMM executes in what is known as user mode.  Finally, the guest VM executes in what is 

known as guest kernel mode in the context of seL4.  Figure 7 below illustrates a high-level 

example of what a virtualized architecture deployed on seL4 may look like. 
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Figure 7: seL4 Virtualization Example 

 Virtualized design is vital to meeting SWaP-C requirements for safety-critical systems.  

By employing the hypervisor capabilities for seL4 a system designer can now account for 

microkernel design, security principles, and SWaP-C. 

 To summarize, seL4 is a shining example of how microkernel design can be leveraged 

with virtualization and formal methods to design and develop next generation embedded system 

for a variety of applications within.  The formal proof of correctness provides a solid foundation 

to achieve a design that can adhere to fault-tolerance, real-time, and security requirements.  

Sections 2.2.3 and 2.2.4 will follow up on specific details of what virtualization and formal 

methods are to provide more context. 

 
2.2.3 Virtualization 
 

Virtualization refers to the creation of virtual instances or environments that exist on a 

single physical platform [27, 28, 29].  This type of abstraction allows for the distribution of 

physical resources to multiple compute domains; resources such as processors, memory, and 

storage.  This section provides a literature review of virtualization and its key concepts including 

hypervisors, virtual machines, and containers. 

Traditional hypervisors, such as those used for cloud/server computing (VMWare ESXi 

and Microsoft Hyper-V) provide full hardware abstraction and enable the simultaneous 



30  

execution of multiple operating systems.  In recent years, containerization employed through 

technology such as Docker and Kubernetes have emerged as a lightweight mechanism for 

providing virtualization within a host operating system [30]. 

There are three common virtualization architectures’, full-virtualization, para-

virtualization, and containerization [27].  Full virtualization emulates all hardware peripherals on 

a platform which allow an unmodified guest operating system to run.  Para-virtualization 

requires modification to the guest operating system.  Often these modification address 

performance/efficiency requirements not met by full virtualization.  Finally, containerization 

allows for the creation of lightweight isolated environments within a guest operating system. 

Virtualization has a broad range of applications across different domains [28, 29, 30].  The 

most common example includes server virtualization.  In this scenario multiple virtual machines 

can be hosted on a single physical server.  This is how services such as Amazon Web Services 

(AWS), Microsoft’s Azure, and Google Cloud provision instances for their customers to manage 

and utilize.  Another example of virtualization is more common to software development and 

engineering, Desktop virtualization.  This example delivers virtual desktops to developers that 

allow them to include a variety of tools and software needed for engineering purposes.  Network 

virtualization is the process by which virtual local area networks can be provisioned and used.  In 

recent years there has been a focus to address security concerns related to the isolation of virtual 

instances. 

Virtualization has transformed the way computer systems are designed, deployed, and 

managed [1].  Specific embedded system design virtualization has allowed designers to 

consolidate multiple systems into one platform to meet SWaP-C requirements.  As virtualization 

continues embedded system design will be able to address concerns of security, resource 
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contention, and performance. 

2.2.3.1 Hypervisor  
 

A Hypervisor, more formally known as a virtual machine monitor (VMM), is a layer of 

software that enables the creation and management of virtual machines (VMs) [24, 32].  A VMM 

will abstract the underlying hardware resources and provide the capability to execute multiple 

OS or RTOS environments [25, 32]. 

There are two main types of hypervisors: Type-1 Hypervisor (Bare-metal) and Type-2 

Hypervisor (Hosted Hypervisor) [31, 32].  A Type-1 hypervisor runs directly on the physical 

hardware without the need for an underlying firmware or operating system to manage it.  Type-1 

hypervisors offer high performance and scalability making them suitable for embedded system 

design.   A Type-2 hypervisor runs on top of a host operating system and relies on the host to 

manage hardware resources.  The host OS also provides virtualization capabilities to the Type-2 

hypervisor via software.  An example of a Type-2 hypervisor would be VMWare Workstation or 

Oracle’s Virtual Box which are often used for desktop virtualization, development, and testing 

environments.  Ongoing research is being performed to assess the usability for a DevSecOps 

pipeline for a containerized environment executing within an embedded system deploying a 

Type-1 hypervisor. 

The key features and functionalities of a hypervisor include: 

• Virtual Machine Management - Provides mechanisms to allocate hardware 

resources such as CPU, memory, I/O, etc. 

• Resource Isolation – Ensures resource isolation between VMs to ensure they run 

independently and securely. 

• Hardware Abstraction – Hypervisors need to abstract the underlying physical 
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hardware and present the resources to guest VMs so that they can function 

without interference. 

• Performance – Hypervisors employ techniques such as paravirtualization, 

hardware-assisted virtualization, and memory/page sharing to optimize the 

performance of VMs and minimize overhead caused by virtualization. 

Hypervisors have been instrumental in enabling SWaP-C requirements for embedded devices.  

2.2.3.2 Virtual Machine 
 
 A VM is a software emulation of a physical system [32].  Typically, a VM will execute a 

form an OS or RTOS alongside of multiple VMs.  Each VM executes as an independent entity 

with access to a system physical resource.  VMs abstract the underlying physical hardware to 

provide a virtual representation of hardware components such as processors, memory, I/O, etc.  

This provides the ability for the OS to function as if it were executing on the bare-metal system.  

In this paradigm VMs offer strong isolation between concurrent instances running on the same 

physical machine.  Each VM operates within its own virtualized environment, with its own 

dedicated resources and independent execution space.  The isolation ensures that actives or 

issues within one virtual machine does not interfere with others. 

2.2.4 Formal Methods 
 

Formal methods are the intersection of computer science and mathematics.  This field 

involves utilizing mathematical techniques for the specification, development, analysis, and 

verification of software and hardware systems [33].  Over the years formal methods have 

evolved to approach a wide variety of problems in the commercial and defense sectors [34, 28, 

29].  This review explores the advancements in formal methods by providing an overview of the 

tools involved in model checking, theorem proving, abstract interpretation, and symbolic 
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execution. 

Advancements in formal methods has allowed this technique to see continued industry 

adoption.  For example, the automotive industry has embraced formal methods as a tool to 

enable autonomous driving [29].  The broad list of applications includes developments in 

domains such as aerospace, automotive, medical devices, and cybersecurity.  These 

advancements include model checking techniques that can automatically verify system properties 

against formal specifical.  Theorem proving is also another element of formal methods that has 

advanced through the years [35].  Theorem proving is the process in which correctness is proved 

using logical deduction rules.  Abstract interpretation provides a framework for approximating 

system behavior.  Bug detection is made possible by symbolic execution which explores program 

paths. 

Despite the progress that has been made, several limitations adopt wide adopting of formal 

methods.  The main challenge is the scalability of formal verification techniques to handle large 

and complex systems.  Traditional engineering is a costly process, and adding the process of 

specifying verification techniques would add to the overhead of a typical engineering process.  

Even if formal methods were to be utilized the talent pool for providing such expertise is very 

limited [36]. 

Presently research and development are being done that focus on developing scalable and 

automated tools for formal methods [36, 24].  The objective of these tools is to simplify 

modeling and verification.  AI/ML is also being explored to develop models that will help with 

the efficiency of formal analysis.  Finally, research and development for domain specific tools is 

also being explored to allow traditional engineers the ability to utilize formal methods with low 

overhead. 
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Undoubtedly, formal methods can be a valuable tool for high assurance system design.  

This review has provided an overview of some of the advancements, applications, and challenges 

associated with formal methods.  While progress has been made, the tooling and expertise is not 

readily available to allow traditional engineers to utilize formal methods in high assurance 

system design specific to their domain. 

2.2.5 Reference Design 
  

 The reference designed implemented in this thesis uses the formally verified microkernel 

seL4 as a Type 1 hypervisor.  The hardware peripherals passthrough are the system timer and 

UART device of the ZCU102 development kit.  The VMM maps the memory space for the VM 

along with the hardware devices: system timer, and UART.  Traditionally this type of paradigm 

causes system overhead and performance hits, however, for this evaluation the performance hits 

are negligible with respect to evaluation for the reference design implemented on a RISC-V 

Rocketchip.  If this were a real time system, then the real time performance would need to be 

evaluated. 
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CHAPTER 3: IMPLEMENTATION 
 

 This section covers the details surrounding the design and tooling needed to implement 

seL4 on RISC-V.  It starts with an overview of the reference design implemented in this effort 

and continues with a discussion of the design tooling for compiling both hardware and software 

components. 

 This section also provides an overview of the design decisions and introduces the design 

decisions and provides a brief overview of the boot process for each stage of testing. 

3.1 Reference Design 
 
 The reference architecture for this design can conceptually be thought of as three separate 

components: FPGA softcore design, seL4 microkernel, and guest OS.  The FPGA softcore 

design is the Rocketchip.  seL4 microkernel is effectively the OS/hypervisor of the architecture.  

Linux is the guest operating system (OS) that represents the virtual machine (VM).  Figure 8 

below illustrates each of these components. 
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Figure 8: Reference Architecture 

 
  
 The first component comprises of the Rocketchip softcore executing in the FPGA fabric 

of ZCU102.  The ZCU102 is a part of the Xilinx ZynqMP Ultrascale+ architecture which is 

notably equipped with an AXI interconnect that allows for the interaction of the Processing 

System (PS) with the Programmable Logic (PL) [37].  From a development perspective this 

interconnect provides a system designer with the ability to load, execute, and troubleshoot PL 

designs such as the Rocketchip.  OpenSBI is the firmware element that assists with bootstrapping 

the system during boot time [38]; it is loaded into DDR and executes in M mode.  This first stage 

bootloader is responsible for configuring the PLIC and UART, and System Timer peripherals 
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prior to relinquishing execution to seL4. 

 Once OpenSBI has configured the Rocketchip softcore it loads and executes the seL4 

microkernel.  The seL4 microkernel configures and bootstraps the Rocketchip resources to setup 

for loading and executing the VMM.  Once the VMM starts execution it has the responsibility of 

providing memory mapping for the guest VM to load and execute properly.  As the guest VM 

loads and executes any system calls and interrupts are trapped and emulated by the VM to 

achieve virtualization. 

 
3.2 Development Environments 
 
 This effort utilized a variety of development environments to achieve an seL4 software 

image that would boot on the Rocketchip softcore.  All tools used in this effort are open source 

except for the Vivado tool suite [39].  Vivado is utilized for FPGA design for the Xilinx ZCU102 

development kit.  Vivado was selected mainly since Xilinx provides all the necessary tooling for 

synthesis, bitstream generation, and troubleshooting for the ZCU102 development kit. 

 
3.2.1 seL4 
 
 The first step in porting seL4 to the RISC-V architecture was to compile the source code 

using the RISC-V toolchain [40, 41, 42].  There are two approaches to doing this.  The first 

approach is to install all the necessary tooling for RISC-V and seL4 on a host development 

environment.  The second approach involves utilizing a docker container released and 

maintained by the seL4 community [40].  For this effort the latter approach was utilized as it 

provided less overhead time getting a development environment setup. 

 
3.2.2 Linux 
 
 Linux was also cross-compiled using the RISC-V toolchain and a framework known as 
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Buildroot [43].  Buildroot is a simple and efficient tool to generate embedded Linux images.  It 

allows for configurability for toolchains to cross-compile a Linux image for a target platform.  It 

also provides tooling to generate complete root filesystems with default tooling.  For example, 

benchmark utilities such as cyclic test can be added by configuring Buildroot. 

 
3.2.3 Chipyard 
 
 Chipyard is a framework for designing and evaluating full-system hardware.  It is 

composed of a collection of open-source tools and libraries [44, 45].  A system developer can use 

Chipyard to integrate between commercial or open IP blocks for FPGA.  Chipyard allows for the 

configuration of system design with options for selecting processor cores, accelerators, and 

system components.   

 
3.2.4 FPGA 
 
 The Vivado tool suite v2022.2 was used as the integrated development environment 

(IDE) for FPGA synthesis.  To integrate the Rocketchip design on the Xilinx ZCU102 it required 

a license to synthesize for the ZCU102. 

 
3.3 General Design Decisions 
 
 To reduce development overhead it was decided that a single guest VM would be 

deployed for this effort.  In addition, it was also decided that the Rocketchip would be a single 

core operating at 300MHz as this was the upper limit of the PL clock.  By keeping the 

development overhead low this effort was completed and provides the basis for expanding the 

Rocketchip to multicore, and for a multi guest deployment scheme.  More details of the seL4 and 

Rocketchip design are provided in Section 3.3 and 3.4 respectively. 
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3.3 seL4 Design 
 
 The seL4 software design is made up of several elements: the seL4 kernel, fileserver, 

VMM image, and guest image.  The kernel is responsible for bootstrapping the system by 

loading the fileserver and VMM.  The fileserver in this case is holds the guest VM image, Linux, 

in a CPIO format.  During the boot process the VMM will interface with the fileserver to load 

and execute Linux as a guest VM. 

 
3.4 Rocketchip Design 
 
 To emulate a cyber physical system representative of a real-time safety critical system the 

Rocketchip developed for this effort was a 4-core design with a memory controller, cache-

controller, interrupt-controller, MMIO-port, system clock, and a ROM component.  Additionally, 

as a part of the RISC-V architecture there is a system for handling interrupts, and core local 

interrupts.  The Rocketchip device tree, describing the SoC, is available in Appendix A. 

The system described in Table 4 is the minimal design needed to be representative of an SoC 

capable of deploying a SWaP-C system.  The nodes expressed in the device tree from Appendix 

A are mapped to addresses within the system.  Table 4 provides the Rocketchip address map. 

Table 4: Rocketchip Address Map 
Generated Address Map 
     3000 -     4000 ARWX error-device@3000 
    10000 -    20000 R X  rom@10000 
  2000000 -  2010000 ARW   clint@2000000 
  2010000 -  2011000 ARW   cache-controller@2010000 
  c000000 - 10000000 ARW   interrupt-controller@c000000 
 40000000 - 80000000 ARWXC memory@40000000 
 ff000000 - 100000000  RWX  mmio-port-axi4@ff000000 

 
 The address map of the Rocketchip design for this effort includes the hardware 

peripherals (i.e., System Clock and UART) mapped between 0xFF000000 – 0x100000000.  The 

system is equipped with 1GB of RAM with starting address 0x40000000 – 0x80000000.  The 

platform-level interrupt controller (PLIC) provides the centralized interrupt prioritization and 



40  

routes shared platform-level interrupts among multiple harts is mapped to address 0xC000000.  

The cache-controller is the hardware block responsible for managing the memory and is mapped 

to address 0x2010000.  The core local interrupt controller is mapped to address 0x2010000.  The 

error-device responsible for tracking bus errors of the Rocketchip design is mapped to 0x3000.  

Finally, the Rocketchip ROM which contains initial instructions to bootstrap the system during a 

power on reset (POR) event is mapped to address 0x10000.  The assembly code synthesized into 

the ROM at address 0x10000 is included in Table 5. 
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Table 5: ROM Assembly Code 
.section .text.start, "ax", @progbits 
.globl _start 
_start: 
  csrwi 0x7c1, 0 // disable chicken bits 
  li s0, DRAM_BASE 
  csrr a0, mhartid 
  la a1, _dtb 
  jr s0 
 
.section .text.hang, "ax", @progbits 
.globl _hang 
_hang: 
  csrwi 0x7c1, 0 // disable chicken bits 
  li s0, DRAM_BASE 
  csrr a0, mhartid 
  la a1, _dtb 
  jr s0 
1: 
  wfi 
  j 1b 
 
.section .rodata.dtb, "a", @progbits 
.globl _dtb 
.align 5, 0 
_dtb: 
    .word 0 
    .word 0 

 
 The assembly code provided in the table above is used to bootstrap the system during a 

POR event.  This code is responsible for reading the first instruction at DRAM_BASE and 

executing subsequent instructions from there.  The FPGA design utilized a combination of the 

generated Rocketchip softcore and Xilinx IP for interfacing with the PS, AXI bus, PS Reset, and 

UART.  From Figure 9 (Appendix B) the Rocketchip design sources the clock and reset signals 

from the ZynqMP Ultrascale+ IP Core.  The two AXI interconnect cores are responsible for 

fetching/writing to the mem_axi and mmio_axi bus for the Rocketchip design.  Resets for the 

design are driven by the Processor system reset.  For UART communication the Concat core is 

used to tie to the interrupt signal of the Rocketchip design.  
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3.5 Build Procedures 
 
 The work performed in this thesis is admittedly hard to keep track of. It is the 

culmination of multiple projects spanning across multiple frameworks.  This section attempts to 

sort out a procedure to recreate the Rocketchip softcore for the ZCU102, Linux kernel, and seL4 

monolithic image.  This section also provides the procedure for loading the design with the 

resulting software images for test repeatability. 

3.5.1 Build Dependencies 
 
  A Linux host environment was used for this effort.  Specifically, Ubuntu v22.04.  This 

section provides the command needed to satisfy the host environment dependencies needed for 

recreating this work.  The command provided in Table 6 below will install the host 

dependencies. 

Table 6: Host Dependency Install Command 
sudo apt install build-essential bison flex git libssl-dev ninja-build \ 
    u-boot-tools pandoc libslirp-dev pkg-config libglib2.0-dev libpixman-1-dev \ 
    gettext-base curl xterm cmake python3-pip default-jre 
 
pip3 install pykwalify packaging pyelftools 

 

 Once the host tools are installed the version of each tool can be verified.  Table 7 below 

provides the exact version number of each host dependency installed for this effort. 
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Table 7: Host Dependency Versions 
Dependency Version 

gcc 11.3.0 

bison 3.8.2 

Flex 2.6.4 

Git 2.34.1 

Libssl-dev 3.0.2 

Ninja-build 1.10.1 

u-boot-tools 2023.01 

pandoc 2.9.2.1 

Libslirp-dev 4.7.0.1 

Pkg-config 0.29.2 

Libglib2.0-dev 2.64.6 

Libpixman-1-dev 0.42.2-1 

Gettext-base 0.21 

Curl 7.81.90 

Xterm 3.72 

Cmake 3.22.1 

Python3-pip 22.0.2 

Java 11.0.19 

Pykwalify 1.8.0 

Packaging 23.1 

Pyelftools 0.29 
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3.5.1 RISC-V Toolchain 
 
 The RISC-V toolchain v12.2.0 was used for this effort.  This section provides the 

commands needed to extract the source, configure, and build the toolchain at that specific 

revision.  For compiling embedded software code, such as seL4 the “riscv64-unknown-elf-gcc is 

used.  

Table 8: Build Commands for riscv64-unknwon-elf- Toolchain 
git clone https://github.com/riscv/riscv-gnu-toolchain 
./configure --prefix=/opt/riscv 
make 

 

 To build the Linux kernel the “riscv64-unknown-linux” toolchain will be needed as well.  

The following command will build the “riscv64-uknown-linux” toolchain assuming the “riscv64-

gnu-toolchain” project has already been cloned and configured just as above: 

Table 9: Build Command for riscv64-uknown-linux Toolchain 
make linux 

 

 The “prefix” argument will install the resulting compiled toolchains into the “/opt/riscv” 

directory of the Linux host environment.  A user can now add the toolchain to the system PATH 

environment variable by executing the following command: 

Table 10: Command to add Toolchain to PATH 
export PATH=$PATH:/opt/riscv/bin 
export CROSS_COMPILE=riscv64-unknown-elf- 

 
 
3.5.2 Rocketchip 
 
 The Rocketchip port was largely based on existing work that was available for the 

ZCU104.  The ZCU104 port was modified slightly to generate the Verilog to port into Vivado 

for the ZCU102.  This section aims to provide a build procedure and highlight those changes to 

recreate the Rocketchip softcore for the ZCU102. 

https://github.com/riscv/riscv-gnu-toolchain
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 The first step in building the Rocketchip softcore is to download the source code for the 

ZCU102 port.  This can be done by executing the following command at the Linux command 

line: 

Table 11: Git Clone Command for BAO Hypervisor Project 

git clone https://github.com/bao-project/bao-demos -b rocket 
cd bao-demos 

 

 Once the project has been cloned environment variables can be created to ease the 

process of generating the Rocketchip softcore.  Table 12 provides the necessary commands 

needed to add the requisite environment variables. 

Table 12: Environment Setup Commands 
export PLATFORM=rocket-fpga-zcu102 
export ARCH=riscv 
export BAO_DEMOS=$(realpath .) 
export BAO_DEMOS_WRKDIR=$BAO_DEMOS/wrkdir 
export BAO_DEMOS_WRKDIR_SRC=$BAO_DEMOS_WRKDIR/srcs 
export BAO_DEMOS_WRKDIR_BIN=$BAO_DEMOS_WRKDIR/bin 
export BAO_DEMOS_WRKDIR_PLAT=$BAO_DEMOS_WRKDIR/imgs/$PLATFORM 
export BAO_DEMOS_WRKDIR_IMGS=$BAO_DEMOS_WRKDIR_PLAT/$DEMO 
mkdir -p $BAO_DEMOS_WRKDIR 
mkdir -p $BAO_DEMOS_WRKDIR_SRC 
mkdir -p $BAO_DEMOS_WRKDIR_BIN 
mkdir -p $BAO_DEMOS_WRKDIR_IMGS 
cp -R ./platforms/rocket-fpga-zcu104 ./platforms/rocket-fpga-zcu102 

 

 The first change to this repository that is specific to the ZCU102 port is copying over the 

requisite platform definition from the folder “rocket-fpga-zcu104”.  The next step involves 

cloning the Chipyard/Rocketchip repos. 

Table 13: Clone the Chipyard/Rocketchip Repos 
export BAO_DEMOS_CHIPYARD=$BAO_DEMOS_WRKDIR_SRC/chipyard 
export BAO_DEMOS_ROCKETCHIP=$BAO_DEMOS_CHIPYARD/generators/rocket-chip 
git clone https://github.com/ucb-bar/chipyard.git $BAO_DEMOS_CHIPYARD 
cd $BAO_DEMOS_CHIPYARD 
git checkout 64632c8 
./scripts/init-submodules-no-riscv-tools.sh 
git apply $BAO_DEMOS/platforms/$PLATFORM/patches/0001-add-rocket-hyp-fpga-support.patch 
git -C generators/boom apply $BAO_DEMOS/platforms/$PLATFORM/patches/0001-boom-add-

https://github.com/bao-project/bao-demos
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usehyp-option.patch 
git -C generators/ariane apply $BAO_DEMOS/platforms/$PLATFORM/patches/0001-ariane-add-
usehyp-option.patch 
cd $BAO_DEMOS_ROCKETCHIP 
git remote add hyp https://github.com/josecm/rocket-chip.git 
git fetch hyp 
git checkout hyp 

 

 The next change specific to the ZCU102 port involves updating the Makefile specific for 

the FPGA BootROM that will be built into the Rocketchip softcore design.  Following the 

environment variables setup from the above instructions the BootROM project is located at 

“wrkdir/chipyard/bootromFPGA/Makefile”.  Figure 10 below summarizes the change needed to 

build the BootROM for the ZCU102. 

 
Figure 9: BootROM Makefile Modification for ZCU102 

 
 
 The specific change for the ZCU102 includes lines 5 to 7.  The change is a conditional 

statement that utilizes the PLATFORM environment variable which was previously set to 

https://github.com/josecm/rocket-chip.git
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“rocket-fpga-zcu102”.  Once this change has been implemented the BootROM can be generated 

by executing the following command: 

Table 14: Build Command for BootROM 
make -C $BAO_DEMOS_CHIPYARD/bootromFPGA 

 

 The resulting file generated from the above command is “bootrom_zynqmp.img”.  This 

binary will be utilized later one during the generation of the Rocketchip softcore.  The final 

modification for the ZCU102 includes updating the Scala definition for the Rocketchip that adds 

the hypervisor extensions.  Figure 11 summarizes the change needed to build the Rocketchip 

with the hypervisor extension. 

 
Figure 10: Scala Modification for ZCU102 

  At this point the Verilog can be generated by executing the command included in Table 15 

below. 

Table 15: Command to Generate Rocketchip Verilog 
export BAO_DEMOS_ROCKET_CONFIG=RocketHypConfig$(echo $PLATFORM | awk '{split($0, A,"-
"); print A[length(A)]}') 
 
make -C $BAO_DEMOS_CHIPYARD/sims/vcs verilog SUB_PROJECT=rocket \ 
    CONFIG=$BAO_DEMOS_ROCKET_CONFIG 

 

Once the resulting Verilog has been generated the files can be imported into Vivado and a new 
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project can be created.  The following commands will generate the project and build the design 

using Vivado. 

Table 16: Build Commands for Vivado 
export VIVADO_CORES=$(nproc) 
export BAO_DEMOS_VIVADO_SCRIPTS=$BAO_DEMOS/platforms/$PLATFORM/scripts 
vivado -nolog -nojournal -mode batch -source $BAO_DEMOS_VIVADO_SCRIPTS/create_ip.tcl 
vivado -nolog -nojournal -mode batch -source 
$BAO_DEMOS_VIVADO_SCRIPTS/create_design.tcl 
vivado -nolog -nojournal -mode batch -source $BAO_DEMOS_VIVADO_SCRIPTS/build.tcl 

 

 The result of the build commands should include a new Vivado project located at 

“wrkdir/imgs/rocket-fpga-zcu102”.  This step also provides a bitstream that can be programmed 

into the PL of the ZCU102.  However, before the softcore will properly execute with a software 

payload loaded into DDR RAM the bootchain of the PS must properly configure the ZCU102.  

The easiest way to do this at boot time is to create a first stage bootloader (FSBL) based on the 

PL design in Vivado. 

 Vivado provides a mechanism to import a hardware design into Vitis.  Vitis is another 

Xilinx tool provided to create board support package projects (BSP) and applications from.  The 

process of creating a BSP based on a Vivado design includes exporting the hardware design and 

setting up a new FSBL project in Vitis.  Once the FSBL project has been built a new boot image 

(BOOT.BIN) can be created by using the following bootable image format (BIF) configuration: 

Table 17: Bootable Image Format (BIF) Configuration 
the_ROM_image: 
{ 
 [bootloader, destination_cpu=a53-0] ./workspace/rocket_fsbl/Debug/rocket_fsbl.elf 
 [pmufw_image] pmufw.elf 
 [destination_device=pl]. /rocket.bit 
 [destination_cpu=a53-0, exception_level=el-3, trustzone] bl31.elf 
 [destination_cpu=a53-0, load=0x00100000] system.dtb 
 [destination_cpu=a53-0, exception_level=el-2] u-boot.elf 
} 

 

 The above configuration in Table 17 provides the necessary information to build a boot 
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image capable of booting the ZCU102 and configuring it such that the custom FSBL and 

Rocketchip softcore can now boot a software payload properly.  The first entry is the custom 

Vitis application based on the BSP provided by the Vivado design.  The third entry is the 

bitstream, Rokcetchip, that will be programmed into the PL.  The rest of the software images are 

prebuilt binaries from the Xilinx website for the v2022.2 release.  Once the BIF file has been 

configured a new boot image can be built with the following command: 

Table 18: Bootgen Command to Generate Boot Image 
bootgen -image bootgen.bif -arch zynqmp -o BOOT.BIN 

 

 The resulting BOOT.BIN file can be loaded onto the boot partition of an SD card.  The 

ZCU102 can be placed into SD card boot mode (Shown in Figure 12 below) and once the board 

is powered on the PS will be configured from the FSBL and the PL will be programmed with the 

Rocketchip softcore awaiting a valid payload to be stored in at address 0x40000000. 

 

Figure 11: SD Card Boot Mode for ZCU102 
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3.5.3 Linux 
 

 Buildroot was used to build the Linux kernel for this effort.  Specifically, the Linux 

kernel v5.11 was used.  This section aims to provide the steps involved in downloading, 

configuring, and building the source for the Linux kernel.  Assuming all the environment 

variables from the previous section are set the following commands will setup and download the 

Linux source code: 

Table 19: Download and Configure Linux Commands 
# Configure environment variable 
export BAO_DEMOS_LINUX=$BAO_DEMOS/guests/linux 
export BAO_DEMOS_LINUX_REPO=https://github.com/torvalds/linux.git 
export BAO_DEMOS_LINUX_VERSION=v5.11 
export BAO_DEMOS_LINUX_SRC=$BAO_DEMOS_WRKDIR_SRC/linux-
$BAO_DEMOS_LINUX_VERSION 
 
# Download the Linux Source 
git clone $BAO_DEMOS_LINUX_REPO $BAO_DEMOS_LINUX_SRC\ 
    --depth 1 --branch $BAO_DEMOS_LINUX_VERSION 
cd $BAO_DEMOS_LINUX_SRC 
 
# Point to target architecture platform specific config to be used by buildroot 
export BAO_DEMOS_LINUX_CFG_FRAG=$(ls $BAO_DEMOS_LINUX/configs/base.config\ 
    $BAO_DEMOS_LINUX/configs/$ARCH.config\ 
    $BAO_DEMOS_LINUX/configs/$PLATFORM.config 2> /dev/null) 

 

 With the Linux source code downloaded the Buildroot source code can now be 

downloaded and configured.  Table 20 below includes the commands to download and configure 

Buildroot. 
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Table 20: Download and Configure Buildroot 
# Setup Buildroot environment variables 
export BAO_DEMOS_BUILDROOT=$BAO_DEMOS_WRKDIR_SRC/\ 
buildroot-$ARCH-$BAO_DEMOS_LINUX_VERSION 
export BAO_DEMOS_BUILDROOT_DEFCFG=$BAO_DEMOS_LINUX/buildroot/$ARCH.config 
export LINUX_OVERRIDE_SRCDIR=$BAO_DEMOS_LINUX_SR 
 

# clone buildroot 
git clone https://github.com/buildroot/buildroot.git $BAO_DEMOS_BUILDROOT\ 
    --depth 1 --branch 2020.11.3 
cd $BAO_DEMOS_BUILDROOT 
 

# Build Linux 
make defconfig BR2_DEFCONFIG=$BAO_DEMOS_BUILDROOT_DEFCFG 
make linux-reconfigure all 

 

 The result of the above commands in Table 20 should be a Linux kernel image located in 

“output/images/”.  This image is the guest VM image used to boot in the reference architecture.  

The next section covers how to incorporate this Linux image as a guest VM in a monolithic seL4 

image. 

3.5.4 seL4 
 
 The seL4 community provides a Docker container that includes all the necessary 

dependencies needed to perform seL4 design.  This section provides an overview of 

downloading the seL4 Docker container, configuring an seL4 project for RISC-V, and compiling 

that project.  The command provided in Table 21 below demonstrates how to build the seL4 

Docker container. 

Table 21: seL4 Docker Image Build Command 
git clone https://github.com/seL4/seL4-CAmkES-L4v-dockerfiles.git 
cd seL4-CAmkES-L4v-dockerfiles 
make user 

  

 Once “make user” completes the Docker environment will be activated.  The next step is 

https://github.com/seL4/seL4-CAmkES-L4v-dockerfiles.git
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to download, configure and build seL4test.  The commands are provided below for seL4test. 

Table 22: Build Command for seL4test 
repo init -u https://github.com/seL4/sel4test-manifest.git 
repo sync 
mkdir build 
../init-build.sh -DPLATFOR=Rocketchip-zcu102 -DRISCV=64 

 

 seL4test is used to verify the port of seL4 to a RISC-V platform.  This program can be 

loaded to DDR RAM address 0x40000000 for the Rocketchip softcore to fetch and execute.  The 

next part of this section demonstrates how to build the seL4 VMM for loading and executing a 

guest VMM.  The sel4-riscv-vmm source code can be downloaded using the following 

command: 

Table 23: Download sel4-riscv-vmm Source Code 
repo init -u https://github.com/SEL4PROJ/sel4-riscv-vmm-manifest.git -m master.xml 
repo sync 

 

 Configuration and building of the seL4 monolithic image can be performed with the 

following command: 

Table 24: seL4 Monolithic Build Command 
mkdir build 
cd build 
../init-build.sh -DPLATFORM=Rocketchip -DElfloaderImage=elf -DRISCV64=TRUE 
ninja 

 

The resulting ELF image is in the directory “build/elfloader-tool” as the file “elfloader”.  The file 

needs to be converted to a binary format which can be done with the “riscv64-unknown-elf-

objcopy” tool.  The process to copy the ELF format to a BIN format can be achieved by 

executing the following: 

Table 25: Objcopy Command 
riscv64-unknown-elf-objcopy -O binary elfloader payload 

https://github.com/seL4/sel4test-manifest.git
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 “payload” is what is loaded into DDR RAM for the Rocketchip to boot during a POR 

event.  The next section provides an overview on how to program the PL and load the “payload” 

file in DDR RAM. 

3.5.5 Execute seL4 on Rocketchip 
 
 The final step in the build procedure is to load software into DDR RAM and program the 

PL with the bitstream.  This section provides the necessary commands using the Xilinx tool 

“xsct” to program the PL and load a payload file into DDR RAM. 

Table 26: Commands to Flash Bitstream and Load Payload 
xsct 
Connect 
Target -set -filter {name =~ “PSU”} 
#program bitstream 
fpga -no-revision-check -f rocket.bit 
# Load software into DDR RAM 
dow -data /path/to/payload 0x40000000 

 

 This final section concludes the build procedures used in this effort to successfully load 

and execute seL4 on the Rocketchip softcore for evaluation.  The next section provides an 

overview of the tests performed to verify the Rocketchip and to gather performance/benchmarks 

of seL4 on RISC-V. 
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CHAPTER 4: RESULTS & DISCUSSION 

4.1 Verification Tests 
 
 The tests covered in this effort aimed to validate the proof-of-concept of a virtualized 

architecture with the RISC-V H-extensions.  The benefits of these are that the results indicate 

whether the reference architecture is functional or not.  This process initially began with 

validating the Rocketchip design in the FPGA fabric of the ZCU102.  Once the Rocketchip was 

validated the port of the seL4 port was validated with the seL4Test project.  Upon successful 

validation of the seL4 test suite the cross-compiled Linux kernel was validated on the 

Rocketchip.  Once each individual element has been validated the reference design was deployed 

and benchmarking tests were performed. 

4.1.1 Rocketchip Verification 
  
 To verify the Rocketchip used for this effort was validate the first step was to perform an 

initial synthesis of the FPGA design.  A successful synthesis prepares the design for bitstream 

generation.  The bitstream is what ultimately loads the design on to the FPGA for the ZCU102, 

therefore, a successful synthesis is a good indication of whether the design is valid for the 

intended hardware.  Vivado v2022.2 also provides feedback as to size constraints of the target 

platform.  If the design were beyond the capacity of the FPGA fabric, then the synthesis process 

would error. 

 The second step of verification was to validate that during a POR event the ROM in the 

design is attempting to access instructions at 0x40000000.  This required modification to the 

design to setup an experiment that allowed a user to reset the Rocketchip processor at will.  To 

achieve this a pushbutton peripheral was tied to the “external_reset” line and a system integrated 

logic analyzer ILA, was tied to the “mem_axi” bus of the design.  This experiment would force a 
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reset condition and capture data being fetched on the “mem_axi” bus at the intended address of 

0x40000000.  Figure 13, see appendix C, provides a diagram of the modification implemented 

for this experiment.  The test harness adds two additional elements to the FPGA design a “reset” 

signal that is tied to “SW20” of the ZCU102, and a “System ILA” which ties to the “mem_axi” 

bus of “rocket_0”.  The reset signal force a power on reset (POR) scenario that allows the 

System ILA to capture the instructions transmitted on the “mem_axi” bus.  

4.1.2 seL4 Test Suite  
 

The seL4 test project aims to test seL4 and some of its user libraries on many different targets 

to indicate a successful port.  seL4test is a testing framework that runs test suites on target 

hardware.  It is used to test both kernel and user code on a target platform.  For this effort the 

seL4 test suite was used to successfully validate the port of seL4 to the Rocketchip. 

4.1.3 seL4 Hypervisor and VM 
 
 The final stage of testing is to load and execute the reference architecture discussed in 

this thesis work.  This process involves compiling the monolithic seL4 image that includes all the 

software elements to boot the reference design.  The monolithic image is loaded into a specified 

address in RAM that allows the Rocketchip ROM to fetch the image and boot seL4 and 

subsequent software components. 

4.2 Verification Test Results 
 
 Verification occurred in two stages: validate a successful and perform visual observation 

of the Rocketchip softcore fetching data properly from DDR RAM.  The first stage was a matter 

of performing a synthesis and bitstream generation within Vivado.  The Vivado tooling provides 

information such as resource usage, timing summaries, and estimated power output of the 

Rocketchip design.  The Vivado tooling also provides an indication if the design is going to be 
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valid for the ZCU102, for example, if the design were to consume to many resources, then the 

synthesis process would have failed. 

 The second stage of Rocketchip verification was to ensure that the design was fetching 

instructions from the intended address at DDR RAM and operating as intended.  To perform this 

level of verification a System ILA was used by adding it to the design in Vivado and a trigger 

scenario was setup to capture real time data being fetched by the   Rocketchip from DDR RAM.  

More details on these two tests are provided in the rest of this section. 

4.2.1 Rocketchip Verification 
  
 This section covers verification and validation of the Rocketchip softcore.  It covers the 

resource utilization as well as integrated logic analyzer (ILA) captures.  The ILA capture the 

results of loading firmware to RAM address 0x40000000. 

 
4.2.2.1 Resource Utilization 
 

Upon successful synthesis Vivado provided resource utilization of the FPGA design.  Table 

26 below provides a summary of the resources utilized by this design. 

Table 27: Resource Utilization 

 
 
 From inspection the Rocket_0 component is utilizing the most resources.  Naturally this 

would be the case considering the softcore design implements a representative SoC for this 

effort.  Table 23 provides specific resource utilization from the Rocket_0 softcore. 

Component CLB 
LUTs 

CLB 
Registers 

CARRY8 F7 
Muxes 

F8 
Muxes 

Block 
RAM 

DSPs Global 
Clock 
Buffers 

PS9 

Axi_interconnect_0 0 0 0 0 0 0 0 0 0 
Axi_interconnect_1 0 0 0 0 0 0 0 0 0 
Rocket_0 126359 69365 2114 4795 284 202 60 0 0 
Rst_ps8_099M 19 40 0 0 0 0 0 0 0 
Xlcocat_0 0 0 0 0 0 0 0 0 0 
Zynqmp_ultra_ps_e_0 264 0 0 0 0 0 0 1 1 
Total 126642 69405 2114 4795 284 202 60 1 1 
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Table 28: Rocketchip Resource Usage 

 
 
4.2.2.2 ILA Capture 
 
  The ILA capture played an important role in verifying the Rocketchip design as it 

allowed for real time capture of data being transmitted on the “mem_axi” bus for the softcore.  

The trigger case in this setup involved capture of the RDATA on the AXI bus.  The ILA probe 

was configured to trigger on data currently being transmitted from RAM to the softcore via the 

AXI bus.  Figure 14 below provides the capture setup for the ILA core. 

 
Figure 12: System ILA Probe Condition 

  
 The probe condition from Figure 14 relies on the value currently transmitted on the AXI 

bus to be not equal to 0.  If the condition were to be satisfied, then a resulting capture of 4096 

bits would be stored in the capture of the host machine.  Figure 15 below provides an example 

verification case where the softcore was pulled out of reset by using SW20. 

Component CLB 
LUTs 

CLB 
Registers 

CARRY8 F7 
Muxes 

F8 
Muxes 

Block 
RAM 

DSPs Global 
Clock 
Buffers 

PS9 

Tile 28490 16081 496 1150 57 20 15 0 0 
Tile_2 28480 16082 496 1150 57 20 15 0 0 
Tile_1 28456 16081 496 1150 57 20 15 0 0 
Tile_3 28454 16082 496 1150 57 20 15 0 0 
L2 Cache 7101 2961 10 53 6 122 0 0 0 
System Bus 3036 645 0 11 0 0 0 0 0 
Periphery Bus 1264 503 8 0 0 0 0 0 0 
BootROM 587 0 0 109 50 0 0 0 0 
CLINT 196 324 24 1 0 0 0 0 0 
PLIC 143 116 0 0 0 0 0 0 0 
Memory Bus 98 291 0 21 0 0 0 0 0 
Total 97851 69166 2026 4795 284 202 60 0 0 
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Figure 13: Rocketchip Verification Capture Beat 1 

In this case the value read on the RDATA line of “mem_axi” is 0x0031748C28293.  This is 

the first 64-bit instruction of the payload written to RAM address 0x40000000.  During a POR 

event, the softcore BootROM is configured to read from that RAM address and execute RISC-V 

64-bit instructions.  Figure 15 demonstrates the first beat, or 8 instructions, of the payload written 

to address 0x40000000.  The process demonstrated in Figure 15 above is showcasing the 

Rocketchip softcore specifying a read from RAM location 0x40000040, where the instructions 

fetched are the hexadecimal representation of the software loaded in RAM.  A hex dump of the 

payload stored at that address verifies the softcore is reading the correct instructions to execute to 

intended program.  Figure 16 below provides the hex dump of the software stored at RAM 

location 0x40000040. 

 
Figure 14: Hexadecimal Dump seL4 Payload Offset 0x40 

The hex dump provided in Figure 16 above confirms that the data read from the first beat 

matches the data of the software payload stored at that RAM location.  To further verify the 

process a second beat was captured and confirmed in the same manner as beat one.  Figure 17 

below demonstrates the ILA capture of beat two during a POR event. 
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Figure 15: Rocketchip Verification Capture Beat 2 

 The data captured from the ILA shows that beat two also includes 8 RISC-V instructions 

encoded in a hexadecimal format.  The instructions from this beat were read from RAM address 

0x400000480 and start off with the hexadecimal value of 0x87b3b82202130000.  A hex dump of 

the software payload indicates that the instruction read from RAM matches that of the payload 

written to RAM starting at address 0x40000000.  Figure 18 below demonstrates the hex dump at 

location 0x400000480. 

 
Figure 16: Hexadecimal Dump seL4 Payload Offset 0x480 

From Figure 15 the instructions read from RAM address 0x40000480 match the payload at 

that same offset.  The instructions are equivalent and stored in little-endian format.  The entire 

payload technically could be validated this way; however, the results are expected to remain the 

same.  Additionally, verification also falls in the form of observing the intended program 

execute; in this case the intended program used for verification was the seL4test payload.  

Results from the seL4 test suite are included in the next section. 

4.2.2 seL4 Test Suite 
 
 The results of the seL4test indicate that the Rocketchip softcore can load a payload stored 

at RAM address 0x40000000 during a POR event and start execution.  Execution starts with 

bootstrapping the system with SBI and then loading and executing seL4test.  Each test in the 
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suite is intended to assess the platform port.  For this effort the seL4 kernel API was evaluated on 

the Rocketchip.  The results indicate that all 114 applicable tests passed and that the port of seL4 

to the Rocketchip is valid.  Figure 19 below provides validation of the seL4 test suite. 

 

  
Figure 17: seL4test Verification 

 
 
4.3.3 seL4 Hypervisor and VM 
  
 The next step in verification of the softcore design is to run load and execute the seL4 

payload that contains a guest VM. 

4.3 Guest VM Performance Tests 
 
 The Linux kernel comes equipped with several performance and benchmarking tools to 

profile the OS on an embedded platform.  Performance typically involves load and stress testing 

to evaluate real-time performance of an embedded system.  For this effort load testing was 

performed using the Dhrystone program, and stress testing utilized stress-ng. 

 Dhrystone is a general performance benchmark test used to measure and compare general 

processor performance against different platforms.  The goal of performance testing is to 

determine a benchmark to compare the Rocketchip softcore against a Quad Core ARMv8 

processor.  Dhrystone was used specifically because it was an easy element to build into the 

initramfs for this effort.  Admittedly Dhrystone is not representative of a real time system, 

however, for this effort it is sufficient to capture basic performance results to benchmark against 

an ARMv8 system. 
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 Stress-ng is a tool to load and stress a system.  Stress-ng was designed to exercise various 

physical subsystem of a computer as well as the OS and interfaces.  Stress-ng provides a variety 

of CPU specific stress tests that exercise floating point, integer, and bit manipulation control. 

 
4.4 Guest VM Performance Results 
  
 This section provides an overview of the performance/benchmarking metrics captured 

from Dhrystone and stress-ng test runs.  As mentioned previously, benchmarking compared the 

Rocketchip softcore design against an ARMv8 hardcore executing at 1.5 GHz on the ZCU102.  

The first set of results were from Dhrystone runs captured on the Rocketchip.  These results are 

included in Table 28. 

 
Table 29: Rocketchip Dhrystone Results 

Number of Runs Microsecond/Dhrystone Dhrystone/Second 
1000000 8.6 115740.7 
10000000 8.6 116090.1 
100000000 8.6 116076.6 

  
 The test results indicate Dhrystone runs on the Rocketchip softcore executes every 8.6 

microseconds, this results in ~116076.6 Dhrystone runs per second.  The results from Table 28 

also indicate that performance is consistent when increasing the number of runs from 1000000 – 

100000000.  The same Dhrystone test were executed on the ARMv8, and the results are included 

in Table 29. 

Table 30: Dhrystone Results on ARMv8 
Number of Runs Microsecond/Dhrystone Dhrystone/Second 
1000000 0.2 5889291.5 
10000000 0.2 5817160.0 
100000000 0.2 5906674.5 

 

 Results from Dhrystone runs on the ARMv8 indicate that it takes 0.2 microseconds to 

execute one Dhrystone and that the platform can execute ~5800000 Dhrystones per second.  The 
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speed at which the ARMv8 platform executes through the Dhrystone runs compared to the 

Rocketchip softcore is orders of magnitude faster.  This result is expected considering the 

ARMv8 is a hardcore design, furthermore, the ZCU102 is equipped with the Cortex A-53 which 

is intended to be used for proof-of-concept for production ready systems. 

 The next set of tests involved stressing the softcore and ARMv8 platform using stress-ng.  

Initial stress tests were performed on the Rocketchip softcore using parameters that executed 4 

workers on the CPU, 2 workers on IO, and 1 worker exercising 128 Mbytes at a time for 

memory.  Each stress test was executed with a 10 second timeout.  Table 30 below provides an 

overview of the commands used to stress both the Rocketchip and ARMv8. 

Table 31: Stress Test 
stress-ng –cpu 4 –io 2 –vm 1 –vm-bytes 128M –timeout 10s –metrics-brief 

 
 The results from the initial stress test for the Rocketchip is included in Table 31 below.  

The results summarize “bogus operations” executing on the CPU, IO, and VM memory in this 

case.  Results are categorized as time in seconds that it took to execute in real-time, user time, 

and system time. 
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Table 32: Rocketchip Stress Test Results 

Stressor Bogo Ops Real Time (s) Usr time (s) Sys Time (s) Bogo ops/s 
(real time) 

Bogo ops/s 
(usr+sys time) 

Cpu 4 23.35 18.90 0.00 0.17 0.21 
Io 4456 9.98 0.00 2.84 446.30 1569.01 
Vm 0 10.28 1.13 .34 0.00 0.00 

 
 Starting with the CPU, the results form Table 31 show that the CPU was able to execute 

through 4 bogus operations in 23.35 seconds of real time.  The total time consumed by the bogus 

operations occurred in 18.90 seconds of User time and did not register a single measurement in 

system time.  For IO the system was able to execute 4456 bogus operations in 9.6 seconds.  The 

VM memory category was unable to execute a single operation of 128Mbytes of memory in the 

10 second timeout.  The same stress test was executed on the ARMv8 Cortex A-53 and results 

are included in Table 32 below. 

 
Table 33: ARMv8 Stress Tests Results 

Stressor Bogo Ops Real Time (s) Usr time (s) Sys Time (s) Bogo ops/s 
(real time) 

Bogo ops/s 
(usr+sys time) 

Cpu 208 10.89 6.55 0.00 19.09 31.76 
Io 119753 10.01 0.23 0.23 11967.63 42166.56 
Vm 8192 10.50 1.32 .14 780.17 5610.96 

 
 

 Once again, the ARMv8 hardcore outperformed the Rocketchip softcore with respect to 

the stress test.  Starting with the CPU category the ARMv8 platform was able to execute 208 

bogus operations in 10.89 seconds of real time.  This results in 19.09 operations per second while 

under load.  For the IO category the ARMv8 platform was able to execute through 119753 bogus 

operations in 10.01 seconds.  Finally, the VM category resulted in 8192 bogus operations 

executing with a 128 Mbyte load. 
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4.5 Summary 
 
 Initial verification results were extremely satisfactory.  The purpose of executing 

verification tests was to determine if the H-extensions were developed enough to support a 

virtualized guest VM executing on top of seL4.  What was observed from the generation of the 

bitstream, and synthesis was that the design was compatible with the resources available on the 

ZCU102 and that the Rocketchip softcore was able to be programmed into the PL of the 

ZCU102.  Once programmed a System ILA could then capture the instructions fetched from 

DDR RAM from the softcore.  Further verification tests confirmed that the port of seL4 to the 

Rocketchip was valid, hence the successfully seL4test suite execution, and lastly the verification 

of booting an operation/functional guest VM would indicate that verification of seL4 on RISC-V 

was satisfied. 

 Benchmarking/performance tests went as expected as well.  Performance of the softcore 

was not expected to outpace that of the ARMv8 Cortex A-53.  Naturally the production design of 

the hardcore (ARMv8) would outperform the softcore because this system is entirely ready to 

provide the ability to create proof-of-concept designs for production ready applications.  The 

ARMv8 hardcore is much more mature than the Rocketchip softcore.  What the benchmarking 

does however provide is the ability to understand the benchmarks in place for a RISC-V 

hardcore design that operates closer to the 1.5 GHz range. 
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CHAPTER 5: FUTURE WORK 

 
5.1 Design Improvements 
 
 This effort provided a baseline implementation for the reference architecture to evaluate 

seL4 on hardware.  This work certainly makes a great starting point to extend this research into 

multiple areas to improve the design and collect data.  One challenge encountered by this design 

was the inability to debug the monolithic seL4 kernel during the boot process.  One design 

improvement that would allow for easier debugging would be the addition of a JTAG core that 

would allow a system designer to process software one instruction at a time.  In industry 

development kits come with a JTAG interface and RISC-V on the Rocketchip would make 

troubleshooting in real time easier.  Typical JTAG interfaces allow for a full system dump of the 

platform registers and give the ability to perform typical debug operations (step, pause, break, 

reset, etc.). 

 The main purpose of designing an embedded system is to interact with the analog world 

via a digital sensor.  This is indeed the case with systems that measure light, sound, speed, etc.  

Most digital sensors interface with an SoC via a serial bus (I2C, SPI, etc.).  The Rocketchip 

design implemented in this effort could become more representative of a real product if it had the 

ability to interface with a serial bus.  The Vivado design suite comes equipped with an AXI Quad 

SPI IP core that would allow a system designer to interface a sensor that utilized the SPI protocol 

to the Rocketchip.  That hardware peripheral could then be mapped utilizing the MMIO 

component of the Rocketchip and give an application developer the means to write software that 

interfaces with a digital sensor. 

 The internet of things (IoT) is entirely built up of edge compute devices such as 

embedded SoCs.  Connectivity is enabled by the physical network hardware that allows a device 
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to establish a TCP/UDP connection with a server to send and receive data.  The ZCU102 

development kit can support an Ethernet stack in the PL.  The AXI Ethernet core implements an 

Ethernet MAC that supports 1000BASE-X and SGMII PHY interfaces.  This capability would 

provide a system designer to develop and evaluate connected processes and applications using 

the virtualized reference architecture developed because of this effort. 

 One major benefit of an open-source ISA is that a system designer can implement custom 

instructions to perform dedicated actions/processes.  A design improvement for this effort could 

entail the addition of custom instructions that can perform actions such as bootstrapping the 

system during POR to enabling encryption/decryption on the fly for inherently secure 

processing. 
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CHAPTER 6: CONCLUSION  

6.1 Summary of Work 
  

This body of work demonstrates a working reference architecture of seL4 on RISC-V ported to a 

Quadcore Rocketchip complete with H-extensions v0.6 that executes in the FGPA fabric of the ZCU102 

development kit.  The H-extension allows for virtualization of a guest VM which was assessed for 

performance and benchmarked against a Quad Core ARMv8 processor that exists on the same ZCU102 

development kit.  The Rocketchip was developed using the Chipyard framework for Verilog generation.  

Once the Verilog was generated the FPGA design was ported into the Vivado design suite to generate a 

bitstream for the ZCU102 development kit.  To verify the Rocketchip softcore a dummy software payload 

compiled with OpenSBI and loaded into DDR RAM of the ZCU102.  A system ILA was used to capture 

the Rocketchip fetching instructions from DDR RAM during a POR event. 

After verification of the Rocketchip softcore the seL4 monolithic image that contains OpenSBI, seL4, 

VMM, and guest VM were loaded into DDR RAM and used to boot on the Rocketchip softcore.  This 

effort concludes that the reference design can boot a virtualized guest VM executing on seL4.  Booting 

the virtualized architecture on the Rocketchip allowed for performance and benchmarking analysis.  

Benchmark and performance metrics were captured from the guest OS, Linux, and used to compare to the 

same reference architecture executing on an ARMv8 platform also on the ZCU102. 

6.2 Summary of Results 
  
 The main conclusion to draw form this effort is that there is now an open-source 

implementation of seL4 on RISC-V available.  The Rocketchip port is a completely viable 

softcore SoC that can be leveraged to advance seL4 design and development with for future 

implementations until a hardcore variant of the RISC-V architecture with H-extensions is 

released for production.  Continuation of research using this implementation could investigate 

the possibility of expanding the number for virtualized guest VMs that are deployed to adding 

additional hardware peripherals.  More interestingly is the ability for this research to serve as a 
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basis for further formal verification of seL4 on RISC-V for a completely formalized virtual 

system. 
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APPENDICES 
 

Appendix A – Rocket Chip Device Tree 
 

Table 1: Rocketchip Device Tree  
/dts-v1/; 
 
/ { 
        #address-cells = <1>; 
        #size-cells = <1>; 
        compatible = "freechips,rocketchip-unknown-dev"; 
        model = "freechips,rocketchip-unknown"; 
        L23: cpus { 
                #address-cells = <1>; 
                chipyard #size-cells = <0>; 
  L7: cpu@0 { 
   clock-frequency = <0>; 
   compatible = "sifive,rocket0", "riscv"; 
   d-cache-block-size = <64>; 
   d-cache-sets = <64>; 
   d-cache-size = <16384>; 
   d-tlb-sets = <1>; 
   d-tlb-size = <32>; 
   device_type = "cpu"; 
   hardware-exec-breakpoint-count = <1>; 
   i-cache-block-size = <64>; 
   i-cache-sets = <64>; 
   i-cache-size = <16384>; 
   i-tlb-sets = <1>; 
   i-tlb-size = <32>; 
   mmu-type = "riscv,sv41"; 
   next-level-cache = <&L2>; 
   reg = <0x0>; 
   riscv,isa = "rv64imafdch"; 
   riscv,pmpregions = <8>; 
   status = "okay"; 
   timebase-frequency = <1000000>; 
   tlb-split; 
   L5: interrupt-controller { 
    #interrupt-cells = <1>; 
    compatible = "riscv,cpu-intc"; 
    interrupt-controller; 
   }; 
  }; 
  L10: cpu@1 { 
   clock-frequency = <0>; 
   compatible = "sifive,rocket0", "riscv"; 
   d-cache-block-size = <64>; 
   d-cache-sets = <64>; 
   d-cache-size = <16384>; 
   d-tlb-sets = <1>; 
   d-tlb-size = <32>; 
   device_type = "cpu"; 
   hardware-exec-breakpoint-count = <1>; 
   i-cache-block-size = <64>; 
   i-cache-sets = <64>; 
   i-cache-size = <16384>; 
   i-tlb-sets = <1>; 
   i-tlb-size = <32>; 
   mmu-type = "riscv,sv41"; 
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   next-level-cache = <&L2>; 
   reg = <0x1>; 
   riscv,isa = "rv64imafdch"; 
   riscv,pmpregions = <8>; 
   status = "okay"; 
   timebase-frequency = <1000000>; 
   tlb-split; 
   L8: interrupt-controller { 
    #interrupt-cells = <1>; 
    compatible = "riscv,cpu-intc"; 
    interrupt-controller; 
   }; 
  }; 
  L13: cpu@2 { 
   clock-frequency = <0>; 
   compatible = "sifive,rocket0", "riscv"; 
   d-cache-block-size = <64>; 
   d-cache-sets = <64>; 
   d-cache-size = <16384>; 
   d-tlb-sets = <1>; 
   d-tlb-size = <32>; 
   device_type = "cpu"; 
   hardware-exec-breakpoint-count = <1>; 
   i-cache-block-size = <64>; 
   i-cache-sets = <64>; 
   i-cache-size = <16384>; 
   i-tlb-sets = <1>; 
   i-tlb-size = <32>; 
   mmu-type = "riscv,sv41"; 
   next-level-cache = <&L2>; 
   reg = <0x2>; 
   riscv,isa = "rv64imafdch"; 
   riscv,pmpregions = <8>; 
   status = "okay"; 
   timebase-frequency = <1000000>; 
   tlb-split; 
   L11: interrupt-controller { 
    #interrupt-cells = <1>; 
    compatible = "riscv,cpu-intc"; 
    interrupt-controller; 
   }; 
  }; 
  L16: cpu@3 { 
   clock-frequency = <0>; 
   compatible = "sifive,rocket0", "riscv"; 
   d-cache-block-size = <64>; 
   d-cache-sets = <64>; 
   d-cache-size = <16384>; 
   d-tlb-sets = <1>; 
   d-tlb-size = <32>; 
   device_type = "cpu"; 
   hardware-exec-breakpoint-count = <1>; 
   i-cache-block-size = <64>; 
   i-cache-sets = <64>; 
   i-cache-size = <16384>; 
   i-tlb-sets = <1>; 
   i-tlb-size = <32>; 
   mmu-type = "riscv,sv41"; 
   next-level-cache = <&L2>; 
   reg = <0x3>; 
   riscv,isa = "rv64imafdch"; 
   riscv,pmpregions = <8>; 
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   status = "okay"; 
   timebase-frequency = <1000000>; 
   tlb-split; 
   L14: interrupt-controller { 
    #interrupt-cells = <1>; 
    compatible = "riscv,cpu-intc"; 
    interrupt-controller; 
   }; 
  }; 
 }; 
 L18: memory@40000000 { 
  device_type = "memory"; 
  reg = <0x40000000 0x40000000>; 
 }; 
 L22: soc { 
  #address-cells = <1>; 
  #size-cells = <1>; 
  compatible = "freechips,rocketchip-unknown-soc", "simple-bus"; 
  ranges; 
  L2: cache-controller@2010000 { 
   cache-block-size = <64>; 
   cache-level = <2>; 
   cache-sets = <1024>; 
   cache-size = <524288>; 
   cache-unified; 
   compatible = "sifive,inclusivecache0", "cache"; 
   next-level-cache = <&L18>; 
   reg = <0x2010000 0x1000>; 
   reg-names = "control"; 
   sifive,mshr-count = <7>; 
  }; 
  L4: clint@2000000 { 
   compatible = "riscv,clint0"; 
   interrupts-extended = <&L5 3 &L5 7 &L8 3 &L8 7 &L11 3 &L11 7 &L14 3 &L14 7>; 
   reg = <0x2000000 0x10000>; 
   reg-names = "control"; 
  }; 
  L1: error-device@3000 { 
   compatible = "sifive,error0"; 
   reg = <0x3000 0x1000>; 
  }; 
  L17: external-interrupts { 
   interrupt-parent = <&L3>; 
   interrupts = <1 2>; 
  }; 
  L3: interrupt-controller@c000000 { 
   #interrupt-cells = <1>; 
   compatible = "riscv,plic0"; 
   interrupt-controller; 
   interrupts-extended = <&L5 11 &L5 9 &L8 11 &L8 9 &L11 11 &L11 9 &L14 11 &L14 9>; 
   reg = <0xc000000 0x4000000>; 
   reg-names = "control"; 
   riscv,max-priority = <3>; 
   riscv,ndev = <2>; 
  }; 
  L19: mmio-port-axi4@ff000000 { 
   #address-cells = <1>; 
   #size-cells = <1>; 
   compatible = "simple-bus"; 
   ranges = <0xff000000 0xff000000 0x1000000>; 
  }; 
  L20: rom@10000 { 
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   compatible = "sifive,rom0"; 
   reg = <0x10000 0x10000>; 
   reg-names = "mem"; 
  }; 
  L0: subsystem_pbus_clock { 
   #clock-cells = <0>; 
   clock-frequency = <100000000>; 
   clock-output-names = "subsystem_pbus_clock"; 
   compatible = "fixed-clock"; 
  }; 
 }; 
}; 

 
  



73  

APPENDIX B – Rocketchip FPGA Design 
 

 
Figure 18: Rocketchip FPGA Design 
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APPENDIX C – Rocket Chip Test Harness 
 

 
Figure 19: Rocketchip Test Harness 
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