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ABSTRACT 

 

 

Rapid divergence in body size is a well-documented phenomenon among island species, 

associated with macroevolutionary processes of diversification and adaptive radiation. The effect 

of insularity in determining larger body size as an optimal phenotype is primarily attributed to 

lower predation and greater intraspecific competition on islands. Our study examined 

interpopulation variation in morphology, social behavior and predator avoidance in Galápagos 

lava lizards endemic to San Cristóbal island (Microlophus bivittatus), and the nearby islet Isla 

Lobos. Islet populations have fewer competitors than those on the island, where native and 

introduced predators are abundant. We simulated interactions with predators and conspecifics by 

conducting stereotyped approaches and presentations of robotic models resembling males of 

equal and larger size. Arithmetic and geometric analyses of morphology describe islet males as 

larger than those in the island, with no significant variation in female size. Territorial displays 

were stronger towards larger robot models by islet males, and towards same-size robot models 

by island males. Female displays favored larger models in both locations. Predator avoidance 

was less pronounced on islet lizards, evidenced by shorter escape and flight distances than those 

of island lizards despite similar distance to refugia. Our results suggest that predation release, 

supported by strong male intrasexual selection, is a key component behind the evolution of 

divergent body sizes in this species.  
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CHAPTER 1 

 

INTRODUCTION 

 

Distinctive biogeographical attributes of insular environments provide ample ecological 

opportunities to a scarce number of colonizing species, promoting the evolution of novel and 

often extreme phenotypes compared to continental relatives (Losos & Queiroz 1997; Whittaker 

& Fernández-Palacios 2007; Whittaker et al. 2008, 2017). Variation in body size following 

successful occupation of an insular niche is widely documented, reflecting the strong influence 

of this trait on the physiology, ecology and behavior of a species and its adaptive potential (Case 

1978; Maurer et al. 1992; Lomolino 2005; Olden et al. 2007; Calsbeek & Cox 2010). A pattern 

named “The Island Rule” describes a tendency for insular species to evolve towards intermediate 

body sizes, where large species become smaller while smaller ones grow larger upon 

colonization (Foster 1964; Van Valen 1973; Lomolino 2005; Benítez-López et al. 2021). 

Originally described in mammals, this ecomorphological trend has received further attention on 

this taxon (Lomolino 1985; Damuth 1993; Lomolino et al. 2013) and others including birds 

(Grant 1965; Clegg & Owens 2002; Knapp et al. 2019), reptiles (Jaffe et al. 2011; Keehn et al. 

2013), insects (Chown & Gaston 2010; Polet 2011), and most recently, plants (Biddick et al. 

2019; Burns 2019). However widespread, empirical evidence for the generality of this pattern is 

strongly polarized given conflicting evolutionary responses among and within groups (Lomolino 

2005; Meiri et al. 2005, 2008; Itescu et al. 2018). Phylogeny and autecology of individual 

species are proposed to explain variation in growth trajectory and optimal trait size, suggesting 

community composition and behavior as significant factors in determining the magnitude of 

morphological divergence in islands (Meiri et al. 2011; Biddick et al. 2019). 

Species richness is notoriously low in island ecosystems, failing to support the resource 
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base required by predators to establish viable populations (Abbott 1980). Frequent encounters 

with predators select for survival strategies based around detection and escape, factoring trade-

offs between habitat use and survival (Ydenberg & Dill 1986; Damas-Moreira et al. 2014). If 

predation risk decreases alongside predator richness, energy allocation will then shift away from 

vigilance (Greene 1988; López & Martín 1995).  Low-risk conditions increase foraging success 

and survivorship, optimizing growth rates towards larger body size (Hamilton & Heithaus 2001; 

Vervust et al. 2007; Donihue et al. 2016). Greater investment in lifetime fitness and reproductive 

efforts is expected to increase population density, and thus intraspecific competition (Jirotkul 

1999; Firman & Simmons 2008). 

 A larger body is advantageous in circumstances where the acquisition and maintenance of 

available resources is mediated by competition (Stamps & Krishnan 1994; Calsbeek & Smith 

2007). This advantage extends to morphological correlates of body size, as proportional 

increases in head size and bite force are beneficial in prey selection and social dominance (Herrel 

et al. 1999, 2001, 2004). Ecological responses to these conditions are further biased by 

differences in life history among the sexes (O’Connell et al. 2019). Male-biased sexual size 

dimorphism (SSD) is a common feature of lineages characterized by male combat and 

territoriality (Watkins 1996; Cox et al. 2003, 2007; Blanckenhorn 2005; Toyama & Boccia 

2021). Conversely, female-biased SSD correlates directly to greater reproductive investment and 

a tendency towards K-selection strategies (Andrews 1979; Cox et al. 2007).  

The unique geology of the Galápagos Islands provides ideal conditions for deconstructing 

the influence of these factors on the evolutionary ecology of species and communities alike 

(Lomolino 1985; Harpp et al. 2014). Complex patterns of adaptive radiation are found in 

Galápagos lava lizards (Microlophus spp.), a genus of polygynous, territorial lizards that vary in 
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size, color and behavior (Benavides et al. 2009). Males and females perform species-specific 

signature displays consisting of stereotyped bobbing motions as a form of social communication, 

broadcasting territoriality or mate attraction (Carpenter 1977). Comparative analyses in this 

genus have established similar evolutionary trajectories for body size between island and 

mainland species, suggesting equal selection pressures in both environments (Toyama & Boccia 

2021, 2022). However, ecomorphological variation in body size at the intraspecific level, where 

sex-specific selection is expected to be stronger, has not been explored for this group (Fairbairn 

& Preziosi 1994; Kaliontzopoulou et al. 2010). Microlophus bivittatus, a species endemic to San 

Cristóbal Island and its adjacent islet Isla Lobos, provides an excellent opportunity to examine 

the relationship between insular body size and patterns of natural and sexual selection acting 

upon it (Kizirian et al. 2004).  

In this study, we described the morphological parameters of M. bivittatus from allopatric 

populations on an islet-island system and investigated the patterns and possible causes for 

differences found within this species. Both populations are distributed across almost identical 

elevation and latitude, avoiding confounding effects of other biogeographical patterns 

influencing body size (Rowe et al. 2019; Toyama & Boccia 2022). Generalist strategies, little 

differentiation from ancestral body plans and solitary colonization patterns seen in Microlophus 

oppose the assumption of interspecific competition having an impact on the evolutionary 

trajectory of this genus (Losos & Queiroz 1997; Poe et al. 2007; Benavides et al. 2009).While 

low primary productivity would be expected in the smaller islet, the presence of seabird 

communities may subsidize nutrient availability across the terrestrial food web (Snell et al. 1996; 

Pafilis et al. 2011).  

We tested the hypothesis that predation release and sexual selection favor the evolution 
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of larger body size in island reptiles by analyzing behavioral responses to stimuli associated with 

these factors. We conducted simulations of stereotyped predation attacks and measured the 

characteristics of escape responses as an indicator of wariness. For sexual selection, our 

experimental design consisted of subjects being presented with a robot designed to mimic M. 

bivittatus male conspecifics performing stereotyped bobbing displays. Two treatments were 

used, one where the robot was scaled to the average size of local males, and another where it was 

scaled to a larger size. The number and intensity of behavioral displays performed in response to 

the robot provides an indicator of the level of aggression or receptivity to mating expressed by 

male and female subjects respectively. We expect the reduced area and isolation of Isla Lobos to 

result in lower abundance and richness of predators, and thus predict reduced wariness in the 

islet population of M. bivittatus compared to those on the island, promoting larger body sizes in 

the former. Similarly, we predict behavioral responses from both sexes to displaying male robots 

to be stronger in the islet population compared to the island one, favoring the larger treatment in 

both locations. If a more competitive environment is observed in the islet, we expect male body 

size to be further enhanced in this population. In accordance with Rensch’s rule, which states 

that SSD increases with male body size in male-biased species, we predict SSD to be greater for 

the islet population compared to the island one (Rensch 1959; Cox et al. 2003). 

Purpose 

 

The purpose of this study is to further investigate if certain ecological factors are 

associated with the emergence of greater body sizes in island species, and the implications this 

has on adaptive radiations in islands. Specifically, we attempt to identify and characterize 

patterns in morphology across populations of the San Cristóbal lava lizard, M. bivitattus, living 

on the main island against a similar gigantic population living on a nearby islet. Our 
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experimental design will then examine the influence of environmental pressures associated with 

territoriality and predation on defining the optimal morphological traits in each population, 

according to predictions established by previous literature on island-mediated phenotypic 

divergence. 

Scope 

 

Conclusions gathered from this research on lizard populations in San Cristóbal, 

Galápagos can be applied to other members of the genus with geographically isolated island 

conspecifics. Carefully, these patterns can be considered for any group expressing phenotypic 

divergence as a result of insularity, including comparisons between populations or species from 

the continental landmass. Additionally, our results provide baseline ecological information 

relevant to conservation efforts in the Galápagos National Park. 

Assumptions 

 

1. We assume that all morphological and behavioral observations are representative of each 

sampling location as a whole 

2. We assume that responses to stereotyped predation approaches using human models are 

representative of behavior in response to local live predators 

3. We assume that a lack of changes in orientation and location of the lizard model attached to the 

robot does not influence interactions with conspecifics. 

Hypothesis 

We tested the hypothesis that predation release and sexual selection favor the evolution 

of larger body size in island reptiles by analyzing behavioral responses to stimuli associated with 

these factors. We established the following research questions to accomplish this objective: (1) Is 

there interpopulation divergence in the morphology of M. bivittatus? (2) Are there 
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interpopulation differences in the intensity of behavioral displays signaling territoriality and 

courtship in M. bivittatus? (3) Are there interpopulation differences in responses to an 

approaching predator? (4) In case of morphological divergence between populations, is it 

explained by the patterns observed in behavioral responses? 

Significance 

 

Conflicting reports on the generality of the island rule have been observed across various 

taxa (Meiri et al. 2008; Lokatis & Jeschke 2018; Biddick et al. 2019; Benítez-López 2021), 

including reptiles (Meiri 2007; Itescu et al. 2018). Previous literature on morphological 

divergence in insular lizards has focused predominantly on anoles (Schoener 1969; Lister 1976; 

Irschick et al. 1997; Thomas et al. 2009; Velasco et al. 2020). The effect of latitude and altitude 

as determinants of body size divergence is well established, pending analysis in other groups 

(Bock et al. 2009; Goodman et al. 2013). Toyama and Boccia (2021, 2022) take this into 

consideration for Microlophus at the interspecific scale across the range of the genus and 

determine a lack of differences in body size between continental and insular species, remarking 

the insufficient latitudinal variation in the Galápagos and suggesting further research on natural 

history. This study expands upon these results by taking similar considerations focused on the 

insular members of Microlophus, previously unexplored at the interpopulation scale.  

 

Definitions 

 

Display action patterns: Structural representation of the movements occurring during 

stereotypical bobbing displays. 

 

Scaled mass index (SMI): Body condition in a population expressed as body mass divided 
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by body size and multiplied by mean body size of the group (SVL0) to the power of the 

respective scaling exponent (bSMA); SMI = mass/SVL * SVL0^bSMA.  

 

Size dimorphism index (SDI): Dimorphism in a population expressed as the average body 

size of males divided by that of females, centralized around a mean of zero; −(SVLmale / 

SVLfemale) + 1. 
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ABSTRACT 

 

Rapid divergence in body size is a well-documented phenomenon among island species, 

associated with macroevolutionary processes of diversification and adaptive radiation. The effect 

of insularity in determining larger body size as an optimal phenotype is primarily attributed to 

lower predation and greater intraspecific competition on islands. Our study examined 

interpopulation variation in morphology, social behavior and predator avoidance in Galápagos 

lava lizards endemic to San Cristóbal island (Microlophus bivittatus), and the nearby islet Isla 

Lobos. Islet populations have fewer competitors than those on the island, where native and 

introduced predators are abundant. We simulated interactions with predators and conspecifics by 

conducting stereotyped approaches and presentations of robotic models resembling males of 

equal and larger size. Arithmetic and geometric analyses of morphology describe islet males as 

larger than those in the island, with no significant variation in female size. Territorial displays 

were stronger towards larger robot models by islet males, and towards same-size robot models 

by island males. Female displays favored larger models in both locations. Predator avoidance 

was less pronounced on islet lizards, evidenced by shorter escape and flight distances than those 

of island lizards despite similar distance to refugia. Our results suggest that predation release, 

supported by strong male intrasexual selection, is a key component behind the evolution of 

divergent body sizes in this species.  

 

 

 

Key words: Body Size; Escape Behavior; Galápagos; Island Biogeography; Island Gigantism; 

Island Rule; Sexual Selection; Sexual Size Dimorphism; Territoriality; Tropiduridae. 
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INTRODUCTION 

 

Distinctive biogeographical attributes of insular environments provide ample ecological 

opportunities to a scarce number of colonizing species, promoting the evolution of novel and 

often extreme phenotypes compared to continental relatives (Losos & Queiroz 1997; Whittaker 

& Fernández-Palacios 2007; Whittaker et al. 2008, 2017). Variation in body size following 

successful occupation of an insular niche is widely documented, reflecting the strong influence 

of this trait on the physiology, ecology and behavior of a species and its adaptive potential (Case 

1978; Maurer et al. 1992; Lomolino 2005; Olden et al. 2007; Calsbeek & Cox 2010). A pattern 

named “The Island Rule” describes a tendency for insular species to evolve towards intermediate 

body sizes, where large species become smaller while smaller ones grow larger upon 

colonization (Foster 1964; Van Valen 1973; Lomolino 2005; Benítez-López et al. 2021). 

Originally described in mammals, this ecomorphological trend has received further attention on 

this taxon (Lomolino 1985; Damuth 1993; Lomolino et al. 2013) and others including birds 

(Grant 1965; Clegg & Owens 2002; Knapp et al. 2019), reptiles (Jaffe et al. 2011; Keehn et al. 

2013), insects (Chown & Gaston 2010; Polet 2011), and most recently, plants (Biddick et al. 

2019; Burns 2019). However widespread, empirical evidence for the generality of this pattern is 

strongly polarized given conflicting evolutionary responses among and within groups (Lomolino 

2005; Meiri et al. 2005, 2008; Itescu et al. 2018). Phylogeny and autecology of individual 

species are proposed to explain variation in growth trajectory and optimal trait size, suggesting 

community composition and behavior as significant factors in determining the magnitude of 

morphological divergence in islands (Meiri et al. 2011; Biddick et al. 2019). 

Species richness is notoriously low in island ecosystems, failing to support the resource 

base required by predators to establish viable populations (Abbott 1980). Frequent encounters 
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with predators select for survival strategies based around detection and escape, factoring trade-

offs between habitat use and survival (Ydenberg & Dill 1986; Damas-Moreira et al. 2014). If 

predation risk decreases alongside predator richness, energy allocation will then shift away from 

vigilance (Greene 1988; López & Martín 1995).  Low-risk conditions increase foraging success 

and survivorship, optimizing growth rates towards larger body size (Hamilton & Heithaus 2001; 

Vervust et al. 2007; Donihue et al. 2016). Greater investment in lifetime fitness and reproductive 

efforts is expected to increase population density, and thus intraspecific competition (Jirotkul 

1999; Firman & Simmons 2008). 

 A larger body is advantageous in circumstances where the acquisition and maintenance of 

available resources is mediated by competition (Stamps & Krishnan 1994; Calsbeek & Smith 

2007). This advantage extends to morphological correlates of body size, as proportional 

increases in head size and bite force are beneficial in prey selection and social dominance (Herrel 

et al. 1999, 2001, 2004). Ecological responses to these conditions are further biased by 

differences in life history among the sexes (O’Connell et al. 2019). Male-biased sexual size 

dimorphism (SSD) is a common feature of lineages characterized by male combat and 

territoriality (Watkins 1996; Cox et al. 2003, 2007; Blanckenhorn 2005; Toyama & Boccia 

2021). Conversely, female-biased SSD correlates directly to greater reproductive investment and 

a tendency towards K-selection strategies (Andrews 1979; Cox et al. 2007).  

The unique geology of the Galápagos Islands provides ideal conditions for deconstructing 

the influence of these factors on the evolutionary ecology of species and communities alike 

(Lomolino 1985; Harpp et al. 2014). Complex patterns of adaptive radiation are found in 

Galápagos lava lizards (Microlophus spp.), a genus of polygynous, territorial lizards that vary in 

size, color and behavior (Benavides et al. 2009). Males and females perform species-specific 
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signature displays consisting of stereotyped bobbing motions as a form of social communication, 

broadcasting territoriality or mate attraction (Carpenter 1977). Comparative analyses in this 

genus have established similar evolutionary trajectories for body size between island and 

mainland species, suggesting equal selection pressures in both environments (Toyama & Boccia 

2021, 2022). However, ecomorphological variation in body size at the intraspecific level, where 

sex-specific selection is expected to be stronger, has not been explored for this group (Fairbairn 

& Preziosi 1994; Kaliontzopoulou et al. 2010). Microlophus bivittatus, a species endemic to San 

Cristóbal Island and its adjacent islet Isla Lobos, provides an excellent opportunity to examine 

the relationship between insular body size and patterns of natural and sexual selection acting 

upon it (Kizirian et al. 2004).  

In this study, we described the morphological parameters of M. bivittatus from allopatric 

populations on an islet-island system and investigated the patterns and possible causes for 

differences found within this species. Both populations are distributed across almost identical 

elevation and latitude, avoiding confounding effects of other biogeographical patterns 

influencing body size (Rowe et al. 2019; Toyama & Boccia 2022). Generalist strategies, little 

differentiation from ancestral body plans and solitary colonization patterns seen in Microlophus 

oppose the assumption of interspecific competition having an impact on the evolutionary 

trajectory of this genus (Losos & Queiroz 1997; Poe et al. 2007; Benavides et al. 2009).While 

low primary productivity would be expected in the smaller islet, the presence of seabird 

communities may subsidize nutrient availability across the terrestrial food web (Snell et al. 1996; 

Pafilis et al. 2011).  

We tested the hypothesis that predation release and sexual selection favor the evolution 

of larger body size in island reptiles by analyzing behavioral responses to stimuli associated with 
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these factors. We conducted simulations of stereotyped predation attacks and measured the 

characteristics of escape responses as an indicator of wariness. For sexual selection, our 

experimental design consisted of subjects being presented with a robot designed to mimic M. 

bivittatus male conspecifics performing stereotyped bobbing displays. Two treatments were 

used, one where the robot was scaled to the average size of local males, and another where it was 

scaled to a larger size. The number and intensity of behavioral displays performed in response to 

the robot provides an indicator of the level of aggression or receptivity to mating expressed by 

male and female subjects respectively. We expect the reduced area and isolation of Isla Lobos to 

result in lower abundance and richness of predators, and thus predict reduced wariness in the 

islet population of M. bivittatus compared to those on the island, promoting larger body sizes in 

the former. Similarly, we predict behavioral responses from both sexes to displaying male robots 

to be stronger in the islet population compared to the island one, favoring the larger treatment in 

both locations. If a more competitive environment is observed in the islet, we expect male body 

size to be further enhanced in this population. In accordance with Rensch’s rule, which states 

that SSD increases with male body size in male-biased species, we predict SSD to be greater for 

the islet population compared to the island one (Rensch 1959; Cox et al. 2003). 
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METHODOLOGY 

 

Study site and Subjects 

 

San Cristóbal is the easternmost island in the Galápagos, estimated to have formed 2.3 

mya and historically isolated from the rest of the archipelago (Benavides et al. 2009; Ali & 

Aitchison 2014). The main island has a surface area of 558 km2 and a maximum elevation of 

730m (Snell et al. 1996). Isla Lobos is an islet located 165m off the western coast of San 

Cristóbal, roughly a thousand times smaller at 0.66 km2 of surface area (Snell et al. 1996). 

Biogeographical history of the islet has not been explored, but extrapolation based on rising sea 

levels suggests much more recent separation from the main island at several thousand years ago 

(Poulos et al. 2009). Ecosystems in the island range from humid highlands peaking at 730m and 

arid beach zones bordered by lava rocks, with the islet structured entirely as the latter only a few 

meters above sea level (Ali & Aitchison 2014). Sampling on the island centered around La 

Lobería beach (0°55'21.2"S, 89°37'02.1"W) and Cerro Tijeretas (0°53'25.5"S, 89°36'30.3"W), 

while sampling on the islet encompassed the whole islet (0°51'21.5"S, 89°33'57.8"W). Sampling 

occurred linearly in one direction along trails in each study site, preventing pseudoreplication by 

disregarding individuals from previously sampled areas. Data collection was performed between 

0900 and 1700 h, in temperatures of 26–34°C under clear to partly cloudy skies, corresponding 

to the times lizards are most active (Stebbins et al. 1967). 

Microlophus bivittatus is a small tropidurid lizard, polygynous and territorial, endemic to 

San Cristóbal island and Isla Lobos. This species is diurnally active and common at low 

elevations, frequently alternating between rock faces and shaded areas to regulate body 

temperature (Rowe et al. 2019). Similar to other members of the genus, M. bivittatus performs 

species-specific signature bobbing displays singularly or in “volleys” of a few sequential 
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displays (Macedonia et al. 2019). A second type of structurally distinct bobbing display is unique 

to M. bivittatus, consisting of a brief two-bob motion. These displays are performed briefly 

before locomotion or reorientation, always singularly (Macedonia et al. 2019, Clark et al. 2023). 

Diet consists of various invertebrates such as moths and crickets and plant material including 

fruits of palo santo trees (Bursera graveolens), contributing to seed dispersal (Moore et al. 2017; 

Hervias-Parejo et al. 2019). Natural predators include lava herons (Butorides sundevalli), 

chatham mockingbirds (Mimus melanotis) and the eastern Galápagos racer (Pseudalsophis 

biserialis) (Ortiz-Catedral et al. 2019; Clark et al. 2023). The addition of cats (Felis domesticus) 

to the predator community is exclusive to San Cristóbal, with lizards making the most of their 

diet (Carrion & Valle 2018).  

Robot Construction 

Robotic models simulating the appearance and display action patterns of male M. 

bivittatus lizards were used to elicit behavioral responses from males and females. Display action 

patterns for M. bivittatus described by Carpenter (1966) were adapted into Arduino code and 

uploaded to an Arduino® UNO R3 programmable computer board. This board was then 

connected to a HiTec HS-225BB Mighty Mini servomotor (HITEC RCD USA, Inc.) and 

powered by 9-V–2ADC Li-ion battery (SHANQIU Mini UPS, Model FX5-12, Shenzhen Feixing 

Technology Co., Ltd.). All components were then fixed to a rigid 3D printed surface attached to 

the inside of an opaque plastic box.   

Lizard models resembling adult male M. bivittatus were constructed using 3D modeling 

software (Meshmixer v3.5, Autodesk, Inc., San Francisco, CA, USA). Based on prior reports of 

mean and maximum body sizes of males from both sites, we scaled the models to body sizes 

corresponding to: (1) average San Cristóbal Island male (SVL = 70 mm); (2) average Isla Lobos 
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male/large San Cristóbal Island male (SVL = 100 mm); (3) and large Isla Lobos male (SVL = 

120 mm). Models were then 3D printed using NinjaFlex® TPU filament and painted to resemble 

live conspecifics. Finished models were attached to the top of the plastic container and secured in 

place with screws (Fig. 1). Stereotyped motion corresponding to bobbing displays is achieved by 

attaching one end of a thin metal push rod to the servomotor and the other to the lizard model, 

transferring movement accordingly.  

Robot Presentation Protocol 

Robot presentation trials were conducted from 4–11 March and 27 July–9 August 2022 

on a total of 183 free-ranging M. bivittatus lizards, 48 males and 41 females from San Cristóbal 

and 67 males and 27 females from Isla Lobos. Trials consisted of three push-up displays 

performed by lizard model atop the robot followed by a 30.0s pause, reiterated for a total of 6 

minutes. Two lizard models corresponding to the average and above-average size of local males 

were used in each site. Each subject was shown only one model per trial. Upon spotting a lizard, 

we carefully approached it and placed the robot directly across the subject at a distance of ~2m. 

We then set up a cell phone camera (Samsung S21+5G) and began recording the interaction on a 

high-resolution video format (H.264) upon activating the robot. Trials where subjects were 

disturbed by another lizard or fled more than 5m away from the robot were not considered valid.  

Determination of Morphological Variables 

Following robot presentation trials, lizards were collected manually by noose, sexed and 

measured individually to the nearest 1mm using Adoric 0–6" Electronic Micrometer digital 

calipers and a transparent plastic ruler. To ensure the independence of behavioral observations, 

the lower dorsum of sampled individuals was marked inconspicuously using a black Sharpie™ 

marker after measuring.  Morphological variables measured in this study include: Snout-to-vent 
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length (SVL), front limb length from shoulder joint to wrist (FL), hindlimb length from hip joint 

to ankle (HL), mandibular length from the tip of the lower mandible to the point of articulation 

with the skull (ML), and mandibular width at widest point including soft tissue (MW) and tail 

length from base to tip (TL). Tails were visually inspected for signs of prior autotomy and 

regeneration. For the March sample (n = 98), mass was assayed to the nearest 1g using a 50g 

Pesola spring scale.  

Determination of Display Behavior 

Display data was gathered from individual video recordings, counting the number of 

distinct signature and two-bob displays performed during robot presentation trials. An array of 

non-bobbing displays was observed across subjects, indicating varying degrees of engagement 

with the robot model. We followed the protocol for computing a composite response (CR) score 

established by Clark et al. (2015, 2023) to account for these behaviors. Non-bobbing displays are 

ranked by aggression, as described by Carpenter (1977), and assigned point values accordingly. 

Each behavior is only counted once per trial and added into a cumulative score. We incorporated 

the following displays and point values into our analysis: (1) Tongue touch: Tongue briefly 

pressed against substrate. 1 point. (2) Tail lash: Undulating movement of the tail. 2 points. (3) 

Rapid reorientation: Sudden shift of body orientation above 30°. 3 points. (4) Gular expansion: 

Outward expansion of the gular fold. 3 points. (5) Displacement jump: Abrupt upward 

movement, body and feet briefly off the substrate. 4 points. (6) Lateral presentation: 

Reorientation maximizing lateral view, sides compressed and arms fully extended. 4 points. (7) 

Challenge display: Signature display performed with a heavily arched back, compressed sides 

and expanded gular fold. 5 points. 
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Determination of Escape Behavior 

Simulated predation events were conducted from 27 July–9 August 2022 on a total of 98 

free-ranging M. bivittatus lizards, 33 males and 13 females from San Cristóbal Island and 36 

males and 16 females from Isla Lobos. In order to simulate a predation event, adult lizards were 

surveyed from a 5–10m distance across the study area. Once a lizard was located, the researcher 

approached it at a slow, constant speed of 0.5m/s (Stone et al. 1994; Cooper Jr. 1997). 

Approaches continued until the lizard abandoned its position and moved away. Once the lizard 

had ceased its movement, reference points corresponding to (1) Final location of the researcher, 

(2) Initial location of the lizard, (3) Final location of the lizard and (4) Nearest refuge, defined as 

a rock crevice or otherwise inaccessible microhabitat, were marked with reflective tape. The 

flight initiation distance (FID; Horizontal distance between the researcher and the initial location 

of the lizard), escape distance (ED; Horizontal distance between the initial and final locations of 

the lizard), and refuge distance (RD; Horizontal distance between the initial location of the lizard 

and the location of the nearest refuge) were determined by measuring the distance between these 

tape marks (Cooper Jr. 2006). All approaches were performed by the same researcher wearing 

the same clothing, always from the front and maintaining visual contact with the subject (Burger 

& Gochfeld 1990, 1994).  

Statistical Analyses 

Subadult individuals were identified and excluded from the final sample by removing the 

lower 25th percentile defined by the smallest SVL value observed for each sex at each site (Losos 

et al. 2003). The values for all morphological measurements were ln-transformed prior to 

analysis. TL values were excluded from analysis owing to the variation in length observed for 

regenerated tails. We performed Principal component analysis (PCA) on all measurements to 
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visualize the morphological space occupied by each group and identify a size component of 

variation and allometric relationships. 

We assessed the degree of sexual dimorphism by calculating a size dimorphism index 

(SDI) according to Lovich and Gibbons (1992). The value for SDI in each population was 

defined as the average body size of males divided by that of females, centralized around a mean 

of zero; SDI = −(SVLmale / SVLfemale) + 1.  We estimated body condition in each population, for 

each sex, by using the scaled mass index (SMI) proposed by Peig and Green (2009, 2010). For 

each group, a scaling exponent (bSMA) is obtained from the slope of a standardized major axis 

regression of ln-transformed body mass on ln-transformed body size. Individual index values are 

then calculated from body mass divided by body size and multiplied by mean body size of the 

group (SVL0) to the power of the scaling exponent; SMI = mass/SVL * SVL0^bSMA. We 

examined differences in tail status between sites using a GLM with binomial error structure, 

using SVL, sex, site, and interaction between sex and site as predictors.  

We explored morphological variation in shape by following Butler and Losos (2002), 

adjusting for body size by using Mosimann’s geometric mean method (Mosimann 1970). We 

defined the SIZE variable as the fifth root of the product of SVL, FL, HL, MW and ML for each 

individual. Values for the morphological shape of each trait were the ln-transformed ratio of each 

trait to SIZE. For example, the size-adjusted value for FL is defined as: ln(FL/SIZE) = ln(FL) – 

ln(SIZE). We performed PCA on size adjusted traits to visualize relationships on shape 

morphology by each group. We modeled two-way ANOVAs using site, sex and an interaction of 

site and sex as predictors, with each of the size-adjusted traits as a response variable.  

Data corresponding to robot trials were analyzed separately for males and females, based 

on contextual differences in territorial behavior (Carpenter and Ferguson 1977). We analyzed 
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differences in territorial behavior between sites in a GLM with poisson error structure, using 

SVL, model size, site and the interaction between model size and site as predictors. Counts of 

signature displays, two-bob displays, and CR scores were analyzed separately as response 

variables. Finally, we analyzed wariness by modeling two-way ANOVAs using site, sex and an 

interaction of site and sex as predictors, taking the ln-transformed geographical measurements of 

FID, ED and RD as response variables. We conducted all tests using RStudio (R Core Team 

2022). 
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RESULTS 

 

Body Size and Sexual Size Dimorphism 

Average size of measured traits in adult M. bivittatus males was greater in Isla Lobos 

compared to San Cristóbal, whereas average size of female traits was similar in both locations 

(Table 1). Consequently, SDI was higher in Isla Lobos than in San Cristóbal, at 0.48 and 0.22 

respectively. A principal component analysis described 93.5% of the variability found in ln-

transformed measurements by the first PC with an eigenvalue of 4.67, with high contributions 

(<-2.15) by all variables (Fig. 2). SVL had a significant effect on the probability of having a 

damaged or regenerated tail (z = 2.08, sd = 0.03, P < 0.01), unlike site (z = -0.04, sd = 0.65, P = 

0.97), sex (z = -1.7, sd = 0.98, P = 0.09) and interaction effects between site and sex (z = 1.68, sd 

= 0.91, P = 0.09). Scaled mass index differed between sites for males (𝑊 = 243, P < 0.01), but 

not for females in Isla Lobos (𝑊 = 68, P = 0.45).  

A principal component analysis described 67.18% of the variability found in size 

adjusted morphological variables in terms of the first two PCs with eigenvalues higher than 1 

(Fig. 3). PC1 explained 42.4% of the variability with higher contributions from AL (-1.78) and 

LL (-1.73), as well as ML (1.12) and MW (1.91). PC2 explained 24.77% of the variability with 

higher contributions from SVL (-2.01) and ML (1.43). Comparisons of size adjusted 

morphological variables revealed differences in snout-to-vent-length between sites, and in 

mandibular length and width between sites and sexes, with a significant effect of site and sex 

(Table 2).  

Intrasexual selection 

Behavioral response patterns were similar between males and females across both sites. 

The probability of performing signature displays towards a robot increased at larger body sizes, 
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for both territorial (z = -2.1, sd = 1.43, P < 0.05) and courtship interactions (z = 2.23, sd = 0.05, P 

< 0.05; Fig. 4). Interaction effects between model size and site were relevant for male signature 

displays (z = -2.7, sd = 0.55, P < 0.01), with higher odds of response displays towards the large 

robotic model observed in Isla Lobos males. The probability of female response displays differed 

with model size, with greater odds of response towards the large robotic model. No variable 

analyzed had an effect on the number of two-bob displays performed. Composite Response 

scores followed a similar pattern, with the exception of significant interaction effects between 

model size and sex for males (Table 3).  

Predator avoidance 

Female lizards exhibited greater FID (𝐹1 = 6.14, P < 0.05) and RD (𝐹1 = 9.37, P < 0.01) 

than males, with no differences in ED (𝐹1 = 2.27, P = 0.14). We observed greater FID (𝐹1 = 

16.65, P < 0.01) and ED (𝐹1 = 19.52, P < 0.01) in the San Cristobal population, with no 

differences in RD (𝐹1 = 2.36, P = 0.13). Interaction effects between sex and site were not 

observed for FID (𝐹1 = 0.48, P = 0.49), ED (𝐹1 = 1.45, P = 0.23), or RD (𝐹1 = 0.13, P = 0.72; 

Fig. 5). 
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DISCUSSION 

 

This study examined the effect of insularity on morphological divergence in the San 

Cristóbal lava lizard, testing whether habitat-specific life history changes best explain this 

phenomenon. We found the population on Isla Lobos expressed greater body size, restricted to 

males. This population presented more intense male competition and decreased predator 

wariness compared to the main island. Collectively, our results suggest that predation release and 

increased territoriality influence the divergent evolution of insular morphology at the 

interpopulation level, with a stronger effect on male individuals. Sex-specific ecomorphological 

and behavioral variation in island systems is documented across various lacertid groups (Petren 

& Case 1997; Poe et al. 2007; Cooper Jr. et al. 2009; Raia et al. 2010; Runemark et al. 2014; 

Anaya-Meraz & Escobedo-Galván 2020; Avramo et al. 2021). Previous analyses comparing 

insular and continental species of Microlophus found no evidence of this pattern (Toyama & 

Boccia 2021). Sensitivity to environmental variation may be more pronounced at the population 

level, elucidating the basis of macroevolutionary patterns of phenotypic divergence observed in 

island systems (Clegg & Owens 2002; Kaliontzopoulou et al 2015).  

Male M. bivittatus are larger on the islet, and in better condition. Evolutionary changes in 

body size require balancing the benefits of growth against increased energy requirements and 

risk of predation (Lima & Dill 1990; Lima 1998). Changes in body shape accumulate at a slower 

rate than those in size, correlating to finer aspects of these tradeoffs such as growth patterns and 

foraging efficiency (Losos 1990; Butler & Losos 2002; Erickson et al. 2012). The magnitude of 

selective forces stabilizes at a different, more lenient level on insular ecosystems, allowing the 

expression of extreme phenotypes (Lande 2007). Island biogeography predicts that surface area 

and distance to the nearest landmass determines community assembly, with larger and closer 
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islands supporting greater species richness (Whittaker and Fernández-Palacios 2007; Zhu et al. 

2020). As a result, large carnivores, mammals in particular, are seldom naturally occurring on 

islands (Lomolino 1994; Fox & Fox 2000). Release from predation pressure leads to increased 

opportunities for foraging, territorial defense and mating, facilitating the development of island 

gigantism (Blanckenhorn 2000). Lizards under these conditions quickly diverge in phenotypic 

and behavioral traits, establishing themselves at a high trophic level (Meiri 2008; Runemark et 

al. 2014).  

We observed intense predator avoidance for both sexes in the island population relative 

to the islet one, evidenced by greater flight initiation and escape distances despite no difference 

in refuge distance between sites. Male lizards on both sites tolerated closer approaches and 

stayed closer to refuges in relation to females. The loss of adaptations against predators is 

expected to occur under lower predation regimes, as those expected in island ecosystems 

(McNab 1994, van Damme & Castilla 1996; Rödl et al. 2007). In contrast with morphological 

changes, behavior can be quickly adapted to respond to novel threats and the ability to recognize 

them (Lima 1998; Berger et al. 2001). Urbanization and repeated introductions of invasive 

species are the main drivers of extinction in modern island ecosystems (Simberloff 1995; French 

et al. 2008) Domestic cats (Felis silvestris catus), in particular, have destroyed local assemblies 

through lethal and sub-lethal influence (Medina et al. 2011, 2014). Introduced cats in the 

Galápagos archipelago exert significant pressure on native species, and are likely responsible for 

the near extinction of various species on Floreana (Grant et al. 2005). On San Cristóbal, M. 

bivittatus is the most widely consumed item in the diet of feral cats (Carrion & Valle 2018). 

Male lizards engage in more conspicuous behaviors than females, increasing predation and the 

costs of maintaining body condition (Snell et al. 1988; Pressier & Orrock 2012). Constant 
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exposure to the threat of predation reduces foraging opportunities and growth rates, leading to 

earlier maturation at suboptimal body size (Downes 2001). The frequency of tail breaks was 

identical between sites for both sexes, obscuring the exact causes of autotomy. Predator absence 

supports longevity, with older individuals attaining larger sizes and accumulating wounds from 

aggressive intraspecific interactions (Vervust et al. 2009). 

Gigantism expressed as an increase in body size in islet males has led to greater SSD for 

this population, a pattern consistent with Rensch’s rule previously undocumented in this genus. 

Allometric relationships observed under Rensch’s rule are hypothesized to emerge from the 

interaction between a genetic basis for body size shared by the sexes and continuous selection for 

larger male body size, leading to greater phenotypic plasticity compared to that of females 

(Fairbairn & Preziosi 1994; Abouheif & Fairbairn 1997; Fairbairn 1997; Baker & Wilkinson 

2001; Fairbairn et al. 2007). Intraspecific competition is the main contributor to SSD, mediated 

by interspecific competition preventing divergence across the sexes (Greenberg & Olsen 2010). 

Habitat-specific variation in SSD aligns with the evolutionary trajectory of sexual selection, 

often enhancing patterns already present (Butler et al. 2000; Stephens & Wiens 2009; Meiri et al. 

2014).  Adaptation to local conditions determining resource availability and associated growth 

and mortality rates influences differences in the magnitude of SSD observed across populations 

(Fairbairn & Preziosi 1994, Fairbairn 2005, Teder & Tammaru 2005). Marine iguanas provide an 

example of sexual selection favoring large male size at the species level, yet male size at the 

population level is ultimately determined by local patterns of algae growth (Wikelski & 

Trillmich 1997; Wikelski et al. 1997). Differences in size and shape of the head are influenced 

by resource partitioning in addition to sexual selection (Stamps 1983). For instance, the diet and 

morphology of mainland congener M. stolzmanni varies considerably for both sexes, with 
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generalist males and specialist females (Beuttner & Koch 2019). 

Patterns of behavioral display responses to robotic male conspecifics differed between 

the sexes on each population. Male signature displays were biased towards above-average sized 

models on the islet, as were female signature displays regardless of site. Island males were less 

territorial towards larger conspecific models compared to average sized ones. Previous studies on 

M. bivittatus describe male aggression and female choice favoring larger male body sizes, with 

greater investment in this trait reflecting the increased priority of intrasexual competition (Snell 

et al. 1988; Toyama & Boccia 2021; Mancero et al. 2022). Evolutionary shifts in territorial 

behavior are associated with female density and home ranges, augmenting SSD (Cox et al. 2003, 

2007). Intraspecific differences in home ranges correspond to the cost of maximizing access to 

females under local conditions (Perry & Garland Jr. 2002). While higher density is a staple of 

island ecosystems, populations on smaller islands exhibit a greater aggregate density than those 

on larger island or mainland environments based on the lower species richness found within 

(Rodda & Dean-Bradley 2002). Higher rates of intrasexual competition are expected as a result 

of density compensation (MacArthur et al. 1972).  

Our results do not allow us to ascertain if changes in morphology and behavior 

correspond to phenotypic plasticity or variation in the genetic basis for this trait. Genetic drift 

and geographical isolation may contribute to the emergence and maintenance of larger male size 

in the islet (Jordan & Snell 2008; Troya 2012). Microlophus endemic to the Galápagos exhibit a 

characteristic “one species one island” distribution attributed to single founder events (Stone et 

al. 2003). Furthermore, rapid development of morphological differences may be responsible for 

hindering recolonization efforts by congeners in this group as seen on the mainland ancestor M. 

occipitalis (Watkins 1996). For example, nuptial coloration in female M. duncanensis is over 
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developed in relation to females from species on neighboring islands (Benavides et al. 2009). 

Overexpression of this trait discourages mating efforts in males, this may put new founders at a 

disadvantage and increase reproductive isolation (Clark et al. 2017).   

Our study illustrates the effects of both sexual and natural selection acting upon body 

size. Differences in perceived predation risk and top-down control account for the plasticity of 

morphology and behavioral responses expressed by different populations of M. bivittatus. 

Varying degrees of intrasexual competition increase the fitness of larger male body size, and the 

lack of predation pressure relaxes selection against it. Differences in dietary niche and 

ontological processes between sites present an alternate hypothesis for the patterns found in this 

research. Future studies that illuminate the extent of ecological and genetic systems influencing 

morphology and associated behaviors are critical for a greater understanding of the processes 

driving the evolution of divergent body sizes in insular environments. 
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FIGURE CAPTIONS 

 

 

Figure 1. Robotic models of male Microlophus bivittatus. 

 

 

Figure 2. Variation of body size-adjusted morphological traits in San Cristóbal females, San 

Cristóbal males, Isla Lobos females, and Isla Lobos males of M. bivittatus, as described by the 

first two principal components of a principal component analysis (PCA) on morphological 

variables. 

 

 

Figure 3. Variation of body size-adjusted morphological traits in San Cristóbal females, San 

Cristóbal males, Isla Lobos females, and Isla Lobos males of M. bivittatus, as described by the 

first two principal components of a principal component analysis (PCA) on size-adjusted 

morphological variables. 

 

 

Figure 4. Inter-population comparison of predicted values of square root transformed counts of 

signature displays to lizard models resembling conspecifics of average and above average size by 

male and female M. bivittatus from Isla Lobos (IL) and San Cristóbal (SC). 
 

 

Figure 5. Standard boxplots showing the inter-population comparisons between flight initiation 

distance, escape distance and refuge distance by male and female M. bivittatus from Isla Lobos 

(IL) and San Cristóbal (SC). 
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TABLES 

 

 

TABLE 1.— Mean ± SD (n) of snout-vent length (SVL), front limb length (FL), hindlimb length 

(HL), mandibular length (ML), mandibular width (MW), and size dimorphism index (SDI1) for 

male and female M. bivittatus from San Cristóbal Island and Isla Lobos. 

                                                                                                                                        1 Lovich and Gibbons (1992). 

 San Cristóbal Island Isla Lobos 

Variables (mm) Males (n =31) Females (n =36) Males (n =50) Females (n =20) 

SVL 73.11±6.41 60.06±3.22 92.22±10.42 62.35±4.63 

FL 24.11±2.29 20.19±1.51 29.29±3.31 20.3±1.86 

HL 38.41±3.5 31.09±1.95 46.31±4.99 31.9±2.07 

ML 17.74±1.47 14.73±1.01 20.51±1.97 14.69±0.8 

MW 11.10±1.16 8.95±0.74 12.8±1.83 8.54±0.98 

SDI1 0.22 0.48 
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TABLE 2.— Two-way ANOVA results for comparisons between size-adjusted measurements of 

snout-vent length (SVL), front limb length (FL), hindlimb length (HL), and mandibular length 

(ML), and mandibular width (MW) of M. bivittatus. Statistically significant p values shown in 

bold. 

  

Variable Effect F P 

 

ln(SVL/SIZE) 

Sex 1.94 0.16 

Site 54.58 <0.01 

Site*Sex 2.57 0.11 

    

 

ln(FL/SIZE) 

Sex 2.08 0.15 

Site 0.84 0.35 

Site*Sex 0.62 0.43 

    

 

ln(HL/SIZE) 

Sex 0.59 0.45 

Site 3.4 0.07 

Site*Sex 0.87 0.35 

    

 

ln(ML/SIZE) 

Sex 12.03 <0.01 

Site 7.04 <0.01 

Site*Sex 4.13 <0.05 

    

 

ln(MW/SIZE) 

Sex 4.75 <0.05 

Site 17.88 <0.01 

Site*Sex 0.33 0.57 
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TABLE 3.— Poisson regression results for comparisons between square root transformed counts 

of signature displays, two-bob displays and composite response (CR) scores of M. bivittatus. 

Statistically significant p values shown in bold. 

  

  Males  Females 

Variable Effect sd z P  sd z P 

 

Signature Displays 

SVL 1.43 2.08 <0.05  0.05 2.23 <0.05 

Model Size 0.34 1.53 0.13  0.85 2.08 <0.05 

Site 0.42 2.5 <0.05  0.81 1.88 0.06 

Model Size*Site 0.55 -2.7 <0.01  0.94 -1.41 0.16 

         

 

Two-bob 

Displays 

SVL 0.02 0.95 0.34  0.07 -1.02 0.31 

Model Size 0.46 0.98 0.33  0.85 -0.68 0.5 

Site 0.61 0.55 0.58  0.68 -0.39 0.7 

Model Size*Site 0.74 -0.97 0.33  0.96 0.57 0.57 

         

 

Composite 

Response Score 

SVL 0.01 0.12 0.91  0.05 0.57 0.57 

Model Size 0.28 1.85 0.06  0.6 0.8 0.43 

Site 0.35 0.76 0.45  0.58 -0.18 0.86 

Model Size*Site 0.43 -2.2 <0.05  0.71 0.36 0.72 
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CHAPTER 3 

 

 

EXTENDED REVIEW OF LITERATURE 

 

Insular biogeography and ecology 

Biogeography is the study of the geographical distribution of organisms, and the effects 

variations in biological features arise from gradients in the physical composition of a landscape 

(Brown & Gibson 1983). Across various taxonomic scales and groups, patterns emerging from 

variation in geographical dimensions influence fundamental evolutionary processes of 

immigration, extinction and evolution (Lomolino 2000). Oceanic islands, atolls and archipelagos 

make up 5% of the earth’s surface, where geographic isolation facilitates the development of 

unique biological patterns (Brown & Lomolino 1989). Discrete spatial structures with varying 

degrees of homogeneity found on insular systems constitute a microcosm of nearby continental 

landmasses, elucidating the mechanisms driving the expression of key biological processes 

(Warren et al. 2015). 

MacArthur & Wilson (1963, 1967) developed a unifying Equilibrium Theory of Island 

Biogeography Theory (ETIB), describing the low species richness of island systems resulting 

from surface area and distance to the mainland filtering colonizers. Island diversity is assumed to 

emerge from the equilibrium between the immigration and extinction rates in the system, greater 

species richness affects this balance resulting in lower immigration and greater extinction 

(MacArthur & Wilson 1967). Extinction rate depends on island area, where larger islands are an 

easier to locate and colonize by successful propagules (MacArthur 1984; Ricklefs & 

Bermingham 2007; Losos & Ricklefs 2009). Similarly, habitat complexity and heterogeneity 

increases with surface area, providing ample niche space for immigrating species (Liu et al. 
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2018). Groups with higher dispersal abilities are able to readily establish themselves over longer 

distances, overriding the common “stepping stone” model of consecutive short migrations 

(Nathan 2006). 

Further studies on this equilibrium find it to be dynamic, owing to multiple sources of 

colonizers routed across varying dispersal filters (Heaney 2000). Migration history is a key factor 

in determining the ecological relationships and adaptive potential of arriving species (Fukami et 

al. 2010). Early colonizers are suggested to rapidly capitalize on untapped resources, hindering 

the successful establishment of new arriving lineages (Carine et al. 2004; Silvertown 2004). 

Larger, more diverse areas are able to host greater population densities, fostering competitive 

displacement (Gravel et al. 2011). Community assemblage is further influenced by geographic 

origin, as emerging volcanic islands accumulate species quickly as colonization increases with 

virtually no extinction, in contrast to rapid extinction in islands breaking off from established 

landmasses (Whittaker & Fernández-Palacios 2007). While immigration determines the initial 

structure of the ecological community and its dynamics, niche partitioning and subsequent 

specialization to local conditions increase the significance of evolutionary changes (Santos et al. 

2016). 

Over longer evolutionary timescales, speciation rapidly factors in the balance 

determining the composition and endemism of local assemblages (Heaney 2000; Losos & 

Schluter 2000; Rosindell & Phillimore 2011). The original model for ETIB did not delve on 

evolutionary dynamics, but recognized the contribution of speciation over “radiation zones” in 

isolated archipelagos to overall species richness (MacArthur & Wilson 1963). Whittaker et al. 

(2008) incorporated these concepts into a framework named the General Dynamic Model of 

oceanic island biogeography (GDM), establishing variation in geological processes and features 
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as drivers of immigration, extinction and speciation. Geological ontogeny becomes a significant 

predictor of evolutionary trajectories, where older islands tend towards larger surface area and 

habitat complexity, increasing carrying capacity and population sizes (Whittaker et al. 2008; 

Rosindell & Phillimore 2011; Warren et al. 2015). High isolation and low turnover of 

competitors facilitates access to empty niches and local adaptation, increasing opportunities for 

in situ cladogenetic differentiation (Losos & Schluter 2000). Anagenetic patterns are common at 

intermediate distance from the main landmass, where consistent immigration of the source 

population stabilizes local variation (Rosindell & Phillimore 2011). Despite the assumption of 

smaller islands failing to meet an area threshold for differentiation, sufficient unsaturated niche 

space allows for cladogenetic and anagenetic processes to occur (Gillespie & Baldwin 2010).  

Character release and insularity 

Character release is a phenomenon described as rapid phenotypic variation in allopatric 

species as an adaptive response to ecological opportunities (MacArthur & Wilson 1967).  

Development of key innovations, dispersal to new environments and removal of antagonist 

species constitute major sources of ecological opportunity (Simpson 1944, 1953). These 

opportunities emerge as environmental changes relax a source of selective pressure acting on a 

given trait, creating ecological release (Yoder et al. 2010). Phenotypic expression of these traits 

is centered around an optimal mean, determined by local conditions (Schluter 2000). Divergence 

in natural selection readjusts the phenotypic mean, opposing stabilizing selection maintaining 

ancestral phenotypes (Lahti et al. 2009; Nosil 2012; Schluter 2000). Dispersal into a new 

environment can trigger strong directional selection on specific traits maximizing survival under 

novel conditions, potentially driving a reduction in stabilizing selection across all other traits 

(Yoder et al. 2010). Moreover, sporadic fluctuations in directional selection can coalesce into 
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stabilizing selection over longer time scales (Hansen 1997; Grant & Grant 2002).  

Insular systems are ideal for exploring this phenomenon, given ample environmental 

variation between islands, each selecting for different trait means to maximize exploitation of 

available niche space. (Roughgarden 1972; Schluter 2000; Stroud & Losos 2016). Rapid 

accumulation of adaptive traits at the population level expands the niche width of a species, with 

individual specialization driving variation even further (Barrett & Schluter 2008; Baker et al. 

2022). Individuals exploring new regions of niche space are subject to divergent selection for 

morphology and behavior maximizing performance, and thus fitness (Yoder et al. 2010; 

Calsbeek and Irschick 2007; Herrel et al. 2008). Conversely, intermediate phenotypes are to 

adapt sufficiently and are selected against (Schluter 2000). Traits associated with habitat use and 

mate recognition are further influenced by sexual selection, enhancing variation and reproductive 

isolation within a population (Panhuis et al. 2001; Turelli et al. 2001). The combined effect of 

these changes affects the rate of in situ diversification and speciation, shaping community 

assembly on island ecosystems (Aleixandre et al. 2013; Biddick et al. 2019). 
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EXTENDED METHODOLOGY 

 

Measurements 

 

Lizards were collected manually by noose, sexed and measured individually to the 

nearest 1mm using Adoric 0–6" Electronic Micrometer digital calipers and a transparent plastic 

ruler. To ensure the independence of behavioral observations, the lower dorsum of sampled 

individuals was marked inconspicuously using a black Sharpie™ marker after measuring.  

Morphological variables measured in this study include: Snout-to-vent length (SVL), front limb 

length from shoulder joint to wrist (FL), hindlimb length from hip joint to ankle (HL), 

mandibular length from the tip of the lower mandible to the point of articulation with the skull 

(ML), and mandibular width at widest point including soft tissue (MW) and tail length from base 

to tip (TL). Tails were visually inspected for signs of prior autotomy and regeneration. For the 

March sample (n = 98), mass was assayed to the nearest 1g using a 50g Pesola spring scale. 

Use of conspecific robots 

 

Robotic models simulating the appearance and display action patterns of male M. 

bivittatus lizards were used to elicit behavioral responses from males and females. Display action 

patterns for M. bivittatus described by Carpenter (1966) were adapted into Arduino code and 

uploaded to an Arduino® UNO R3 programmable computer board. This board was then 

connected to a HiTec HS-225BB Mighty Mini servomotor (HITEC RCD USA, Inc.) and 

powered by 9-V–2ADC Li-ion battery (SHANQIU Mini UPS, Model FX5-12, Shenzhen Feixing 

Technology Co., Ltd.). All components were then fixed to a rigid 3D printed surface attached to 

the inside of an opaque plastic box.   

Lizard models resembling adult male M. bivittatus were constructed using 3D modeling 

software (Meshmixer v3.5, Autodesk, Inc., San Francisco, CA, USA). Based on prior reports of 
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mean and maximum body sizes of males from both sites, we scaled the models to body sizes 

corresponding to: (1) average San Cristóbal Island male (SVL = 70 mm); (2) average Isla Lobos 

male/large San Cristóbal Island male (SVL = 100 mm); (3) and large Isla Lobos male (SVL = 

120 mm). Models were then 3D printed using NinjaFlex® TPU filament and painted to resemble 

live conspecifics. Finished models were attached to the top of the plastic container and secured in 

place with screws (Fig. 1). Stereotyped motion corresponding to bobbing displays is achieved by 

attaching one end of a thin metal push rod to the servomotor and the other to the lizard model, 

transferring movement accordingly.  

Robot presentation trials were conducted from 4–11 March and 27 July–9 August 2022 

on a total of 183 free-ranging M. bivittatus lizards, 48 males and 41 females from San Cristóbal 

and 67 males and 27 females from Isla Lobos. Trials consisted of three push-up displays 

performed by lizard model atop the robot followed by a 30.0s pause, reiterated for a total of 6 

minutes. Two lizard models corresponding to the average and above-average size of local males 

were used in each site. Each subject was shown only one model per trial. Upon spotting a lizard, 

we carefully approached it and placed the robot directly across the subject at a distance of ~2m. 

We then set up a cell phone camera (Samsung S21+5G) and began recording the interaction on a 

high-resolution video format (H.264) upon activating the robot. Trials where subjects were 

disturbed by another lizard or fled more than 5m away from the robot were not considered valid. 

Display data was gathered from individual video recordings, counting the number of 

distinct signature and two-bob displays performed during robot presentation trials. An array of 

non-bobbing displays was observed across subjects, indicating varying degrees of engagement 

with the robot model. We followed the protocol for computing a composite response (CR) score 

established by Clark et al. (2015, 2023) to account for these behaviors. Non-bobbing displays are 
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ranked by aggression, as described by Carpenter (1977), and assigned point values accordingly. 

Each behavior is only counted once per trial and added into a cumulative score. We incorporated 

the following displays and point values into our analysis: (1) Tongue touch: Tongue briefly 

pressed against substrate. 1 point. (2) Tail lash: Undulating movement of the tail. 2 points. (3) 

Rapid reorientation: Sudden shift of body orientation above 30°. 3 points. (4) Gular expansion: 

Outward expansion of the gular fold. 3 points. (5) Displacement jump: Abrupt upward 

movement, body and feet briefly off the substrate. 4 points. (6) Lateral presentation: 

Reorientation maximizing lateral view, sides compressed and arms fully extended. 4 points. (7) 

Challenge display: Signature display performed with a heavily arched back, compressed sides 

and expanded gular fold. 5 points. 

Simulated predation approaches 

 

Simulated predation events were conducted from 27 July–9 August 2022 on a total of 98 

free-ranging M. bivittatus lizards, 33 males and 13 females from San Cristóbal Island and 36 

males and 16 females from Isla Lobos. In order to simulate a predation event, adult lizards were 

surveyed from a 5–10m distance across the study area. Once a lizard was located, the researcher 

approached it at a slow, constant speed of 0.5m/s (Stone et al. 1994; Cooper Jr. 1997). 

Approaches continued until the lizard abandoned its position and moved away. Once the lizard 

had ceased its movement, reference points corresponding to (1) Final location of the researcher, 

(2) Initial location of the lizard, (3) Final location of the lizard and (4) Nearest refuge, defined as 

a rock crevice or otherwise inaccessible microhabitat, were marked with reflective tape. The 

flight initiation distance (FID; Horizontal distance between the researcher and the initial location 

of the lizard), escape distance (ED; Horizontal distance between the initial and final locations of 

the lizard), and refuge distance (RD; Horizontal distance between the initial location of the lizard 
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and the location of the nearest refuge) were determined by measuring the distance between these 

tape marks (Cooper Jr. 2006). All approaches were performed by the same researcher wearing 

the same clothing, always from the front and maintaining visual contact with the subject (Burger 

& Gochfeld 1990, 1994).  
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