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Abstract

In recent years, software defined networking (SDN) has gained popularity as a novel

approach towards network management and architecture. Compared to traditional network

architectures, this software-based approach offers greater flexibility, programmability, and

automation. However, despite the advantages of this system, there still remains the possibility

that it could be compromised. As we continue to explore new approaches to network

management, we must also develop new ways of protecting those systems from threats.

Throughout this paper, I will describe and test a network intrusion detection system (NIDS), and

how it can be implemented within a software defined network. This system will utilize machine

learning techniques to discern between normal and malicious network traffic. The datasets that

will be used for training and testing these machine learning methods include the UNR-IDD

dataset, and the NSL-KDD dataset. The UNR-IDD dataset was created by researchers at the

University of Nevada, Reno, and is intended to provide a wide range of samples and scenarios

for machine learning-based intrusion detection systems. The NSL-KDD dataset is a newer

version of the KDD '99 dataset, and is used as an effective benchmark for helping researchers

compare various intrusion detection methods. Feature selection techniques will be performed

during the testing phase to ensure the best features are used when performing analysis. In doing

so, we’ll be able to extract the best results possible from the experiments to determine the

accuracy and effectiveness of the IDS.
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Chapter 1: Introduction

Computer security is an essential part of ensuring the smooth operation of today’s

computer systems. It is also essential for protecting sensitive information, maintaining privacy,

and preventing cyberattacks. With various forms of cybercrime on the rise, failure to implement

proper security measures could lead to significant financial losses, organizational damage, or

even legal consequences. Due to the complexity and variety of modern computer systems, there

exists a number of ways to implement security measures both efficiently and effectively. One

method of protecting computer systems from threats is intrusion detection.

Intrusion detection is the process of monitoring computer networks or systems in order to

detect unauthorized access, or other malicious activity. It involves the use of software tools and

techniques to identify potential security breaches, and alert security personnel to take appropriate

action. The goal of intrusion detection is to identify attacks before they can cause significant

damage. By detecting and responding to potential security breaches in a timely manner,

organizations can minimize the impact of cyberattacks as well as protect their assets. There are

many ways in which intrusion detection can be performed, but the one that this paper will focus

on is a system that utilizes machine learning techniques.

Machine learning is a type of artificial intelligence which uses models and algorithms to

allow computers to learn from data and make predictions or decisions based on that data, all

without being explicitly programmed. These programs enable the machines to “learn” through

experience in order to improve their performance on selective tasks. By training and testing

machine learning models based on a particular problem or dataset, they can be used in a wide

variety of applications, such as image recognition, recommendation systems, spam classification,
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and even intrusion detection. However, creating a machine learning-based intrusion detection

system requires knowledge of both cybersecurity as well as machine learning techniques.

The goal of this research project is to test and evaluate various machine learning-based

techniques to create an efficient and reliable intrusion detection system that can be implemented

into and used in conjunction with SDN. To accomplish this, I will perform my own experiments

to determine what machine learning techniques are most effective at distinguishing between

normal and malicious internet traffic. This system will also be compared with the structure and

performance of similar approaches to the same issue. I’ve chosen this subject because, as a

cybersecurity student, I’ve always found machine learning to be quite fascinating. I was

introduced and became familiar with the main concepts of machine learning during a prior

internship, and have also rather enjoyed classes I’ve taken in which machine learning techniques

were often utilized. Furthermore, I’ve chosen to go with a machine learning-based system as

opposed to a traditional signature-based one because it offers more benefits. With the emergence

of newer and more modern methods of cybercrime, it is becoming more of a necessity that we

also find new and more effective methods of threat detection. According to [1], traditional

signature-based techniques are only able to detect known attacks. They are not as adept at

detecting the presence of new/unseen attacks [18] - whereas a machine learning-based IDS has a

greater ability to detect unknown attacks, as well as adapt to changing network conditions.

Because of this, ID systems which employ machine learning techniques present a more novel

solution to threat detection - one that is growing in both importance and popularity.

For this project, I’ll be experimenting with a variety of machine learning techniques and

algorithms, as well as taking inspiration from other researchers who have tackled the same

problem, and come up with their own solutions. Through extensive experimentation, I plan on
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finding a set of algorithms and techniques that will produce the best results possible. In other

words, when it comes to distinguishing between normal and malicious traffic, the goal will be to

do so with as much accuracy as possible.

The remainder of this paper will be laid out as follows: similar and related works of this

project will be included in Background Information and Related Work, which includes other

proposed solutions for developing intrusion detection systems which also employ machine

learning techniques. Also covered in this section will be an overview of SDN architecture, as it

pertains to the implementation of this system within an SDN environment. In the next chapter,

Methods & Procedures, the methods for conducting my own experiments will be detailed,

applying machine learning algorithms and techniques in order to find a solution that is both

accurate and reliable. The results of these experiments will be presented in the following chapter

titled Results. In the section titled Discussion, a review of the results will be further explained as

well as the implications for the IDS as a viable solution. In the final chapter, a summary of the

work done so far will be discussed, as well as the potential for future work involving the use of

different (or additional) methods. A list of works cited throughout the paper will also be

presented at the end.

All cited sources and references listed in this paper come from scholarly articles and

published conferences. The datasets used, UNR-IDD [2] and NSL-KDD [4], both come from

Kaggle.com. The former was created by Ph.D. Candidate Tapadhir Das, who works in the

Department of Computer Science and Engineering at the University of Nevada, Reno. He, along

with other researchers, worked to create a dataset that addressed a few of the flaws found in

many of today’s current datasets, such as the inadequate modeling of tail classes, dependency on

flow level statistics, and the issue of missing or incomplete records [3]. By primarily using
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network port statistics (which refer to observed port metrics recorded in switches/router ports), it

can provide a better analysis of network flows from the port level - where decisions are made - as

opposed to the flow level [3]. By prioritizing the utilization of network port statistics, potential

intrusions can be identified quicker, and new insights can be provided to the questions regarding

intrusion detection. The NSL-KDD dataset is a newer version of the KDD '99 dataset, and is

used as an effective benchmark for helping researchers compare various intrusion detection

methods. These datasets provide us with realistic data, in addition to a diverse set of attack types

which will test both the system’s accuracy and reliability.
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Chapter 2: Background Information and Related Work

There are a number of works that have been done to test the efficiency and reliability of

machine learning-based methods for intrusion detection. One of these works is [14], where a

survey is taken of various machine learning methods and approaches used to develop intrusion

detection systems within an SDN environment. Their research details both machine learning and

deep learning approaches, as well as SDN architecture and its applications. Another of these

works is [5], where researchers evaluate various machine learning algorithms to determine which

of them will give the best results for their IDS. This IDS is then deployed over SDN, and

employs the NSL-KDD dataset to train data to be able to distinguish and identify various types

of attacks, using XGBoost as its driving algorithm. In [1], various machine learning techniques

are evaluated to determine which of them is appropriate for flow-based intrusion detection.

Through their results, they concluded that tree-based machine learning techniques held better

classification rates, and required lower execution times than other, more complex algorithms [1].

[6] incorporates tree-based methods into a two-level IDS. Their proposed IDS uses an anomaly

detection module in conjunction with deep packet inspection to determine whether a packet is

normal or malicious [6].

The methods and techniques used to create and evaluate this IDS may use some of these

works as a reference, such as feature selection methods, and various algorithms used during the

testing phase. The hope is that by using methods that have been tested and proven effective for

machine learning-based intrusion detection, this system can be both highly accurate and reliable.

Though, in order to better understand the potential of this system within an SDN environment,

let’s take a closer look at what SDN is and how it works.
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SDN Overview

Software defined networking (SDN) is an approach to network architecture that enables

the network to be centrally controlled, or “programmed”, using software applications [7]. It is

also an efficient and dynamic way of configuring the network in order to improve performance

and monitoring, making it more akin to cloud computing than a traditionally managed network.

Essentially, SDN provides a framework which separates a network’s control plane from its data

plane – a solution that proves to resolve several issues. In a typical network infrastructure lies the

data plane and the control plane. The data plane is concerned with local traffic, determining how

datagrams arrive in, and are forwarded out of routers according to decisions made by the control

plane [8]. Whereas the control plane handles network-wide logic, determining how datagrams

are routed along the end-to-end path from the source host to the destination host. The typical

approaches to implementing the control plane are through traditional routing algorithms

(implemented in the routers), or through software defined networking.

In SDN, network resources are managed by a logically centralized controller [9], which

can compute and install forwarding tables in the routers. This controller has a global view of the

network and its devices, and it can monitor and collect network configuration data in real time

[9]. This feature provides a solution to a few of the issues a network faces when it comes to

traditional networking architecture. One of these issues is that each router must implement its

own data and control plane. This means that if a change were to occur in one router’s control

plane, such as updated configurations or rules, then every other router in the network would have

to be made aware of that change. This is something that would not be easily accomplished,

especially for larger scale networks. Requiring each router to maintain information about every

other router in the network isn’t feasible and would pose enormous memory constraints. Another
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issue that presents itself is that router configurations are getting more complex every day. This

means that now more than ever, having to focus on compatibility management for each router is

a huge hassle, and only gets worse with larger scale networks. Therefore, by having the logic for

the control plane taken out of each router and contained within a centralized system, SDN

provides a way for the network to be easily scalable without having to worry about issues like

compatibility management, memory constraints or information sharing. It’s reasons like these

that modern networks are moving away from a distributed control plane in favor of a more

centralized one.
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SDN Architecture

To better understand how applications such as an IDS can be implemented within

software defined networks, we’ll take a closer look at SDN architecture. Within typical SDN

architecture are three main layers: the application layer, control layer, and infrastructure layer

[10]. The application layer contains software applications that run on either physical or virtual

hosts. The purpose of these applications can vary according to the needs of the network, such as

having a flow optimizer, load balancer, or providing services like access control or intrusion

detection [10]. The control layer is where the network controllers reside and is responsible for

implementing the logic and rules passed from the application layer to the infrastructure layer

[10]. This layer acts as a sort of network operating system for SDN, as it can have topology and

flow table managers to maintain the network’s state information, and dynamically allocate

network resources, respectively [10]. This layer is also responsible for managing traffic data and

regulating actions by either establishing or denying network flows [5]. Lastly, the infrastructure

layer is made up of hardware and software components, and is tasked with simply forwarding

data packets. The hardware components of this layer include devices such as programmable

switches and routers, while the software components such as OpenFlow switches are able to

interface with the hardware [5].

Let’s now discern just how this system can be implemented within SDN architecture. As

stated previously, the centralized controller has a global view of the network, and is able to

collect and monitor network traffic. This is an extremely useful feature, as it can promote and

enable numerous applications of machine learning algorithms. Having the IDS placed within

SDN’s application layer is just one way to take advantage of this feature. By implementing the

IDS in this way, any traffic that flows through the central server/controller is scanned and
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analyzed, determining whether it can be classified as normal or malicious. These results are then

compared against the rules of the network and its configurations, which may be housed inside a

rules management system also contained within the application layer. These rules would

determine the course of action to be taken on the scanned data - to either accept or reject/block it.

This information is then sent to the control layer, where controllers can instruct the switches (in

the infrastructure layer) on how to handle the data. A controller that could ideally be used in this

system would be POX, as it’s compatible with Linux, MacOS, and Windows platforms [11].

POX is also a controller that’s helpful in aiding and discovering paths and architectures [12],

making it useful for applications involving machine learning techniques. If the IDS does in fact

detect a malicious presence, an alert can be sent to the appropriate administrators, or to a network

security management team. OpenFlow switches and/or various other software tools within the

infrastructure layer would be responsible for conveying updates and information to the rest of the

devices on the network. Should any malicious traffic be detected, then according to the rules of

the network (or rules management system), the central controller will update the configurations

of each router along the network, telling them to block any associated traffic. This is where the

architecture of SDN can be made to showcase its practicality.

In a traditionally managed network, an IDS may be able to stop an attacker from gaining

access to a central server initially, but all of the routers in that network would have to be updated

one by one in order to be properly reconfigured. The time that it takes to make the necessary

changes may vary, but in that time, it’s possible that an attacker could persist through devices on

the network which still remain vulnerable. Until every router in the network has been made

aware of the threat, each of them could be considered a potential attack vector. This issue is one

that is easily solved through SDN’s architecture, which allows the central controller to update the
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rules and configurations of each router in real time. As with any security mechanism, it’s crucial

that swift action is taken so that organizations can minimize disruptions in their business

processes, limit their financial losses, and implement necessary safeguards to prevent similar

attacks from occurring in the future. Now let’s take a closer look at exactly how this IDS will

work.
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Chapter 3: Methods & Procedures

In this section, a variety of machine learning algorithms will be tested using two chosen

sets of data. These datasets were both created for the purpose of assisting researchers by

providing them with valuable data in order to test and compare various intrusion detection

methods and solutions. The datasets that will be used for training and testing these machine

learning methods include the UNR-IDD and NSL-KDD datasets. The UNR-IDD dataset was

created by researchers at the University of Nevada, Reno, and is intended to provide a wide

range of samples and scenarios for machine learning-based intrusion detection systems. The

NSL-KDD dataset is a newer version of the KDD '99 dataset, and is used as an effective

benchmark for helping researchers compare various intrusion detection methods. As previously

mentioned, the UNR-IDD dataset is primarily composed of network port statistics, while the

NSL-KDD dataset contains at least 20 different attack types, offering a wide range of data to

draw from, as well as providing a level of variety that can prove useful for a machine learning

model. Together, these datasets provide great material to work with and draw from in order to

create a robust model that can accurately predict and classify traffic from among vast amounts of

data.

The platform that was chosen to use to create the IDS is Google Colab, as I’m familiar

with it and have used it previously to conduct similar assessments and projects related to

machine learning. Another thing to note is that before the datasets could be used in testing, it was

crucial that a bit of preprocessing needed to be performed on them. Both of the datasets

contained features with categorical variables, which would pose an issue during testing and

analysis. Therefore, any categorical features (columns) were translated into numerical values that

could be understood and used by the system. With this, the dataset is able to maintain its integrity
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without sacrificing additional data or features that could possibly cause interference during

testing.
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Feature Selection

The use of feature selection was also used after a dataset was uploaded and imported into

a pandas dataframe (the “pandas” package was imported to be able to better manipulate the data).

After the data has been separated into training and testing sets, it is then run through a feature

selector which finds and determines the best features to use for analysis. This process is useful in

finding certain features that are weighed very little in terms of the effect they have on the final

results, such as columns that contain just a single value. Removing these features would then be

a way of cleaning up the data and refining it for later use. It’s also a way of extracting the

features within the data that will yield the greatest results. For this case, SelectKBest was used as

the selector, as it allows for the specification of the number of desired features (in this case,

k=20). The selector works by calculating a “score” for each of the variables (features) based on

univariate statistical analysis [13]. The top 20 features with the highest score are then determined

to be the best, or most valuable features in the dataset. This process was conducted on each of the

datasets separately, and with each time, the dataset needed to be reuploaded after making the

necessary changes. At the end of the feature selection process, the UNR-IDD dataset contains 21

features, while the NSL-KDD dataset contains 20. Once the preparatory work for each of the

datasets was complete, the testing phase could begin.
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Classification Algorithms

During this phase, the testing of various machine learning algorithms was conducted. The

model was tested to see how well it performs, utilizing 6 different algorithms to determine which

one will yield the best scores. These classifiers include two ensemble algorithms, two that are

tree-based, and two that are linear. The ensemble algorithms, which include

RandomForestClassifier and AdaBoostClassifier, were chosen because ensemble-based methods

can be used for classification, regression, or anomaly detection. This makes them popular

choices for those who wish to utilize them for machine learning analysis. Furthermore, [14] and

[15] both describe using the RandomForest algorithm as a classifier for their datasets ([15] also

uses AdaBoost as one of its classification algorithms). Additionally, AdaBoost is mentioned in

[16] as being used in a system which resulted in a lower false alarm rate, higher detection rates,

and was computationally faster than other published results. Tree-based algorithms are also very

useful when it comes to machine learning analysis, as they are very adept at performing

classification and regression tasks. Those which comprise the tree-based algorithms are

DecisionTreeClassifier and ExtraTreeClassifier. DecisionTree is a well known machine learning

algorithm that is frequently used for both classification and regression tasks, as described in both

[14] and [15]. It is also an algorithm that can be used for feature selection, which makes it

incredibly versatile as well.

Depending on their parameters, some linear classifiers can fall into multiple categories,

which is part of why they were also included in this group. Perceptron and RidgeClassifier are

the linear models that were chosen for this set of algorithms. In the event that either could

outperform any of the others during the final phase of testing, it would have been interesting to

see how changing parameters would affect their results (it wasn’t expected that they would yield
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higher results than the others, this is evident in the Results section). After all, a variety of

classifiers was chosen deliberately for the purpose of seeing how they compare against one

another, as well as determining which among them produces the best results. If it were the case

that the linear classifiers outperform the others, it would be something that could warrant further

testing and investigation. Nevertheless, the goal of this testing phase will be to determine which

algorithm from among the group produces the best results. It should also be noted that when

determining this, the scores from both datasets are taken into account.
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Testing the Model

The testing phase was conducted in four steps. For the first step, the UNR-IDD dataset is

uploaded and run against each algorithm one at a time, while the results are captured and

recorded. This process is then repeated for the NSL-KDD dataset. The results for this first step

showcase each classifier’s accuracy, which will henceforth be referred to as the ratio of correctly

classified records with that of all records in the dataset [16]. Simply put, accuracy estimates how

many records within the dataset are correctly identified, regardless of their label (normal or

attack). This metric can provide a good baseline for the affinity each algorithm has when it

comes to attack classification, as well as a clear picture of which algorithms are more adept at

distinguishing potential attacks from normal traffic/data. Upon completing the first step,

however, the number of working algorithms was reduced to half by removing the lower scoring

classifiers from each category. This way, the next step will begin its phase with 3 algorithms

instead of 6 (one ensemble algorithm, one that’s tree-based, and one that’s linear). By narrowing

down the options as testing progresses, it can be observed which methods will be most useful

and best equipped for machine learning-based intrusion detection. However, accuracy alone is

not enough to verify that each record is truly being classified correctly.

In the first step, the model’s accuracy was recorded using the various algorithms listed

previously. For the second step, the model’s precision will be evaluated using the remaining

classifiers. Precision is described as the measure of true positives divided by the number of true

positives plus the number of false positives ( ) [16]. For further clarity,𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

true positives refer to the number of records that are correctly classified as “Normal”, or

“Benign”, while false positives refer to the number of normal records which are misclassified as
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an attack. In other words, precision estimates the ratio of attacks that were correctly identified

with that of all identified attacks in the dataset [16]. It is not enough to merely observe the

model’s accuracy, as the possibility still remains that it could simply be misclassifying data. One

of the main things that can hinder the integrity of an IDS is when it classifies normal data as

potentially malicious. This is something that nearly all kinds of IDS’s encounter and have to deal

with. In order to see that the model is in fact correctly classifying the data, its precision must be

tested as well. As shown by the equation above, a low number of false positives strongly

indicates that the data is in fact being correctly classified. Displaying such a high precision rate

suggests that a machine learning model may not only be accurate, but reliable as well. Now, the

procedure for this second step will be much like that of the first. The UNR-IDD dataset is

uploaded and run against each algorithm one at a time, this time calculating precision instead of

accuracy. The results are captured and recorded, and the process is then repeated for the

NSL-KDD dataset. When this step is completed, the classifier which scores the lowest is dropped

from the group, leaving just two to work with for the remainder of the testing phase. With the

completion of the first two steps, the classifiers that are left are determined so far to be the most

accurate and most precise out of the original starting group. However, there’s still some work to

be done before finally determining which among these classifiers is best suited to be the driving

algorithm for the IDS.

For the third step, the system’s recall is tested using the remaining two algorithms. Recall

(also called the True Positive Rate) often works in concert with precision in verifying that the

system is indeed correctly classifying data in accordance with its true label (either “normal” or

“attack”). Similar to how precision is calculated, recall measures the number of true positives

divided by the sum of true positives plus false negatives ( ) [16]. Here,𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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false negatives refer to the number of attack records that are misclassified as normal. In other

words, recall estimates the ratio of correctly classified attacks to all attacks in the dataset [16]. To

clarify, precision measures the correctness of attack classification, while recall measures the

completeness of attack classification. Using these two evaluation metrics in conjunction can

provide great insight into the performance and effectiveness of the system. By doing so, it can

ensure that the system is not only correctly classifying attacks, but is also able to catch nearly all

recorded attacks. A system which displays high recall insinuates that it shows an incredible

aptitude for attack classification. Moving forward, the procedure for this third step will be much

like that of the previous two. The UNR-IDD dataset is uploaded and run against each algorithm

one at a time, this time calculating for recall. The results are captured and recorded, and the

process is then repeated for the NSL-KDD dataset. With the completion of these three steps, we

can then continue on with the final phase of testing.

For the final step, the accuracy of the model will again be measured. This time, however,

the classifiers will be further tuned by experimenting with different parameters. Some of these

parameters include n_estimators, criterion, splitter, min_samples_split, min_samples_leaf, etc.

All these parameters serve different (or similar) functions, and although some might be similar in

purpose, they may all have the potential to impact the results in some way. Changing the values

of these parameters, or using them in combination with each other can have either a positive or

negative effect. Furthermore, this effect can be rather significant, or have little to no impact at

all. At times when adding or altering certain parameters makes little to no difference, it may be

appropriate to simply omit them. Some of these parameters are also already incorporated in the

algorithm in a default state. This means that, while there’s no visible indication, certain

parameters have default values that the algorithm uses to accomplish its task. One example of
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this is n_estimators. Values for this particular parameter can range from 10-100, however, some

algorithms may use a default value of 100. This indicates that the algorithm uses

“n_estimators=100” without it being explicitly specified. If one wants to determine whether this

value carries any weight in terms of the observed results, then a new value must be specified as

such: “n_estimators=50”. Even if a small improvement is observed, this new value would be kept

in place of the default one.

There were numerous parameters to experiment with, and working through the list of

available options was somewhat tedious. However, the process went smoother than imagined, as

in the end, not many changes were kept. Beginning first with one parameter, changing its

variables/inputs, and acting according to the observed output, the question of whether that

change would be permanent was answered. If the results improved by even a small margin, then

the change would be kept, and other changes would continue by altering other parameters and

their values, observing the output and repeating the process. If no change was observed in the

results, or if there was a decrease in performance, then that variable was either omitted, or left in

its default state. Using this process, a number of variables were tested from among the two

remaining algorithms, running them both against the two datasets as before. If possible, the same

alteration would be made in both algorithms so their results could be compared. In the end, both

algorithms performed remarkably well, but as seen from the results, the one with the best overall

score was RandomForest, and the testing phase comes to a close.
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Chapter 4: Results

In this section, the results of the testing phase are displayed. The records are separated

according to the stage of the testing process in which they were observed. Table 1 shows the

results from the first stage, where the model’s accuracy was observed using a variety of different

algorithms. These include RandomForestClassifier, AdaBoostClassifier, DecisionTreeClassifier,

ExtraTreeClassifier, Perceptron, and RidgeClassifier.

Algorithm Random
Forest

AdaBoost Decision
Tree

ExtraTree Perceptron Ridge

UNR-IDD 97.97 97.18 97.93 96.94 74.81 97.93

NSL-KDD 99.38 84.79 98.89 97.96 82.95 91.71

Table 1: Algorithm Accuracy

After the first round of testing, the various results were compared against each other.

From the Table 1 results, it can be observed that most of the algorithms had little disparity

between the scores from when they were tested using the UNR-IDD dataset, and when they were

tested using the NSL-KDD dataset. Also, there are few outliers, as most values fall within a

similar range. However, with linear algorithms such as Perceptron, it was predicted that the

scores it produced would fall on the lower end of the spectrum, as they have appeared to do so.

RidgeClassifier, however, seems to have performed much better than Perceptron despite them

both being classified as linear algorithms. This plays into the manner in which these algorithms

are separated to prepare for the next step. As previously mentioned, three of the algorithms will

be removed before continuing with the next round of tests. This was done by removing the lower

scoring classifier from each category. In the case of the linear classifiers, Perceptron was
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removed, leaving RidgeClassifier to be placed against the next round of testing along with

RandomForest and DecisionTree.

Algorithm RandomForest DecisionTree Ridge

UNR-IDD 98.02 97.94 97.01

NSL-KDD 99.40 98.78 91.71

Table 2: Algorithm Precision

For this second stage, the precision of the model was put to the test using the three

remaining algorithms. The purpose of this stage was to determine the false positive rate of the

model, to see if there was any misclassification of data. If the current model were to display low

precision scores, it would also mean that it shows a high rate of false positives. This would

indicate that most of the data the model classifies as normal would actually be malicious, and

would be an example of a model that is not well suited for classification tasks like intrusion

detection. While the Table 1 results show that the model is highly accurate, it would not matter

unless it was also very precise in its classification. However, Table 2 shows that the classifiers all

displayed remarkable promise, as they had high precision scores. This suggests at least a large

percentage of the data is in fact being correctly categorized. For the next step, the number of

classifiers will again be reduced to narrow down the options for the IDS’s driving algorithm.

Again, this was done by removing the lowest scoring classifier from the group, which in this case

was RidgeClassifier. The remaining two algorithms will continue to be used during the next two

stages of testing.

Algorithm RandomForestClassifier DecisionTreeClassifier

UNR-IDD 99.92 98.86
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NSL-KDD 99.36 98.85

Table 3: Algorithm Recall

In the third step, the model’s recall, or true positive rate, was tested. High recall rates

indicate that nearly all attacks within a dataset are being identified, and as Table 3 shows, both

classifiers have done exceptionally well in that regard. This, combined with the results from step

two, signifies that when it comes to attack classification, the model is able to catch nearly all

recorded attacks, and does so with a high degree of accuracy. In other words, according to the

results of the tests done so far, the model is able to correctly identify and distinguish normal data

from attacks, with little chance of there being any misclassification (false positives/negatives).

Furthermore, looking at the results of Tables 2 and 3, it can be seen that the

RandomForestClassifier has a slightly higher affinity for attack classification than

DecisionTreeClassifier. This is also evidenced by the initial readings for their overall accuracy

showcased in Table 1. At this point in the testing phase, it has been made clear that these two

classifiers are the ones most adept at detecting potential threats. However, with one more step to

go, there is still work to be done before finally determining the most suitable option for this

IDS’s driving algorithm.

Algorithm RandomForestClassifier DecisionTreeClassifier

UNR-IDD 98.16 97.98

NSL-KDD 99.45 99.11

Table 4: Tuned Model

For this final step, the model’s accuracy is once again put to the test. The goal this time

will be to fine tune the model in order to achieve even better results if at all possible. This was

done by experimenting with the various parameters for each algorithm, observing the output, and
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acting according to the observed output. If changing a parameter produced any kind of

improvement in the model’s performance, then it was kept. If it detracted from the scores, or

even if there was no change at all, then it was omitted. In regards to both algorithms, however,

they share many of the same parameters, so virtually any changes made in one could be made in

the other. Additionally, the effect of these changes were usually found to be the same in both as

well - if there was no observable change after altering a parameter in one, it was likely that the

other one would show no change as well. There were a few parameters that were unique to their

respective algorithms, such as “n_estimators” for RandomForest (ensemble), and “splitter” for

DecisionTree (tree-based), however, neither of them seemed to produce any significant changes.

After many repeated attempts, it was found that the alteration which made the largest

respectively positive difference was the “criterion” parameter. This parameter, which is

accessible to both algorithms, acts as a function which measures the quality of a split, and has

three possible values: “gini”, “entropy”, and “log_loss”. By default, the algorithm takes “gini” as

the value for this particular parameter, however, changing it to “entropy” yielded a small

improvement in the model’s accuracy scores. This is shown in Table 3, where the tuned model is

run against both datasets once more, displaying the results for each algorithm. Though not much

seems to have changed in regards to the model between the first test and the final one, it remains

true that the tuned model produced slightly better results than the original. From this, we can

conclude that a tuned model which uses RandomForest as its driving algorithm is both highly

accurate and exceptionally precise.
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Chapter 5: Discussion

Based on the results of the testing phase, it was determined that RandomForest was the

best choice to serve as the driving algorithm for this IDS. As evidenced by other related works, it

appears as though this algorithm is quite adept at classifying data for the purposes of intrusion

detection. Comparing the results from the tests done in [15], where various supervised machine

learning algorithms are run against the NSL-KDD dataset, RandomForest scored with an

accuracy of 99.7% (AdaBoost also scored with an accuracy of 89.3%). Additionally, a literature

review by [12] mentions a signature-based IDS which uses the RandomForest classifier on the

CICIDS2017 database. The cross-validated score that was reached yielded an accuracy score of

99.713%. These scores closely reflect those of our own experiments, indicating that

RandomForest may indeed have been the most optimal choice for this particular case.

Furthermore, one of the works surveyed in [14] describes their use of RandomForest as a

classifier for the NSL-KDD dataset. Their findings showed that their model held high accuracy

scores as well as a low false alarm rate [14], very much like our own model. From this, we can

conclude that this model is a potentially viable solution to machine learning-based intrusion

detection.

Even so, this system still has yet to be fully implemented and tested within an SDN

environment. Earlier in this paper, it was detailed how one could effectively implement this

system within SDN architecture via the centralized controller. Though the main purpose of this

project was to determine how one could use machine learning techniques to create an efficient

and reliable intrusion detection system that could be used in conjunction with SDN, being able to

test that system within a real-world SDN environment may have just been outside the scope of

the initial design. Though the system does show great promise, extended testing inside a
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simulated environment may prove useful in determining what shortcomings, if any, may exist

within the system as it stands currently. That, however, could be something that can be explored

in a future work of this project as a means of continued experimentation and verification.
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Chapter 6: Conclusion

In this paper, we discussed what SDN is, how it works, and its importance in the world of

computer networking. We also introduced a system which uses machine learning techniques and

algorithms to perform intrusion detection, and discussed how that system could be effectively

implemented within SDN architecture. Through testing and evaluation, it was concluded that the

modified RandomForest classifier was the most optimal choice for the IDS’s driving algorithm.

Yielding high accuracy scores along with exceptional precision, this system boasts a proficient

ability to correctly classify and distinguish normal data from potentially malicious attacks. Such

high precision scores also indicate a low rate of false positives. This, along with the comparison

of works referenced in the Discussion, further promotes the reliability of this system.

As with most systems, however, there may always be something to improve upon. As

previously mentioned, the potential for future work on this project could lie in the

post-implementation of this system within a software defined network to determine and discover

any pitfalls it may have as a result of exposure to real-world data/scenarios. Understanding the

system’s behavior under diverse network conditions may ultimately contribute to its robustness

and practical applicability. Other possibilities for future works involving this project may include

additional research and testing on various preprocessing and feature selection techniques. By

experimenting with these methods, the performance and efficiency of the system can be further

explored. In conclusion, the continued research of these methods may contribute in advancing

the understanding and applicability of this system within software defined networks.

Intrusion detection systems that use machine learning techniques are becoming

increasingly popular in recent years, especially in the area of software defined networking. As
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new technologies are adapted and discovered, more potentially viable solutions such as these will

become evermore prevalent. For now at least, it appears as though this system has the hallmarks

of a solid foundation for implementing machine learning-based intrusion detection for software

defined networks.
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