
Grand Valley State University Grand Valley State University 

ScholarWorks@GVSU ScholarWorks@GVSU 

Masters Theses Graduate Research and Creative Practice 

8-2-2024 

Development and Optimization of a 1-Dimensional Convolutional Development and Optimization of a 1-Dimensional Convolutional 

Neural Network-Based Keyword Spotting Model for FPGA Neural Network-Based Keyword Spotting Model for FPGA 

Acceleration Acceleration 

Trysten E. Dembeck 
Grand Valley State University 

Follow this and additional works at: https://scholarworks.gvsu.edu/theses 

 Part of the Artificial Intelligence and Robotics Commons 

ScholarWorks Citation ScholarWorks Citation 
Dembeck, Trysten E., "Development and Optimization of a 1-Dimensional Convolutional Neural Network-
Based Keyword Spotting Model for FPGA Acceleration" (2024). Masters Theses. 1129. 
https://scholarworks.gvsu.edu/theses/1129 

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at 
ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of 
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu. 

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/theses
https://scholarworks.gvsu.edu/grcp
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.gvsu.edu%2Ftheses%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/1129?utm_source=scholarworks.gvsu.edu%2Ftheses%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu


Title Page 

 

Development and Optimization of a 1-Dimensional Convolutional Neural Network-Based  

Keyword Spotting Model for FPGA Acceleration 

 

Trysten Edward Dembeck 

 

 

 

 

 

 

 

 

 

A Thesis Submitted to the Graduate Faculty of 

 

GRAND VALLEY STATE UNIVERSITY 

 

In 

 

Partial Fulfillment of the Requirements 

 

For the Degree of 

 

Master of Science 

 

 

 

 

School of Engineering 

 

 

 

 

 

 

 

August 2024 



2 
 

Thesis Approval Form 

 

 

 

 

 

 

 

The signatories of the committee below indicate that they have read and approved the thesis of 

Trysten E. Dembeck in partial fulfillment of the requirements for the degree of Master of Science 

in Engineering. 

 

 

 

  ______________________________________________________ 

  Dr. Chirag Parikh, Thesis committee chair  Date 

 

 

 

  ______________________________________________________ 

  Dr. Denton Bobeldyk, Committee member  Date 

 

 

 

  ______________________________________________________ 

  Dr. Samhita Rhodes, Committee member  Date 

 

 

 

 

 

     Accepted and approved on behalf of the                 Accepted and approved on behalf of the 

Padnos College of Engineering and Computing            Graduate Faculty       

 

 

__________________________________                    __________________________________ 

                 Dean of the College                                                 Dean of The Graduate School 

 

 

__________________________________                    __________________________________  

 

              Date                  Date 

 

 

 



3 
 

Dedication 

 

To my mother, whose encouragement, support, and drive inspired me to strive for the highest 

levels of success in all my endeavors. 

 

To my late father, who was almost more excited than I was for me to complete my degree 

program, and who took me on my very first tour of Grand Valley State University’s engineering 

campus before I even enrolled as a first-year student. I have never known someone prouder of 

me than you were. 

 

To my beloved family—your collective love, support, and encouragement have been some of my 

greatest strengths throughout this journey. 

 

To my friends, who I may not have been able to see very often, but who also supported me to 

their fullest over the years and provided me with so much needed comfort and joy. 

 

To my fiancé and life partner, Emilie, who served as my motivation and foundation throughout 

this endeavor. I am better in every way because of you, and I am so grateful for your help and 

support in all facets of my life while I was working on my academics and particularly this thesis. 

I do not know how I could have done it without you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

Acknowledgements 

 

I would like to acknowledge the contributions of my graduate committee to my education, to my 

personal and professional development, and to their contributions to this thesis. 

 

Dr. Chirag Parikh—Thank you for providing me with my foundation in FPGAs and 

microprocessor architectures. I would not be nearly as successful in my career without your 

guidance in these topics and your rigor in your courses. This foundation also served as a 

fundamental component of this thesis and provided me with the ability to tackle any computing 

issues that are presented to me. I cannot put into words the gratitude I have for your guidance 

through this entire process. 

 

Dr. Denton Bobeldyk—Thank you for guiding me and teaching me throughout nearly all my 

computer science courses. You have been one of the greatest educators I have had the fortune to 

study under. Without your academic lessons and life advice, this thesis would not have been 

possible. You have been a massive inspiration to me, and I greatly appreciate your contributions 

to my academic career. 

 

Dr. Samhita Rhodes—Thank you for being a wonderful and enthusiastic advisor throughout this 

process. Your courses provided me with a rigor early on in my academic career that greatly 

changed how I approached engineering problems, and I can with certainty attribute it to my 

successes.  

 

I would also like to show my gratitude to Dr. Zachary DeBruine who originally sparked my 

interest in all topics related to machine learning. This thesis would not have occurred without his 

teachings and inspiration. Your course drastically changed the path my graduate academics took 

and has opened so many possibilities and opportunities for me. 

 

Finally, I would like to thank my bosses John Videtich and Warren Guthrie for always showing 

an interest in my academic work, supporting me through the graduate program, and for teaching 

me more than I could ever have hoped to learn in class. 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Abstract 

 

Spoken Keyword Spotting (KWS) has steadily remained one of the most studied and 

implemented technologies in human-facing artificially intelligent systems and has enabled them 

to detect specific keywords in utterances. Modern machine learning models, such as the variants 

of deep neural networks, have significantly improved the performance and accuracy of these 

systems over other rudimentary techniques. However, they often demand substantial 

computational resources, use large parameter spaces, and introduce latencies that limit their real-

time applicability and offline use. These speed and memory requirements have become a 

tremendous problem where faster and more efficient KWS methods dominate and better meet 

industry demands. 

To address these challenges, this thesis presents an improved method of accomplishing 

the KWS task using a lightweight and efficient 1-D Convolutional Neural Network (CNN) 

operating on 2-D feature maps of Mel-Frequency Cepstral Coefficients (MFCCs). The model 

was trained using the Google Speech Commands V2 dataset, and model compression techniques 

such as quantization and pruning were applied to facilitate deployment onto hardware. Further 

minimization of inference latency was accomplished with hardware acceleration by deploying 

the KWS model onto a Field Programmable Gate Array (FPGA) with an open-source toolset 

called hls4ml. The resulting model was evaluated and compared to state-of-the-art models in 

literature, along with comparisons of its inference latency on different computing platforms. 

Finally, an application was developed to demonstrate the model running entirely on the FPGA 

for classifying live speech in real-time. 



6 
 

The developed KWS model achieved near state-of-the-art performance with far fewer 

parameters and a simpler architecture than comparable models in the reviewed literature. A top-

one classification accuracy of 91.48% was achieved with a 30.36KB baseline model using 32-bit 

parameters. The baseline model was optimized and compressed to almost 50% sparsity and used 

12-bit weights and activations. This compressed configuration exhibited negligible performance 

degradation by maintaining a top-one accuracy of 90.16% and occupying just 11.38KB of 

memory. These results demonstrate that 1-D CNNs are effective in accurately performing the 

KWS task with small parameter spaces and simple architectures. By deploying the optimized 

model onto FPGA hardware and running batches of samples through it, inference latencies of 

less than 373µs per inference, on average, were achieved indicating their usefulness in 

accelerating KWS models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

Table of Contents 

 

Title Page ....................................................................................................................................1 

Approval Page.............................................................................................................................2 

Dedication ...................................................................................................................................3 

Acknowledgements .....................................................................................................................4 

Abstract ......................................................................................................................................5 

Table of Contents ........................................................................................................................7 

List of Tables ............................................................................................................................ 10 

List of Figures ........................................................................................................................... 11 

Abbreviations ............................................................................................................................ 13 

Chapter 1: Introduction ............................................................................................................. 15 

1.1 Spoken Keyword Spotting ............................................................................................... 15 

1.2 Historical and Modern Approaches .................................................................................. 16 

1.3 Problem Statement ........................................................................................................... 19 

1.4 A Solution for Fast and Efficient KWS Models with FPGAs ............................................ 19 

1.5 Thesis Outline .................................................................................................................. 21 

Chapter 2: Background .............................................................................................................. 22 

2.1 Deep Spoken KWS with Neural Networks ....................................................................... 22 

2.2 Speech Feature Extraction ................................................................................................ 23 



8 
 

2.2.1 Human Speech Perception ......................................................................................... 24 

2.2.2 Mel-Frequencies and MFCCs .................................................................................... 25 

2.3 1-D Convolutional Neural Networks ................................................................................ 28 

2.4 Model Compression Techniques....................................................................................... 30 

2.4.1 Quantization .............................................................................................................. 30 

2.4.2 Pruning...................................................................................................................... 32 

2.5 Overview of FPGA Technology ....................................................................................... 33 

2.6 FPGA Deployment with hls4ml ....................................................................................... 34 

Chapter 3: Review of Literature ................................................................................................ 36 

3.1 Machine Learning and KWS in Literature ........................................................................ 36 

3.2 FPGAs as Hardware Accelerators in Literature ................................................................ 40 

Chapter 4: Design Methodology ................................................................................................ 42 

4.1 Dataset Selection from Google Speech Commands V2..................................................... 42 

4.2 Balancing the Training Dataset ........................................................................................ 44 

4.3 Data Preprocessing and Feature Extraction ...................................................................... 46 

4.4 Model Architecture .......................................................................................................... 49 

4.5 Model Training ................................................................................................................ 53 

4.6 Model Optimization ......................................................................................................... 54 

4.6.1 Quantization-Aware Training ..................................................................................... 54 

4.6.2 Pruning...................................................................................................................... 55 



9 
 

4.7 Target FPGA Hardware .................................................................................................... 56 

4.8 Converting KWS Model into an FPGA Block Design ...................................................... 57 

4.9 Implementing Real-Time KWS System on the PYNQ-Z2 ................................................ 58 

Chapter 5: Results ..................................................................................................................... 64 

5.1 Baseline Model vs Optimized Model Performance ........................................................... 64 

5.2 Performance Comparison to Related Work ....................................................................... 67 

5.3 FPGA Acceleration Results .............................................................................................. 68 

Chapter 6: Future Work ............................................................................................................. 72 

Chapter 7: Conclusion ............................................................................................................... 75 

Appendices ............................................................................................................................... 77 

Appendix A – Code ............................................................................................................... 77 

A.1 Defining Mel-Filterbank .............................................................................................. 77 

A.2 FPGA Conversion of Quantized TensorFlow Model with hls4ml ................................. 77 

A.3 Real-Time KWS Deployment Jupyter Notebook.......................................................... 78 

References ................................................................................................................................ 80 

 

 

 

 

 

 

 

 

 



10 
 

List of Tables 

 

Table 1: Summary of Zhang et al.’s Reviews 8-bit Quantized Neural Models [19] ..................... 38 

Table 2: Keyword Selection from Google Speech Commands V2 .............................................. 43 

Table 3: Hyperparameters Considered in Cross Validation Grid Search ..................................... 50 

Table 4: Base Model and Optimized Model Evaluation and Parameters ..................................... 64 

Table 5: Comparison Between My Thesis’ Models and Zhang et al.’s Reviewed 8-Bit Models .. 67 

Table 6: Batched Model Inference Latency on Various Device Architectures for 1000 Samples . 69 

Table 7: FPGA Resource Utilization of KWS Model ................................................................. 71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

List of Figures 

 

Figure 1: Generalized Keyword Spotting Task........................................................................... 16 

Figure 2: Keyword Spotting with Neural Networks ................................................................... 22 

Figure 3: Common Feature Extraction Pipeline ......................................................................... 24 

Figure 4: Example Mel-Filterbank ............................................................................................. 26 

Figure 5: MFCCs from an Audio Signal .................................................................................... 27 

Figure 6: 1-D Convolutions on 1-D Data [9] ............................................................................. 28 

Figure 7: 1-D Convolution on 2-D MFCCs ............................................................................... 29 

Figure 8: IEEE 754 Single-Precision Floating Point Widths ...................................................... 31 

Figure 9: hls4ml Design Workflow [15] .................................................................................... 34 

Figure 10: Distributions of Words in Google Speech Commands V2 and Training Datasets ....... 45 

Figure 11: Refined Feature Extraction and Inference Pipeline ................................................... 47 

Figure 12: Python Preprocessing Method .................................................................................. 47 

Figure 13: The MFCC-based 1-D CNN Model of this Thesis .................................................... 51 

Figure 14: TensorFlow Summary of 1-D CNN for KWS ........................................................... 52 

Figure 15: 12-Bit Quantized Parameters .................................................................................... 54 

Figure 16: Converting TensorFlow Keras Layers to their QKeras Counterparts ......................... 55 

Figure 17: PYNQ-Z2 Development Kit and Thesis Application. PYNQ-Z2 Screenshot in [22]. . 56 

Figure 18: Invoking hls4ml Package to Convert the KWS Model into an FPGA Design ............ 57 

Figure 19: Top-Level Block Diagram of Full FPGA KWS System ............................................ 59 

Figure 20: Expanded Neural Network IP Block ......................................................................... 59 

Figure 21: GPIO and Audio Codec Control Blocks .................................................................... 60 

Figure 22: PYNQ-Z2 Driving Software Diagram ...................................................................... 61 



12 
 

Figure 23: Example Output of Real-Time KWS System on the PYNQ-Z2 ................................. 62 

Figure 24: (Left) Confusion Matrices for Base Model (Left) and Compressed Model (Right) .... 65 

Figure 25: t-SNE Class Separation Visualization ....................................................................... 66 

Figure 26: Streaming KWS Application .................................................................................... 72 

Figure 27: Voice Activity Detection for KWS ............................................................................ 73 

Figure 28: End-to-End KWS System ......................................................................................... 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Abbreviations 

 

ASIC Application Specific Integrated Circuit 

ASR Automatic Speech Recognition 

BRAM Block Random Access Memory 

CNN Convolutional Neural Network 

CRNN Convolutional Recurrent Neural Network 

DCT Discrete Cosine Transform 

DMA Direct Memory Access 

DNN Deep Neural Network 

DS-CNN Depth-Separable Convolutional Neural Network 

DSP Digital Signal Processing 

DTW Dynamic Time Warping 

FFT Fast Fourier Transform 

FPGA Field Programmable Gate Array 

FRR False Reject Rate 

GPU Graphics Processing Unit 

GRU Gated Recurrent Unit 

GSC Google Speech Commands 

HDL Hardware Descriptive Language 

HLS High Level Synthesis 

HMM Hidden Markov Model 

IoT Internet of Things 



14 
 

KWS Keyword Spotting 

LSTM Long Short-Term Memory 

LUT Lookup Table 

LVCSR Large Vocabulary Continuous Speech Recognition 

MAC Multiply-Accumulate 

MFCC Mel Frequency Cepstral Coefficient 

OOV Out-of-Vocabulary 

PL Programmable Logic 

PS Processing System 

QAT Quantization-Aware Training 

RNN Recurrent Neural Network 

RTL Register Transfer Logic 

SNR Signal-to-Noise Ratio 

SoC System-on-Chip 

STFT Short Time Fourier Transform 

TPU Tensor Processing Unit 

t-SNE t-Stochastic Neighbor Embedding 

 

 

 

 

 

 

 



15 
 

Chapter 1: Introduction 

 

This section first introduces and describes the spoken keyword spotting (KWS) problem 

and provides some of its historical solutions as well as how the field has reached its modern 

approaches. Subsequently, the need for highly efficient KWS systems is underscored by 

describing the demands of the computing systems for which they are targeted. The approaches 

that this thesis takes to develop a KWS system are also introduced along with the specialized 

deployment methods used to minimize the latency of keyword classifications. 

1.1 Spoken Keyword Spotting 

Spoken keyword spotting is an essential component of contemporary automatic speech 

recognition (ASR) systems that enables the identification of specific, single-worded keywords or 

commands, such as “stop” or “start,” within spoken utterances. Spoken KWS has revolutionized 

hands-free control over the environment and often manifests as wake-word activation 

applications in many consumer electronics such as smartphones, home automation devices, 

wearable technologies, and digital personal assistants [1].  

Unlike open-vocabulary ASR systems that attempt to convert any utterance into its 

equivalent textual format, KWS systems use a finite vocabulary that they identify specific 

keywords from. KWS systems use a chosen list of words called target words or in-vocabulary 

words. All other words (or sounds) are referred to as out-of-vocabulary (OOV) and are typically 

classified into an additional Unknown category. Some KWS systems also include a Silence 

category for streams of audio where no sound is present other than background noise. Others are 

highly specialized and are only designed to detect a singular word while ignoring all other audio 

information. 



16 
 

The overall goal of a KWS system is to correctly identify any keywords that appear in a 

spoken utterance so long as the utterance contains a word that the system was designed to 

recognize. This generalized definition is demonstrated in Figure 1. 

 

Figure 1: Generalized Keyword Spotting Task 

Well-performing KWS systems maximize the number of true-positives (correctly 

identified keywords) and minimize the number of false-positives (keywords that were incorrectly 

identified despite them not appearing in the utterance) from any given audio stream. There is an 

emphasis on reducing false positives specifically because they can cause some action to occur 

unintendedly [1]. Various approaches have been applied to achieve this goal with a steady 

increase in overall performance as new methods are discovered and improved as described in the 

next section. 

1.2 Historical and Modern Approaches 

 Historically, decision-making and pattern matching algorithms like Hidden Markov 

Models (HMMs) have been used to perform the KWS task by breaking the audio stream down 

into its phonetic features—or sounds that are perceptually distinct to humans—and generating 

state transitions from their specific orderings [1]. Another popular method used was Dynamic 

Time Warping (DTW) which utilizes a series of reference utterances that it compares to the 



17 
 

sample audio signal. DTW dynamically modifies the length of the reference utterances and the 

sample signal with respect to one another to compute similarity scores and choose the most 

similar reference [2]. This method effectively models the different cadences, or speeds, with 

which people speak—a crucial aspect of KWS systems—by lengthening and shortening the 

signals to determine the most comparable reference. An even more computationally complex 

alternative to the HMM and DTW methods is the Large Vocabulary Conversational Speech 

Recognition (LVCSR) approach. It uses larger and more complex methods of encoding and 

decoding the speech signal’s phonetic features and then performs a search across large 

probabilistic lattices of information to detect specific keywords [1]. 

Each of these methods attempts to meet the key requirement of a KWS system: 

generalizing to different cadences, tones, pitches, accents, and speech patterns that are unique to 

every individual. However, each of these methods struggle to scale to larger vocabularies and 

diverse voices. Observably, the HMM and DTW solutions grow in both execution time and 

storage size for each added keyword in the supported vocabulary. Similarly, the LVCSR method, 

used for transcribing multi-word utterances, is too large and complex of a solution for the smaller 

KWS task. Beyond these historical approaches, the application of modern deep learning methods 

to the KWS task has greatly improved the performance of these systems. Deep learning methods 

have provided models with improved abilities in generalizing to unique voices and larger 

vocabularies, and they have broadened the family of computing systems that they can be 

deployed onto. 

New research focuses almost exclusively on machine learning techniques. Variants of 

deep neural networks have become the primary solution for their continued ability in greatly 

outperforming the former historical methods. Popular machine learning approaches have utilized 



18 
 

Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Gated 

Recurrent Units (GRUs) for their improved abilities in learning from the strong temporal 

dependencies inherent to human speech [1]. Other networks primarily involve convolutional 

neural networks (CNNs) which are most known for their performance on image-like data. For 

KWS, CNNs are most applied to image-like representations of audio data in the time-frequency 

domain like spectrograms [2]. The exact methods of extracting more useful features from the raw 

speech signals vary widely among these neural network-based approaches, but some of the most 

popular input features for both recurrent and convolutional networks utilize this time-frequency 

relationship and representation of audio [1]. Combining feature extraction methods with neural 

networks has been the go-to technique for most modern KWS systems due to their abilities in 

accurately detecting keywords from larger vocabularies. 

However, the increased computational complexity of deep learning-based KWS has also 

imposed strict resource, energy consumption, and latency restrictions for the devices on which 

they can be implemented. Neural network approaches often require many bytes of storage and 

hundreds of thousands of multiply-accumulate (MAC) operations which may need enormous 

amounts of computing cycles to complete [2]. These restrictions have prevented larger and more 

accurate KWS models from being deployed directly into embedded hardware and forces 

implementations to look at other methods of edge deployment such as cloud computing [1]. But, 

advancements in deep learning training methods have mitigated the added complexity problem 

by developing techniques for compressing large and complex models into a smaller footprint that 

are compatible with the memory and speed restrictions of embedded systems. 



19 
 

1.3 Problem Statement 

The current state of the KWS task demonstrates that lightweight and low-latency neural 

network models are necessary for modern accuracy requirements and for meeting the latency and 

size restrictions of edge-device hardware. However, the specific neural network architectures that 

best balance complexity, memory footprint, and inference latency is still an evolving and debated 

topic in the field of KWS. The methods of deploying trained KWS models into embedded 

systems also vary in research, including the specific optimization and compression techniques 

used and the hardware architecture of the deployment systems. Solving these problems will 

better meet the demands of industry and modern voice-controlled Internet-of-Things (IoT) 

devices by improving user-experience with quick and accurate interpretations of speech. 

1.4 A Solution for Fast and Efficient KWS Models with FPGAs 

This thesis attempts to solve these issues by developing and training a lightweight KWS 

neural network and accelerating it through deployment onto a Field Programmable Gate Array 

(FPGA) to achieve highly accurate and ultra-low latency keyword classifications. The proposed 

model uses the 1-D CNN architecture and extends its research as a KWS model by utilizing the 

popular MFCC as its input. Similar methods have been applied in research but with bulky 2-D 

CNN architectures and moderate accuracies. As a result, this thesis aims to significantly reduce 

model size and complexity while maintaining competitive classification accuracy. In addition, 

the 1-D CNN of this thesis was iteratively improved through a cross-validation grid search of its 

hyperparameters to determine the most performant configuration of its architecture while 

remaining within the model size restrictions of the target deployment platform. 

Even with a lightweight model, the processing limitations of the computing platforms 

that use KWS may still incur long latencies to complete an inference which in turn leads to poor 



20 
 

user experiences. Inspired by the acceleration of model training and inference of large open-

vocabulary speech recognition models through parallelization with graphics processing units 

(GPUs), and more recently tensor processing units (TPUs), this thesis leverages FPGAs as the 

hardware deployment platform to determine if they are effective at overcoming latency 

constraints in embedded speech recognition systems [3]. While GPUs and TPUs are far too 

expensive in both cost and power consumption for embedded systems to utilize, FPGAs may be 

a more suitable alternative as they boast low costs, low power consumptions, high clock speeds, 

and reconfigurable computational parallelism. 

Model compression techniques are a crucial component in deploying machine learning 

models onto the resource-limited hardware of FPGAs [4]. Therefore, this thesis utilizes both 

quantization and pruning techniques to enable the model’s deployment. Each of these techniques 

can improve resource utilization and inference latency by synthesizing a more efficient digital 

circuit on FPGA fabric while minimally affecting the model’s accuracy [4].  

To implement neural network hardware acceleration with FPGAs, an open-source co-

design tool for high-level synthesis (HLS), called hls4ml, was used to streamline the conversion 

of the model and its weights into an FPGA design. This approach shifted the focus of 

deployment from low-level hardware descriptive languages (HDL) and register transfer logic 

(RTL) levels to an iterative HLS design method and greatly reduced the number of latency and 

resource-related hyperparameters. However, hls4ml, at the time this research was conducted, 

supported a limited number of neural architectures. Among these are techniques like residual or 

skip connections that are not as easily parallelizable or synthesizable in FPGA hardware [4]. 

Similarly, even more advanced architectures like transformers, autoencoders, and attention-based 



21 
 

models (which are uncommon for the KWS task) were excluded in this research in favor of more 

popular, more interpretable, and better performing convolutional and recurrent style models. 

To demonstrate the working solution in real-time with the developed 1-D CNN, 

additional software was written to deploy the KWS model onto a chosen FPGA development kit. 

This software enabled the classification of live audio through a user-interface on the 

development kit via buttons and a connected microphone. It also provided a method of 

graphically visualizing the output of the KWS model as it processes inputs entirely on FPGA 

hardware.  

1.5 Thesis Outline 

To describe and evaluate the solutions of this research, the rest of this thesis is structured 

as follows. Chapter 2 provides a background on the intricate details of the KWS task and FPGA 

hardware architectures to facilitate a better understanding of the problem. This includes modern 

preprocessing and feature extraction techniques as well as the model optimization techniques 

used in this thesis. Then, Chapter 3 provides a critical review of existing literature and highlights 

what others have done to achieve high performance KWS models. Chapter 4 proceeds to explain 

the design methodology of this thesis, including the design, training, and optimization of its 1-D 

CNN along with its conversion into an FPGA-compatible hardware design. It also describes the 

development of the real-time user application for classifying live speech samples. Chapter 5 

subsequently evaluates the developed KWS system and discusses the results of the conducted 

experiments. Chapter 6 describes some areas of future work that can build onto the findings of 

this thesis. Finally, Chapter 7 reiterates the key findings of this thesis and addresses the broader 

implications of FPGA-accelerated machine learning tasks in various domains. 

 



22 
 

Chapter 2: Background 

 

This section provides further insight into the intricacies of spoken KWS using deep 

learning models, FPGA technologies, and the approaches this thesis implemented to perform the 

KWS task. Also discussed are the preprocessing methods required for preparing audio data for 

use in a speech recognition model, along with the optimization techniques of quantization and 

pruning. The required considerations for converting a neural network into an FPGA-compatible 

digital circuit are also described. 

2.1 Deep Spoken KWS with Neural Networks 

 Performing the KWS task with a deep learning technique, like neural networks, involves 

extending the generalized task from Figure 1 with some additional steps in the classification 

pipeline. Figure 2 shows the steps that are commonly found in a deep KWS system. 

 

Figure 2: Keyword Spotting with Neural Networks 

 The feature extraction step involves specifying the data preprocessing methods that are 

performed on the raw audio signal before it is presented to the neural network. This step attempts 

to extract more useful latent features in the audio signals that the model can better learn from as 

opposed to the raw audio signal. The neural network itself is then handed the feature map of the 



23 
 

given audio signal to classify. Next, its output may have some posterior handling performed on 

it, such as taking the Softmax of the output to convert it to a probability distribution, before 

interpreting its classification scores and choosing the predicted class. Various methods of feature 

extraction have been combined with differing neural network architectures to determine which 

ones perform well for the KWS task each with differing model size and complexity 

considerations. 

2.2 Speech Feature Extraction 

Selecting the preprocessing and feature extraction methods for the audio signals going 

into a neural network model is a critical step in development. The output shape of the feature 

map determines the starting point and input shape for the model, as well as all the features that 

the model must learn to distinguish different inputs with. When targeting an embedded system 

for deployment, these preprocessing methods also need to be capable of extracting the useful 

latent features in audio signals, be replicable on the target deployment hardware, and be time 

efficient. 

Common feature extraction techniques for KWS involve evaluating audio signals in the 

frequency domain using signal processing techniques like the Fast Fourier Transform (FFT) and 

Short-Time Fourier Transform (STFT) to generate spectrograms [2]. These representations 

provide more useful information for a model to learn from because they represent human speech 

through its frequency components and spectral energies which human speech and phonetics 

heavily rely on [1]. Generating a 2-D spectrogram representation of the audio signal also makes 

them easily usable with 2-D CNNs which excel at classifying image-like data. Most modern 

KWS models take additional steps in the frequency domain to represent the audio signals with 

Mel-Frequencies. The most common of these Mel-scale feature maps are the Log-Mel 



24 
 

spectrogram and Mel-Frequency Cepstral Coefficient (MFCC) [5]. Figure 3 shows a common 

feature-extraction pipeline. 

 

Figure 3: Common Feature Extraction Pipeline 

 

 Many applications use an initial pre-emphasis filter to remove the frequencies resulting 

from unwanted noise in the signal and to effectively improve the signal-to-noise ratio (SNR) [1]. 

Subsequently, an FFT variant, such as the STFT, is performed on the audio to translate it into the 

time-frequency domain while still retaining the signal’s time context. Some models have had 

success with using the resulting spectrogram from the STFT function, while others have been 

able to further improve classification accuracies by using the Log-spectrogram or the Log-Mel 

spectrogram [2]. However, the most performant models, in addition to the model in this thesis, 

utilize MFCC features that are derived from applying the Discrete Cosine Transform (DCT) on 

the Log-Mel spectrogram. This is due to their improved abilities in representing the specific 

frequency bands that humans both speak and perceive. 

2.2.1 Human Speech Perception 

Understanding why features like MFCCs can model human speech so well requires minor 

knowledge of how humans perceive sound. Human hearing involves a mixture of nonlinear 

processes, including power curves for loudness perception, frequency-dependent sensitivities, 

and the non-continuous frequency response of the ear’s basilar membrane [6]. The basilar 

membrane is a channel that varies in width and stiffness: it is narrow and stiff at the base and 



25 
 

wider and more flexible at the apex. This gradient allows it to respond to different frequencies of 

sound, with high frequencies causing maximum displacement near the base and low frequencies 

near the apex [6]. For the KWS task, the non-linear frequency response and gradient structure of 

the basilar membrane is of particular interest. The gradient channel is sensitive to different 

frequency ranges which are divided into critical bands [6]. Within each band, the ear's frequency 

sensitivity is relatively uniform but varies significantly between bands. These critical bands are 

also wider at higher frequencies and narrower at lower frequencies [6]. This means that the ear is 

more sensitive to changes in lower frequencies than in higher ones and is a primary reason for 

the use of MFCCs in audio recognition tasks because they emphasize these lower frequencies. 

2.2.2 Mel-Frequencies and MFCCs 

The application of the Mel scale in KWS models has significantly improved their overall 

performance by enhancing their ability to accurately identify and differentiate between various 

spoken words [7]. MFCCs have proven effective in audio classification tasks for environmental, 

musical, or other non-speech noises as they effectively represent the spectral information of 

audio signals [8]. They have also been successfully applied to speech classification tasks such as 

speaker recognition, emotion recognition, and language recognition [8].  

MFCCs are particularly useful because Mel-Frequencies, derived from the Mel scale, are 

designed to mimic the human ear's nonlinear perception of sound. This scale emphasizes 

frequencies in a way that aligns with how humans naturally perceive speech, particularly 

focusing on the lower frequencies where much of the important speech information resides [8]. 

Additionally, MFCC features are especially useful because they retain the temporal context of 

speech through their extraction method which improves the ability of KWS systems to classify 

utterances based on how the signal changes over time [1]. The importance of a model’s ability to 



26 
 

effectively utilize the temporal dependencies in speech is reflected in the high accuracies that 

RNNs, GRUs, and LSTMs have been able to achieve using the MFCC feature. 

Overall, by utilizing the Mel scale, keyword spotting models can better capture the 

nuances of human speech, leading to more robust and precise recognition of keywords even in 

noisy or inconsistent acoustic environments. This alignment with human auditory perception 

ensures that the models are more effective in real-world applications by attenuating noise and 

emphasizing speech. As these are such promising features, this research focuses on an MFCC 

approach to training the KWS model. 

 To derive MFCCs, the spectral energy of a signal in the frequency domain is translated to 

the Mel-Frequency domain through a Mel-Filterbank. An example of a Mel-Filterbank is 

depicted in Figure 4. 

 

Figure 4: Example Mel-Filterbank 

The Mel-Filterbank consists of a series of triangular filters that are spaced according to 

the non-linear Mel scale, which is more densely packed at lower frequencies and more sparsely 

packed at higher frequencies. In effect, this process applies a series of band-pass filters that 

collectively mimic a low-pass effect by focusing more on the lower frequencies and less on the 

higher ones. This emphasizes the lower frequency components of the spectrogram which are 

more critical for understanding human speech based on the ear’s basilar membrane response to 

low frequency critical bands [7]. Multiplying a log-spectrogram by the Mel-Filterbank, as shown 



27 
 

in the pipeline of Figure 3, effectively reshapes the spectral information of the speech to better 

align with the human auditory system's non-linear sensitivity to different frequencies. By further 

applying the DCT to the resulting Log-Mel spectrogram, a form of dimension reduction is 

performed on the data while retaining its most important spectral information in the MFCCs. An 

example of propagating an audio signal through this pipeline to achieve the MFCCs of an 

utterance is demonstrated in Figure 5. 

 
 

Figure 5: MFCCs from an Audio Signal 

Figure 5 demonstrates a particularly useful representation of how the MFCCs are derived 

from a raw audio waveform. Notably, the regions of higher intensity in the MFCCs are aligned 

with the voice activity in the audio signal and shows how the MFCCs aggregate spectral 

information into short time bins. Ultimately using the 2-D MFCC feature map as the input to the 

1-D CNN KWS model specifies its input shape and is the basis for the range of model sizes that 

can be achieved. 



28 
 

2.3 1-D Convolutional Neural Networks 

 This research focuses its network architecture on the MFCC-based 1-D CNN to further 

investigate their abilities in accurately capturing the strong temporal dependencies of speech. 

Normally, 1-D CNNs are applied on 1-D data, as shown in Figure 6. 

 

Figure 6: 1-D Convolutions on 1-D Data [9] 

 

  1-D convolution works by sliding a kernel along the input data and computing the dot 

product between the kernel and overlapping segments of the input at each position to produce a 

resulting filter [10]. Using overlapping segments gives 1-D CNNs the ability to learn short-term 

local temporal dependencies in its input data by aggregating speech information from distant 

time instances making them useful in time-series classification tasks [10]. However, 1-D 

convolutions can be extended to operate on 2-D data by specifying a kernel to have the same 

height as the input shape while having a variable width as shown in Figure 7 for the MFCC case. 



29 
 

 

Figure 7: 1-D Convolution on 2-D MFCCs 

 

 As shown in Figure 7, the kernel uses the same height as the MFCC features but may 

have a variable width and step size to determine how much temporal information is aggregated 

by each convolution. As the width of the MFCC feature represents aggregated time frames, the 

sliding kernel can learn temporal dependencies by sliding along this dimension instead of 

focusing solely on the vertical cepstral coefficient dimension. The approach depicted in Figure 7 

is the basis for MFCC-based 1-D CNN KWS models and points out some of its most pertinent 

hyperparameters: the kernel width, kernel height, and step size. This differs from 2-D CNNs 

which use a kernel that slides along images or image-like data in two dimensions. Beyond the 

ability of 1-D CNNs for capturing temporal dependencies, they also have other characteristics 

that make them more attractive than 2-D CNNs. 

 For example, another benefit of interest is the basic time complexity of convolution 

operations. For a KxK input shape being convolved by an NxN kernel, 2-D CNNs have a time 

complexity of O(N2K2) while 1-D CNNs have a time complexity of O(NK), making 1-D CNNs 

less computationally complex than 2-D CNNs and therefore providing a lower overall baseline 

inference latency [10]. In addition, based on a survey of 1-D CNN applications in [10], they can 



30 
 

provide reliable performance with very few parameters while typical 2-D CNN applications 

often use much larger networks and parameter spaces. 1-D CNNs are therefore especially useful 

for meeting the memory and latency requirements of embedded system deployment. Despite 

having lower computational complexity than other KWS models, compression techniques are 

often still required to enable the model’s deployment into a resource-constrained environment. 

2.4 Model Compression Techniques 

Machine learning models that are being deployed into embedded systems can use or 

require model optimization techniques so that they fit within the device’s memory footprint and 

can run inference with sufficient latency. For the implementation of the models in this thesis, 

both quantization and pruning techniques were applied to the proposed KWS model to minimize 

its memory footprint and latency. 

2.4.1 Quantization 

During model training, the weights and activations of the model are often 32-bit signed 

floating-point values by default. Reducing the number of bits used to store model weights and 

perform their mathematical operations, known as quantization, has demonstrated significant 

reductions in the required memory needed for storage in embedded hardware [11]. However, 

quantization does reduce the range of values that model weights and activations can represent 

and needs to be applied carefully to take advantage of its benefits. Figure 8 shows some of the 

IEEE 754 specification’s standard value floating-point bit-widths that are available on nearly all 

computing systems. 



31 
 

 

Figure 8: IEEE 754 Single-Precision Floating Point Widths 

 

With regards to model training, quantization can be performed either during training, 

called quantization-aware training (QAT), or after training [11]. With QAT, the model is trained 

using the specified smaller bit width whereas post-training quantization truncates the trained 32-

bit parameters to the specified bit width. QAT has the added benefit of being able to regain any 

lost accuracy through fine-tuning the model and minimizing the loss function at the newly 

specified bit-widths and with quantization noise present. This makes QAT the preferred method 

among most embedded neural network applications [12]. The KWS task has also been performed 

with integers instead of floating-point numbers as in [13]. This includes sizes all the way down 

to 8-bits which was shown to provide additional memory and latency improvements with similar 

performances [13]. However, [13] saw increasingly worse performances with 8-bit integer 

parameters for their KWS models compared to their floating-point counterparts. This was likely 

due to floating point numbers having the ability to represent a greater range of magnitudes, either 

very large or very small, depending on where the decimal is placed, whereas integers have a rigid 

range of magnitudes. Throughout this thesis, the increased magnitude range of floating-point 

numbers was suspected to allow the neural network to have more freedom in learning the 



32 
 

optimal numerical magnitudes necessary for learning based on the model’s overall numerical 

regularization. In addition, the bit-widths of the weights in each layer of a model, as well as the 

activations of each layer, can vary within the model from layer to layer and is another hyper-

parameter that can be carefully tuned through cross-validation. Quantization is often paired with 

another compression technique called pruning to further reduce the parameter space of the model 

and achieve some additional benefits. 

2.4.2 Pruning 

Pruning is a model compression technique that aims to induce sparsity in a model’s 

weights, neurons, filters, or layers by forcing them to zero or removing them from the 

architecture completely [12]. Sparsity is typically induced in a model by removing model 

parameters that do not have significant effects on the output or by being lower in magnitude 

compared to surrounding weights in a layer [14]. Pruning can be done with negligible 

degradation in model accuracy even when pruning 70-80% of the weights in a model making it a 

critical step in compressing a model for deployment in a memory-limited embedded system [14]. 

This also indicates that many models may use more layers and parameters than necessary to 

achieve their classification tasks. Similarly to QAT, pruning can be accomplished with additional 

training epochs to evaluate which weights do not greatly affect the output and provide fine-

tuning for regaining lost accuracy [14]. This method of pruning looks at all the model’s 

parameters and removes the weights that are significantly smaller than all the other parameters 

below a certain threshold. Doing this over various epochs allows the training routine to see if its 

current sparsity configuration greatly degrades accuracy and to try setting other weights to zero if 

so. Each of these methods were applied to the KWS model of this thesis. Beyond applying model 



33 
 

compression techniques to complete model training and development, this research also takes 

additional steps to deploy it onto FPGA hardware. 

2.5 Overview of FPGA Technology 

FPGAs represent a versatile class of digital hardware architecture that distinguishes itself 

by its reconfigurability and adaptability. Unlike traditional Application-Specific Integrated 

Circuits (ASICs), FPGAs enable developers to dynamically configure the interconnection of 

logic gates and other components, allowing for the implementation of custom digital circuits 

[15]. FPGAs consist of a grid of programmable logic blocks and programmable interconnects, 

which can be configured and reconfigured to perform a wide range of tasks. Such tasks can be 

performed with true parallelism due to the ability to have isolated regions comprising of digital 

circuits performing completely different functions simultaneously [15]. FPGAs are programmed 

using hardware description languages like Verilog or VHDL, or with high-level synthesis 

paradigms that use C/C++ to define the desired functionality of the digital circuit. Recent 

developments in FPGA design have also used their configurable nature to implement parallel 

compute units and accelerate large datacenters, networking stations, and search engines [15]. 

Their parallel computing capabilities make them especially attractive for accelerating machine 

learning inference. 

Within an FPGA, the logic blocks themselves contain additional resources that give 

FPGAs their functionality. For machine learning acceleration, three resources stand out: Block 

RAMs (BRAMs), Digital Signal Processing (DSP) blocks, Flip-Flops (FFs), and Look-Up Tables 

(LUTs) [4]. The configuration of these elements is what implements specific logic and 

mathematical operations as a digital circuit. In addition, their configuration is made by direct 

electrical interconnections which significantly improves signal propagation and computation 



34 
 

speeds over sequential processors [4]. However, when deploying machine learning models such 

as the KWS model of this thesis, most model architectures are too complex and have too many 

parameters to store in FPGA memory units. Therefore, careful consideration of these resources, 

along with compression techniques, are required to ensure that the chosen architecture can be 

implemented. 

2.6 FPGA Deployment with hls4ml 

The proposed KWS model was converted into an FPGA design using the open source 

hls4ml package. The hls4ml package provides high-level methods for converting TensorFlow 

Keras models into ultra-low latency digital circuits for the target FPGA as shown in their 

proposed design flow in Figure 9 [16]. 

 

Figure 9: hls4ml Design Workflow [15] 

The hls4ml framework provides numerous ways to customize the digital circuit that is 

generated from a neural network. These methods directly affect the latency of model inference 

and the utilization of important FPGA resources such as BRAM, DSPs, FFs, and LUTs [16]. 

Modifying these usage statistics is accomplished with hls4ml’s precision and reuse factors. 

Choosing the precision of each layer in the model selects the bit-width to use for all weights, 

activations, and multiply-accumulates in the FPGA implementation. The reuse factor determines 

the parallelization of the model in the FPGA fabric by altering how many times a single 



35 
 

multiplier (DSP block) is used in computing a layer’s values. However, there is a careful balance 

between throughput and resource usage, particularly when modifying the reuse factor [16]. 

Beyond the analysis of the background information necessary to understand the KWS task, a 

literature review was performed to gain an understanding of what other researchers have 

attempted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

Chapter 3: Review of Literature 

 

The literature review provides a critical analysis of the methods that other researchers 

have used to perform the KWS task with deep neural network models and provides examples of 

FPGAs being successful hardware accelerators. Many model architectures with a wide range of 

feature extraction techniques have been applied to the KWS task with vastly different resulting 

accuracies, model sizes, and latencies. These range from basic deep neural networks taking the 

raw audio signals as inputs, to RNNs and CNNs taking preprocessed feature map representations 

of audio data as inputs.  

Due to FPGA deployment limitations restricting the implementation of modern 

architectures, an emphasis was placed on CNN and RNN literature. Non-machine learning 

methods were also omitted from the literature review due to their inability to achieve accuracies 

close to neural network solutions especially for systems that classify increasing numbers of 

keywords. Further, through the literature review, it was apparent that CNN and RNN based 

architectures and their variants were the most used and performant architectures in recent KWS 

works highlighting the importance of the temporal context of speech. Similar research was done 

for other applications of FPGAs being used for machine learning based hardware acceleration. 

3.1 Machine Learning and KWS in Literature 

 Neural network techniques have been increasingly applied to the KWS task. Newer 

works evaluate neural network solutions and exhibit a focus on developing them for embedded 

system deployment. For instance, Sainath and Parada [17] compared the performance of a 2-D 

CNN architecture over fully connected deep neural networks. They centered their study around a 

2-D CNN with which they explored different layer configurations by limiting either the total 



37 
 

number of multiplications in the model or the number of parameters in the model to better meet 

the multiplication and model size restrictions of power-constrained environments. Throughout 

their experiment, they developed CNN models with parameter counts between 47k and several 

million. They achieved relative improvements in False-Reject Rates (FRR), or the rate at which 

true keywords are incorrectly rejected, of 27% when shifting convolutions in frequency and 41% 

when pooling in time. These two models provide good improvements but are much larger than 

most other “small footprint” KWS models, and likely use more parameters than necessary to 

achieve similar accuracy if the KWS model is classifying single-word utterances. However, the 

experiment in [17] used longer utterances for classifying two-word pairs which likely required 

the substantial number of parameters to result in their well-performing FRRs. Overall, [17] 

provides evidence for using CNNs for the KWS task and discounts strictly fully connected neural 

networks for their inability to pool audio information in either frequency or time. This research 

also alludes to 1-D CNNs having reliable performance by sliding the kernel and pooling along 

the aggregated time dimension of MFCC features. 

 In addition, Sørensen, Epp, and May [18] provided further evidence of CNNs exhibiting 

high KWS classification accuracies. They extended their research to utilize the depth-separable 

CNN (DS-CNN) targeted for deployment on an ARM Cortex M4 microprocessor. The DS-CNN 

has been shown to be a more lightweight and efficient alternative to the standard CNN in small-

footprint KWS due to them applying a kernel to each input channel separately and then 

combining the results through a single pointwise convolution instead of using kernels that 

operate across all channels simultaneously [18]. Through a hyper-parameter grid search, they 

achieved a peak accuracy of 84.7% with a 221KB model that performed inferences on the target 

microprocessor in 490.8ms. The accuracies listed by the work in [18] are averaged over varying 



38 
 

SNRs between 0-20dB suggesting that higher accuracies could be reported when a more stable 

acoustic environment is modeled. Still, other models have exhibited higher accuracies with 

smaller models that this thesis also tries to surpass with its 1-D CNN architecture. In addition, 

the nearly half-second inference latency is extensive and was theorized to be surpassed by a large 

factor with FGPA acceleration. The experiments in [18] also include an evaluation of the effects 

quantization had on model performance and showed that quantizing the DC-CNN model had 

negligible effects on accuracy but improved its memory footprint and processing speed on the 

microprocessor. Beyond this research, [19] performed a more extensive search across many types 

of neural network architectures for the KWS task and showed a different outcome with a DS-

CNN architecture. 

 Zhang et al. [19] provides an extensive exploration of various neural network 

architectures on the KWS task with a focus on small, quantized models for deployment into 

embedded systems. The results of interest from this study were derived from models of 

comparable size. The model of the search in [19] is summarized in Table 1 where each model’s 

size is reported based on its 8-bit weights and activations and were also ordered by increasing 

size. This list notably included an additional modification to base CNNs by adding a recurrent 

element to it to produce the Convolutional Recurrent Neural Network (CRNN). 

Table 1: Summary of Zhang et al.’s Reviews 8-bit Quantized Neural Models [19] 

 

Model Accuracy (%) Size (KB) 

DS-CNN 94.40 38.60 

Basic LSTM 92.00 63.30 

GRU 93.50 78.80 

2-D CNN 91.60 79.00 

LSTM 92.90 79.50 

CRNN 94.00 79.70 

DNN 84.60 80.00 



39 
 

These results showed very high accuracies with extremely small model sizes. The most 

notable was the DS-CNN which had the highest accuracy at 94.40% and simultaneously the 

smallest size at 38.60KB showing a drastic improvement over the work in [18] and advocating 

for the effectiveness of CNN-like architectures at the KWS task. Many of the highest-performing 

models in this search employed recurrent architectures like the LSTMs, GRU, and CRNN which 

were described as better equipped to take advantage of long-term temporal dependencies in the 

input features. This indication does detract from the potential performance of the 1-D CNN 

proposed in this thesis due to its limitation for aggregating shorter local-time spans in the audio 

signal. However, this thesis continues with the 1-D CNN architecture to show promising 

performance with even smaller parameter spaces than shown in [19]. 

 This literature review provided further evidence of CNN-based models exhibiting high 

performances when applied to the KWS task. It also provided an analysis of various other neural 

network architectures that have been applied to KWS, comparing their effectiveness in capturing 

long-term temporal dependencies. Recurrent-style architectures were highlighted for their ability 

to maintain and utilize information over extended periods, making them particularly effective in 

scenarios requiring the recognition of longer temporal patterns. Overall, the review of other 

neural network KWS methods resulted in plentiful evidence and motivation for further 

investigating 1-D CNNs and model compression techniques to achieve a high performing and 

very lightweight model. Further research was done to determine the effectiveness of FPGAs as 

hardware accelerators in machine learning problems and other applications. 

 

 



40 
 

3.2 FPGAs as Hardware Accelerators in Literature 

FPGAs are a common solution for implementing purpose-built hardware accelerators and 

wherever extremely fast digital circuitry is needed. The extensive review of FPGA technology in 

[15] demonstrates that they are very common for accelerating data centers, search engines, 

network switches, and deep learning. For deep learning specifically, significant research was 

done in [4] to describe the optimal implementation of many neural network types in FPGA 

hardware. However, with HLS technologies, like Vivado HLS, any algorithm that can be 

described by C/C++ code can also be accelerated through synthesis into an FPGA circuit [15]. 

This concept was the basis for the hls4ml package in converting neural network architectures 

into synthesizable FGPA designs. 

In fact, the hls4ml package itself, described in [16], provides significant evidence for 

FPGAs being useful for accelerating neural networks in other applications. The hls4ml package 

was originally developed for particle physics acceleration by researchers at the Large Hadron 

Collider who needed to quickly tag specific types of particle events and only store the types in 

which they were interested. In [16], the researchers also demonstrated that their 2-D CNN 

architecture, developed for the classical MNIST handwritten digits dataset, could be accelerated 

to perform inference in only 5µs with their hls4ml package. 

For the KWS task in particular, research into KWS acceleration with FPGAs is relatively 

scarce. One study by Bae, Kim, Lee, and Jung [20] compiles many related works for accelerating 

KWS models and compares the metrics most pertinent to this thesis. In [20], various model 

architectures were evaluated for KWS on FPGAs and achieved a range of accuracies and 

latencies. The literature reviewed by [20], along with their proposed model, achieved inference 

latencies between 10-116ms, 10-keyword accuracies of 87.9-93%, and with models between 2-



41 
 

69KB. These studies used complicated network architectures and quantized them down to two or 

three bits to produce much smaller networks than would normally be possible. Therefore, the 

accuracies and model sizes they were able to achieve with the low number of bits are highly 

performant compared to others in KWS literature especially for their degree of quantization. The 

study also placed significant emphasis on the fabrication of the KWS FPGA design into an ASIC, 

which furthers the draw towards FPGAs providing an important step into the development of 

generic speech recognition circuitry. 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 



42 
 

Chapter 4: Design Methodology 

 

The design methodology describes how the KWS machine learning model of this study 

was devised, how it was trained, how it was evaluated, and how it was converted into an FPGA-

compatible design. The dataset, Google Speech Commands V2, and its methods of class 

balancing and weighting are first described. Secondly, the preprocessing strategies used to 

extract the feature mappings of the dataset are outlined. Next, the chosen model architecture is 

described in relation to its KWS classification task along with the training methodology. Finally, 

the model’s conversion into an FPGA-compatible design using the hls4ml package is explained. 

Machine learning model development is an iterative process where the specific hyperparameters 

used at each stage are refined through cross-validation. As such, the specific hyperparameters in 

each stage of development for this thesis were determined through a cross-validation grid search 

until the best-performing combination was found. The first step in this development process was 

choosing the training dataset to use as the basis for the KWS system. 

4.1 Dataset Selection from Google Speech Commands V2 

The initial step towards developing a deep KWS model was selecting its training dataset. 

The model of this thesis was trained with the Google Speech Commands V2 (GSC V2) dataset 

described in detail in [21] along with an analysis of its improvements over its V1 predecessor. 

This dataset contains 105,829 one-second-long speech files represented as little-endian 16-bit 

PCM-encoded WAVE files that are sampled at 16kHz. The dataset is distributed over 35 unique 

English words and was designed to assist in the development of speaker-independent limited 

vocabulary speech recognition systems [21]. The data was crowdsourced from people all over 

the world with different accents, cadences, and all other manners of speaking in widely variable 



43 
 

acoustic environments. This achieved the primary goal of [21] in gathering data that is most 

likely to be encountered in consumer electronics and robotics applications that should be 

generalizable to all people speaking a particular language. 

From this dataset, 10 keywords were chosen as in-vocabulary while the other 25 were 

placed in an unknown class. In addition to the spoken utterances, the dataset includes longer 

audio files of different background noises like a whirring exercise bike, a running faucet, white 

noise, and others [21]. A custom program was written to segment these longer noise files into 

one-second audio clips for training the model to distinguish common background noises as the 

final silence class. Table 2 summarizes the keywords and categories that the KWS model of this 

thesis was designed to classify. 

Table 2: Keyword Selection from Google Speech Commands V2 

 

In-Vocabulary (Keywords) Out-of-Vocabulary (Unknown) Silence 

down backward sheila seven washing dishes 

go bed tree eight cat noises 

left bird visual nine exercise bike 

no cat wow   pink noise 

off dog zero   running faucet 

on follow one   white noise 

right forward two     

silence happy three     

stop house four     

up learn five     

yes marvin six     

 

Each of the 10 keywords, the unknown category, and silence category resulted in the 

model having a 12-class output. The 10 chosen keywords were selected for being the most used 

across selection of words in many implementations of KWS in literature and remained common 

between both version of Google Speech Commands [1]. The 10 keywords were also specifically 

chosen to align with the research in [21] which collected them because of their usefulness in 

voice-controlled IoT applications. The other 25 OOV words were chosen because they cover a 



44 
 

wide range of phonemes, or perceptually distinct sounds, in the English language and require 

variable durations to utter within the one-second recordings [21]. The abundance of utterances 

and the diversity in word choice has made Google Speech Commands one of the most popular 

datasets for training KWS systems, but the way that samples are collected and balanced into a 

particular training dataset is another important consideration. 

4.2 Balancing the Training Dataset 

 Having as many words with as much phonetic diversity as possible in the OOV selection 

is generally beneficial to the overall performance of a KWS model. However, taking the chosen 

dataset of Table 2 without any balancing causes there to be a significant class imbalance from 

there being far more samples in the unknown class than in the keyword classes. The primary 

concern was that generating an unbalanced training dataset could cause the model to gain a false 

sense of accuracy. Without balancing, this presented itself as the model reporting very high 

accuracies by learning to classify nearly every input as unknown strictly due to them being so 

common in the training dataset, and therefore performing very poorly on all the other 11 classes.  

 There is another key consideration in training KWS models that are designed to be 

always listening for keywords: most words heard by a real KWS system will most likely be 

unknown to it as the chosen commands do not commonly appear in normal conversation. This 

suggests that the system would benefit from using a training dataset consisting of a larger 

proportion of the unknown samples. However, this diverges from the work in [21] which 

provided lists of samples that would equally distribute the classes such that each of the 12 classes 

takes up approximately 8.3% of the training dataset. While this would produce a KWS model 

that can distinguish between the 12 classes, this does not take into consideration the bias in 

words that a real system encounters which may result in poor performance for the unknown 



45 
 

class. Figure 10 demonstrates how this thesis attempted to resolve this issue by showing the 

different distributions while using a larger distribution of samples in the unknown class. 

 

Figure 10: Distributions of Words in Google Speech Commands V2 and Training Datasets 

 As shown in Figure 10[A], the base dataset has roughly equal numbers of samples in each 

class ranging from 1.5k to 3.5k. When combining the 25 OOV words into an unknown class as in 

Figure 10[B] the distribution exhibits considerable imbalance. This thesis attempted to resolve 

this issue by ensuring that each of the 10 keywords, plus the silence class, appeared in the 

training dataset with equal occurrences while still using a much larger distribution for the 

unknown class to model a real KWS system’s deployment scenario as shown in Figure 10[C]. To 

further resolve this issue beyond generating a more balanced, realistic dataset, this thesis 

theorized that further improvements in model performance could be achieved weighting the less-

frequent classes or underperforming classes in the loss function more with respect to the 

unknown class. Therefore, class weighting techniques were implemented by providing the 

underrepresented or underperforming classes more significance in reducing the loss function 



46 
 

based on a combination of the classes’ occurrences in the dataset and empirical evidence for 

helping the underrepresented classes perform better. 

Overall, the unknown class imposed a class imbalance issue during model training and 

was thus weighed the least in relation to the other classes to prevent the model from focusing on 

that class and having a false sense of accuracy. Using another property of the dataset, the silence 

class was also reduced in importance because its feature map signatures were easily 

distinguishable from any of the keywords, so the model was given the opportunity to focus more 

on the subtle distinctions between the actual words. This weighting scheme combined with class 

balancing provided the best performing set of trained KWS models throughout the 

hyperparameter grid search that were also designed to operate in a realistic deployment 

environment. Having the prepared dataset meant that the feature extraction methods could be 

refined, as well. 

4.3 Data Preprocessing and Feature Extraction 

 With the dataset selected and prepared, its preprocessing pipeline could be developed 

prior to training the model. This thesis used the MFCC feature map as its input to the KWS 

model for their popularity and high-performance capabilities based on their ability to emphasize 

the intricacies of human speech. The two important caveats of defining this MFCC extraction 

pipeline were that it needed to be efficient and replicable on the deployment platform. Therefore, 

the pipeline in Figure 3 was used while discarding the intermediate spectrograms along the way, 

as shown in Figure 11. 



47 
 

 

Figure 11: Refined Feature Extraction and Inference Pipeline 

 Notably from Figure 11, the input raw speech signals all have 16,000 datapoints as they 

are one-second-long audio clips sampled at 16kHz in a 16-bit PCM format. This updated data 

pipeline also shows the transformations that are applied to the input audio waveform to result in 

a predicted keyword within that utterance. As this system was primarily developed in the Python 

programming language, the pipeline of Figure 11 was translated into code as shown in Figure 12.  

 

Figure 12: Python Preprocessing Method 

The code performing the feature extraction during model training from Figure 12 

highlights other important information that specifies the resulting shape of the MFCCs, and 



48 
 

therefore the input shape of the model such as the number of FFT bins and MFCCs to compute 

using libraries SciPy and NumPy. First, the audio waveform is normalized to be in the range of 

[0, 1]. Normalizing the input audio vector this way ensures that all audio features initially have a 

similar scale which prevents features with larger values from dominating the learning process 

and providing the model with immunity to outlier samples in the data. Normalizing the audio 

signal also ensured that sampling the audio with an integrated circuit or analog-to-digital 

converter was straightforward and independent of the data encoding scheme, whether it is 24-bit 

or 16-bit PCM, or another format. This was important so that the target FPGA could be selected 

without much concern of how the audio signals are sampled since the data will be normalized to 

a common scale between [0, 1]. Normalization can also occur after the audio signal is converted 

into an MFCC, but the scaling, whether 16-bit or 24-bit, adds variations in the intermediate 

spectrograms. Overall, normalization at the audio signal was shown to result in more efficient 

training, better convergence, and improved overall model performance. 

Next, signal processing methods are applied to the normalized waveform. The normalized 

audio is passed through the pre-emphasis filter to improve its signal-to-noise ratio and amplify 

the high-frequency components of the signal that can be corrupted from the recording circuitry. 

This provides a similar effect to a high-pass filter. After pre-emphasis, the resulting signal is 

framed and windowed by transforming it into the spectral frequency domain using the discrete 

STFT. This method has the advantage of preserving the temporal context in the speech signal so 

that the model can learn from the strong temporal dependencies inherent to human speech based 

on its more useful frequency components. This research also configured the STFT to use 128 

bins where each segment comprised of a 16ms window with 50% overlap per step. The Hanning 

windowing function was also used to reduce spectral leakage between bins, minimize edge 



49 
 

effects, and for being computationally efficient. In addition, the magnitude of the STFT was 

taken prior to squaring the result to produce a power spectrogram from the audio signal. 

Furthermore, the STFT spectrogram representation was warped with the Mel-Filterbank 

to convert it into a Mel-Spectrogram. The Mel-Filterbank’s parameters were chosen through 

cross-validation to use 24 Mel bins, a lower edge frequency of 20Hz, and an upper edge 

frequency of 7,400 Hz for a frequency resolution of 307.5Hz per bin. The programmatic way of 

generating this Mel-Filterbank and saving it into a file is shown in Appendix A.1. Furthermore, 

the base-10 logarithm of the resulting Mel-Spectrogram was taken to produce the Log-Mel 

spectrogram. Finally, the MFCCs were derived by applying the DCT on the Log-Mel 

spectrogram. This results in a 127x24 2-D feature map that the KWS model of this thesis used as 

its input and was the basis for the rest of the model’s architecture. The 127 frames correspond to 

a time resolution of 7.87ms per frame and was important for accurately modeling the change in 

frequency over the course of each utterance. 

4.4 Model Architecture 

 The next step of developing the KWS system involved designing and specifying the neural 

network model’s architecture. This research utilized the 1-D CNN architecture as its basis. The 

shape of the MFCC features as the input to the proposed model of this study was critical for 

determining a model architecture that can effectively learn the relationship between the MFCCs 

and their associated keyword while still having a lightweight model footprint. With the input shape 

comfortably fixed at 127x24 and the output shape fixed at the 12 classes chosen from the Google 

Speech Commands V2 dataset, the remaining hyperparameters that were cross validated through 

a simple grid search are displayed in Table 3. 



50 
 

Table 3: Hyperparameters Considered in Cross Validation Grid Search 

CNN Layers Fully Connected Layers 

no. convolutional layers no. fully connected layers 

no. filters per layer no. neurons per layer 

filter sizes activation function 

strides dropout rates 

padding batch normalizations 

activations quantization bit width 

pooling type/size pruning percentage 

dropout rates   

batch normalizations 

quantization bit width 

pruning percentage   

 

An additional caveat to consider when using Vivado HLS, the tool used to synthesize the 

C/C++ representation of the neural network, is that each layer must have less than 4096 parameters. 

This ensures that the entire layer can be completely unrolled into an equivalent FPGA circuit and 

have its parameters be stored in contiguous memory. As such, this study proposes a model 

consisting of two 1-D CNN layers and two fully connected layers as shown in Figure 13. 



51 
 

 

Figure 13: The MFCC-based 1-D CNN Model of this Thesis 

This configuration was derived from the point in the hyperparameter grid search that best 

balanced classification accuracy, model size, FPGA synthesizability, and its ability to retain its 

accuracy after optimization with quantization and pruning. The model is first composed of the 

input layer which takes the 127x24 MFCCs feature map as its input. Following the input stage is 

a 1-D convolution (Conv1D) layer with rectified linear unit (ReLu) activations. The activations 

are then followed by a batch normalization layer which was implemented for numerical stability 

and greatly reduced training times. To complete the Conv1D block, a 1-D maximum pooling 

(MaxPool1D) layer was included as the dimension reduction strategy.  

The first Conv1D layer had 18 filters, a convolving kernel with a width of five, and a 

stride of one. After the ReLu activation and BatchNorm, the MaxPool1D operation with a 

pooling size of six was applied to reduce the size of the feature map. The next Conv1D layer 

followed the same structure as the first but used 28 filters with a kernel size of four and a stride 



52 
 

of one. Similarly, after the ReLu activation the BatchNorm operation was applied, a MaxPool1D 

layer was used to further reduce the dimensions of the propagating feature map.  

The flattening layer shown in Figure 13 was required to make the subsequent fully 

connected layers compatible with the outputs of the second Conv1D layer. Once flattened, the 

first fully connected layer used 26 neurons and ReLu activations. Finally, the last fully connected 

layer has 12 neurons, one for each of the 12 keyword classes, along with a final ReLu activation. 

The ReLu activation at the output was used in place of a Softmax output to minimize any 

unnecessary computations being done by the model, further reducing its computational latency. 

The TensorFlow summary of the model is shown in Figure 14. 

 

Figure 14: TensorFlow Summary of 1-D CNN for KWS 



53 
 

Overall, the model used 7,772 trainable parameters with each layer meeting the FPGA 

unwrap size restriction by having less than 4,096 parameters. Having the complete model 

architecture allowed for the training stage to commence with minor modifications. 

4.5 Model Training 

The model was trained with the TensorFlow framework and in the Python programming 

language. The dataset was broken into a training split of 80%, a validation split of 10%, and a 

test split of 10%. The test split was specifically reserved for final evaluation of the model and 

was never seen by the model during training or validation. 

To improve model generalization to unseen data, additional dropout layers were included 

in between every hidden layer of the model at a 5% dropout rate to randomly force 5% of all 

outputs from a layer to zero. This dropout rate is lower than some other models but was 

strategically and empirically chosen to take advantage of the wide range of accents, cadences, 

pronunciations, pitches, and other speaker variabilities already present in the dataset. 

Additionally, since the model had so few parameters, higher dropout rates quickly degraded the 

model’s training performance. This was exacerbated by the even smaller models that were 

evaluated in the grid search. To further reduce overfitting during the training process, L1 kernel 

regularization was implemented in every hidden layer model at a factor of 0.001 to encourage the 

model to learn simpler patterns in the data.  

In addition, a custom learning rate schedular was applied to half the learning rate every 

10 epochs with a starting learning rate of 0.015. The training routine was set to run for 100 

epochs using a batch size of 256. Finally, applying the custom class weights and shuffling the 

training dataset, its training commenced with TensorFlow’s fit method. The model was trained 

with the Adam optimizer and used the sparse categorical cross-entropy loss function. Once the 



54 
 

base model was finished training, the model optimization and compression techniques of 

quantization and pruning were applied. 

4.6 Model Optimization 

Both pruning and quantization were applied to this thesis’s 1-D CNN model to enable it 

to be deployed onto FPGA hardware. This further reduced the size of the model but was done 

carefully to select the lowest bit width and highest pruning ratio that did not degrade the model’s 

accuracy by much. These were two additional hyperparameters that were evaluated in the cross-

validation grid search. In all cases, quantization was performed on the model prior to pruning it. 

4.6.1 Quantization-Aware Training 

 Deploying the model through hls4ml allows for custom, non-standard bit widths to be 

used in a way that the synthesized digital circuit can utilize it without needing any additional 

padding or processing [4]. It also allows for every layer in the model to be synthesized into a 

digital circuit with different bit widths [4]. For simplicity and ease of tracing, this thesis 

quantized each hidden layer and its activation to use 12 bits consisting of five integral bits and 

six fractional bits with 1-bit reserved for the sign bit. This custom quantized bit width is shown 

in reference to the base model’s 32-bit width in Figure 15. 

 

Figure 15: 12-Bit Quantized Parameters 



55 
 

 This new bit width is 2.667 times smaller than the baseline model’s 32-bit width which in 

turn reduces the model’s size by 2.667. To implement this, the model was converted to its 

quantized version TensorFlow through the QKeras (quantized-Keras) module. Thus, Conv1D 

layers were replaced with QConv1D layers and Dense layers were replaced with QDense layers, 

along with their activations, as shown in Figure 16.  

 

Figure 16: Converting TensorFlow Keras Layers to their QKeras Counterparts 

All other training hyperparameters were left unmodified from the baseline model’s 

training routine. This began the model in a random initialization state and trained it for the same 

number of epochs as the baseline but with the new 12-bit parameters. Performing QAT this way 

allowed the model to learn from the training dataset in the lower 12-bit width and improve its 

accuracy through minimizing the loss function with quantization noise present. Once the 

quantized model was trained, it was then pruned at various pruning ratios to determine the 

highest percentage of weights it could remove without greatly reducing model performance. 

4.6.2 Pruning 

 This thesis pruned the quantized and fine-tuned KWS model’s low-magnitude weights to 

a target sparsity of 50%. An additional 50 epochs were used after QAT to iteratively prune 

unimportant weights from the model. This was the final step in model optimization as it required 

a fully trained model to find weights that did not significantly affect the output. Lastly, the 

optimized and compressed model was converted into a compatible FPGA digital circuit using 



56 
 

hls4ml to produce an FPGA block design and bitfile that could be programmed onto the target 

FPGA development platform. 

4.7 Target FPGA Hardware 

 

Before converting the KWS neural network into an FPGA design with hls4ml, the target 

FPGA had to be selected. This was a preliminary requirement because the FPGA’s resources 

needed to be known to appropriately utilize hls4ml’s customization hyperparameters. As such, 

the PYNQ-Z2 was chosen as the deployment platform which is shown in Figure 17 along with its 

intended configuration for the real-time KWS task. The PYNQ-Z2 is an FPGA System-on-Chip 

(SoC) development platform consisting of a dual ARM Cortex-A9 microprocessor and a directly 

attached FPGA fabric. Its ARM core Processing System (PS) and its FPGA Programmable Logic 

(PL) communicate with one another to control on-board peripherals and implement custom 

FPGA functions. 

 

Figure 17: PYNQ-Z2 Development Kit and Thesis Application. PYNQ-Z2 Screenshot in [22]. 

The PS runs on the PYNQ v3.0.1 image which is an Ubuntu-like operating system where 

the primary programming environment is through Jupyter notebooks using the Python 



57 
 

programming language which allowed for communication between the ARM processor and 

directly attached FPGA fabric. Preprocessing and posterior handling for the model was 

performed on the PS side while the model and keyword inference occurred completely on the PL 

side. This resulted in a system that could classify utterances in real-time with extremely low 

latencies through a user-interface on the PYNQ-Z2 development board and could provide visual 

confirmations of the classified keyword and inference time through a graphical Jupyter 

notebook. 

4.8 Converting KWS Model into an FPGA Block Design 

Using the hls4ml package required a Linux environment to allow it to interface with 

Vivado and Vivado HLS for configuring, synthesizing, and implementing the model to ultimately 

generate its bitfile that could be programmed onto the FPGA. To do so, a Python program was 

written to configure the necessary hyperparameters to balance very low-latency inferences with 

FPGA resource utilization and to invoke the hls4ml package to generate the design as shown in 

Figure 18. 

 

Figure 18: Invoking hls4ml Package to Convert the KWS Model into an FPGA Design 



58 
 

This study focused on minimizing inference latency and maximizing throughput, so the 

reuse factor was set to 36 for each layer so that the model’s unrolled to the greatest extent while 

not using every available DSP slice on the FPGA. The overall model reuse factor was set to one 

so that it would be completely unrolled at the model-wide level, although it required more 

resources. The precision was set to use the same bit-width used during model quantization with 

12-bits to ensure the model outputs would exactly match the TensorFlow-trained model’s outputs 

for the same input sequence. Additional code necessary for performing the conversion is shown 

in Appendix A.2. Having the FPGA block design with the KWS model as an IP block allowed 

the overall real-time system to be designed with a few changes. 

4.9 Implementing Real-Time KWS System on the PYNQ-Z2 

Implementing the real-time KWS system required taking the FPGA block design 

generated from Vivado HLS and hls4ml and programming it to the PYNQ-Z2. Before this was 

possible, the FPGA design needed to be modified in Vivado to include the ability to control the 

on-board peripherals like the buttons, LEDs, and most importantly the audio codec. Furthermore, 

additional Python code was written to run on the PS for sampling the audio signals with the 

audio codec, converting the audio signal into a compatible 16kHz data stream, and then 

transferring the extracted MFCC features to the PL for inference. First, the necessary additions 

were made to the base hls4ml block diagram as shown in Figure 19. 



59 
 

 

Figure 19: Top-Level Block Diagram of Full FPGA KWS System 

 The top-level diagram in Figure 19 shows the ZYNQ processing system which handles 

all the interfacing between the programmable logic in the FPGA to the ARM processor primarily 

based on the AXI bus protocol and Direct Memory Access (DMA) connections. The central IP 

block hierarchy represents the KWS 1-D CNN neural network which is shown expanded in 

Figure 20. 

 

Figure 20: Expanded Neural Network IP Block 



60 
 

 The hls4ml-generated hierarchy contains the “demo_model” IP containing the model 

used for the final demonstration of this thesis along with an AXI DMA IP block. The AXI DMA 

manages all the needed operations for rapidly transferring audio feature inputs and the predicted 

class outputs to and from the PS. The additional blocks that were needed included the AXI GPIO 

IP blocks and the audio codec controller to interface the PYNQ-Z2’s audio codec IC to the PS. 

These blocks are shown in Figure 21. 

 

Figure 21: GPIO and Audio Codec Control Blocks 

These blocks allowed for the PYNQ-Z2’s onboard peripherals to be interacted with by a 

user in the real-time KWS system. To interface the PS with the PL, driving Python code was 

written for the PYNQ-Z2’s Jupyter notebook environment to match the system-level operation 

diagram in Figure 22. 

 



61 
 

 

Figure 22: PYNQ-Z2 Driving Software Diagram 

This software flow enabled users to observe a blue LED that indicated the system was 

ready to classify another keyword. Pressing the record button enables a green LED to indicate 

that the speaker should utter their word and then it samples the audio port for one-second and 

stores the resulting audio data into a buffer. The audio codec on the PYNQ-Z2 samples the audio 

with dual channels (interleaved) at 48kHz and as 24-bit PCM data, so it needed to be converted 

into mono audio at 16kHz and then normalized. This was accomplished by separating the two 

interleaved channels, taking the average of every sample pair, and then taking every third point 



62 
 

to resample the signal at 16kHz. Since it was chosen to normalize the audio signal itself, the 24-

bit PCM data of the real-time audio compared to the 16-bit PCM data of the training dataset was 

not an issue as normalization shifts them to the same scale. Then, the same preprocess function 

from the training routine shown in Figure 12 was applied. To perform inference on the extracted 

MFCCs, a DMA transfer signal is sent to the PL which begins the parallel transfer of each point 

and then the PS waits until the KWS model IP block sends a ready signal back to the PS. When 

the data-ready signal from the PL is received the prediction scores from the FPGA DMA buffer 

are stored into a Python list. Finally, with posterior processing, the predicted keyword is 

displayed into the Jupyter notebook along with a bar graph showing the Softmax of the output 

and the probability distribution the model assigned to that audio input. The simplified Jupyter 

notebook code that achieved the functionality described in Figure 22 is shown in Appendix A.3 

and uses the base overlay for all board I/O and the KWS neural network for fast inference. An 

example output of this program is also demonstrated in Figure 23. 

 

Figure 23: Example Output of Real-Time KWS System on the PYNQ-Z2 

The predicted keyword is shown along with the amount of time it took the FPGA to 

compute and transfer its predicted classes to the PS. Since the Softmax function was applied to 



63 
 

the output scores of the model in posterior handling, the bar graph shows a representation of how 

confident it was that a particular keyword was present in the audio signal. Here, thresholding 

could be applied to set the required confidence needed for classifying a keyword over classifying 

the input as Unknown. In this example, the highest-scoring class was chosen as the accepted 

class. This functioning design completed the real-time KWS system that utilized FPGA for 

hardware acceleration to allow users to classify keywords from their own utterance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

Chapter 5: Results 

 

 Various types of post-training evaluation methods were applied, such as top-one 

accuracy, confusion matrices, and a t-distributed stochastic neighbor embedding (t-SNE) metric, 

to compare the performance of the baseline, unquantized and uncompressed model to the 

optimized model. In addition, the models of this thesis were compared to the state-of-the-art 

optimized models in related literature. In addition, the model’s inference latency was evaluated 

across several different computing platforms to determine if FPGAs are successful machine 

learning model accelerators. 

5.1 Baseline Model vs Optimized Model Performance 

 Both the baseline model and the optimized model were trained and evaluated with the 

same dataset partitions, and both performed with high accuracy. The test dataset partition was 

used for each all the evaluation methods and was never seen by the model during training or 

validation. Table 4 summarizes the results of evaluating both models with the test dataset. 

Table 4: Base Model and Optimized Model Evaluation and Parameters 
 

Model Accuracy (%) Sparsity (%) Parameter Count Size (KB) 

Baseline 91.48 0.000 7772 30.36 

Optimized 90.16 48.88 7772 11.38 

 

The baseline model achieved a 91.48% top-one accuracy with 7,772 parameters taking up 

30.36 Kilobytes in total, and naturally had no sparsity. The optimized model was fine-tuned to 

achieve a 90.16% top-one accuracy for a negligible 1.32% accuracy degradation from the base 

model with effectively 62.5% of the size. The target sparsity of the optimized model was 50% 

but achieved 48.88% sparsity within the given 50 pruning epochs. Adjusted for the 12-bit 



65 
 

quantized weights, the optimized model takes up only 11.38 Kilobytes for a size-reduction factor 

of 2.667. 

Another method of evaluating the model’s performance for each keyword is the 

confusion matrix, shown in Figure 24, which displays the distribution of true labels verses the 

actual predictions for each keyword. 

 

Figure 24: (Left) Confusion Matrices for Base Model (Left) and Compressed Model (Right) 

 

The confusion matrices better show the models’ abilities to classify each class correctly. 

Along the diagonals are the overall top-one accuracy for each class when evaluated against the 

test set. Some keywords perform better than others, but both the base model and the optimized 

model have similar confusion matrices and accuracies across keywords. Other words saw 

slightly improved classification accuracies in the compressed model, shown as the circled cells in 

the right matrix of Figure 24, with its simpler representation of the feature space and due to 

better numerical regularization. Overall, only minor accuracy degradations were seen across the 

keywords. 

In addition to accuracy metrics, a t-distributed stochastic neighbor embedding metric was 

applied to the output layer of the optimized model. The resulting t-SNE scatterplot in Figure 25 



66 
 

shows how well the optimized model was able to distinguish different keywords from one 

another. 

 

Figure 25: t-SNE Class Separation Visualization 

 

This t-SNE plot demonstrates that the model was able to separate keywords with both 

high accuracy and with good confidence. Each keyword was placed tightly in its own region with 

good separation between other keywords indicating that the  model could score a particular true 

keyword with a significantly higher value than the other keywords for most inferences. Notably, 

the large region of unknown samples was widespread across the plot which indicates the wide 

range of phonetic and speaker variability in the dataset. Further comparisons were done to 

evaluate these KWS models against state-of-the-art models in literature. 



67 
 

5.2 Performance Comparison to Related Work 

There are many deep KWS models that vary in their neural network architectures, 

complexities, and performances. Zhang et al. [19] previously discussed in the literature review of 

section three, describes many of these different model types and provides metrics for each of 

them based on the goal of making highly accurate models for embedded system deployment. The 

models evaluated were comparable in size and performance to the model of this thesis and are 

summarized in Table 5 by showing the smallest models trained from each model architecture 

type. 

Table 5: Comparison Between My Thesis’ Models and Zhang et al.’s Reviewed 8-Bit Models 

Model Accuracy (%) Size (KB) 

My Thesis 

1-D CNN 12-bit quantized 90.16 11.38 

1-D CNN 32-bit 91.48 30.36 

Zhang et al. [19] 

DS-CNN 94.40 38.60 

Basic LSTM 92.00 63.30 

GRU 93.50 78.80 

2-D CNN 91.60 79.00 

LSTM 92.90 79.50 

CRNN 94.00 79.70 

DNN 84.60 80.00 

 

Many of the models from [19] employ recurrent architectures like the Gated Recurrent 

Unit, Long Short-Term Memory. and the Convolutional Recurrent Neural Network. These 

models are better equipped to take advantage of long-term temporal dependencies in the input 

features compared to 1-D CNNs which are limited in their ability to extract distant temporal 

contexts.  

However, the baseline 1-D CNN model of this thesis competitively achieved an accuracy 

of 91.48% which exceeded the DNN’s accuracy by 6.88% with 62.05% less storage and fell just 



68 
 

short of the basic LSTM’s accuracy by 0.52% but with 52.03% less storage. The baseline model 

also had an accuracy near Zhang et al.’s most accurate model, the DS-CNN for a difference of 

2.92% with this thesis’ model requiring 21.35% less storage.  

Although the 1-D CNN of this thesis had an accuracy that appeared to be approaching the 

DS-CNN’s, the hyperparameter grid search demonstrated that this thesis’s KWS model may need 

to grow to a much larger size to achieve greater accuracy performance. The achieved 91.48% 

performance was accomplished with a meticulously crafted approach and is expected to be much 

more purpose-built than most other practical machine learning models and was observed to 

resemble the peak performance that a model of this size could achieve. Breaking the 92% 

accuracy mark required models that quickly grew beyond the size of the small footprint models 

discussed in this comparison, so the DS-CNN’s performance is highly impressive with such a 

small size. 

Overall, these results indicate that the 1-D CNN is capable of being competitive with 

models that can gather longer-term dependencies but with the 1-D CNN requiring far fewer 

parameters, especially when optimized with quantization and pruning techniques. After 

completing the evaluation of the models’ accuracies, it was deployed onto FPGA hardware to 

assess its inference latency and resource utilization. 

5.3 FPGA Acceleration Results 

 Both models were evaluated for their inference latency across three devices as 

summarized in Table 6. It is important to note that within every latency metric, the exhibited 

performance always depends on how advanced the device is. Thus, the exact inference latency 

will vary slightly between different CPUs, GPUs, and FPGAs. Similarly, the GPU required 

“warm-up” batches of inferences so that the proper resource communication channels could be 



69 
 

established in the computer. For consistency, each device type was warmed up prior to evaluating 

inferences, and the inference latencies were evaluated on batches of 1000 to ensure accurate 

measurements. Thus, running inference on singular samples unregularly was expected to exhibit 

longer than usual latencies. 

Table 6: Batched Model Inference Latency on Various Device Architectures for 1000 Samples 

 

Device 
Baseline Model 

Latency (ms) 

Optimized Model 

Latency (ms) 

AMD Ryzen7 Pro 6850U CPU 4.335 4.335 

NVIDIA GeForce RTX 4050 Laptop GPU 2.191 2.191 

Pynq-Z2 FPGA - Base Model 0.374 0.373 

 

The models were specifically evaluated for comparison on a high-end CPU, an NVIDIA 

GPU, and finally the PYNQ-Z2 FPGA. Prior to evaluating latency, each device was warmed up 

by classifying a batch of 1000 samples. First, the CPU was evaluated with another 1000 samples 

which produced an average batched inference time of 4.335ms per sample for the base model. 

These times were reduced when using an NVIDIA GeForce RTX 4050 Laptop GPU to get an 

average batched inference latency of 2.191ms per inference. An even greater reduction in time 

was seen when inference was run on the FPGA with the optimized model which demonstrated a 

speedup of 11.6 times over the CPU inference and a speedup of 5.9 times over the GPU 

inference with classifications completing in 373µs, on average. Also, running inference on single 

samples on the PYNQ-Z2 in real-time with no warmup demonstrated inference latencies between 

1.1ms and 1.8ms which still beat the performance of the CPU and GPU even in their batched 

runs of classifications. 

Based on these results, the compression of the model did not have obvious side effects in 

its latencies with respect to its baseline implementation. This can be attributed to two reasons. 

For one, the model only had 7,772 parameters and therefore a comparably low number of MACs 



70 
 

to complete, so compressing it further may not have obvious symptoms in inference latency 

across devices. The second and more dominating reason was that the CPU and GPU tests could 

not account for the custom 12-bit resolution and instead stored the 12-bit values as 32-bit 

numbers in memory. They also provided no optimization for zero-based multiplications. In 

addition, the FPGA implementations offered nearly identical latencies primarily due to the same 

reuse factor being used when synthesizing the design with hls4ml. Despite small differences 

between the latencies of the baseline and compressed models, these results demonstrate that 

FPGAs can accelerate the inference of KWS models beyond the ability of GPUs with 

application-specific hardware implementations. 

The 0.373ms latency of the model in this thesis also beat out all the models described in 

the study of [20] which achieved latencies between 10ms and 116ms. Similarly, the compressed 

version of the KWS models from this thesis had a smaller size than all the reviewed models 

except for two which achieved 11KB and 2KB. However, despite achieving faster latencies and 

mostly smaller model sizes than the works in [20], all the reviewed models utilized extremely 

small bit widths between 1-bit and 8-bit with even more complicated network architectures. 

Those reviewed in [20] exhibit special cases of using as few bits as possible to achieve accurate 

neural networks that may have been able to achieve slightly higher accuracies had this not been a 

primary focus. 

Finally, beyond latency, FPGA resource utilization was also benchmarked for both 

models to see if optimizing the KWS models could provide significant utilization reductions. 

These results are summarized in Table 7. 

 

 



71 
 

Table 7: FPGA Resource Utilization of KWS Model 

 

FPGA 

Resource 

PYNQ-Z2 

Total 

Base 

Model 

Utilization 

(Count) 

Base 

Model 

Utilization 

(%) 

Optimized 

Model 

Utilization 

(Count) 

Optimized 

Model 

Utilization 

(%) 

% Usage 

Reduction 

w/ QAT 

Slice 

LUTs 
53200 25762 48.42 25496 47.92 1.03 

Slice 

Registers 
106400 41867 39.35 38996 36.65 6.86 

Slice 13300 11309 85.03 10831 81.44 4.23 

BRAM 

Tiles 
140 53 37.86 49 35.00 7.55 

DSPs 220 93 42.27 92 41.82 1.08 

 

It was observed that the compressed model did provide a reduction in resource usage 

across each category over the baseline as expected. Overall, these differences were slight but 

could be improved further by modifying the reuse and quantization parameters in the hls4ml 

configuration. The greatest reduction was in BRAM usage of the compressed model which 

corresponds to its higher usage of slice LUTs which are accessed faster by the FPGA hardware 

and were likely able to store the zero-based multiplication parameters. In addition, although they 

were implemented with the same reuse factor, the baseline model utilized one more DSP than the 

compressed model which was likely due to the zero-based multiplication optimization being 

implemented with simpler circuitry than a DSP block. This was also largely due to the model 

having so few parameters which left little room for FPGA synthesis optimization. Ultimately, 

FPGAs proved successful in accelerating the KWS model developed in this thesis. 

 



72 
 

Chapter 6: Future Work 

 

While this research has provided significant insights into small footprint KWS models 

and accelerating them with FPGAs, there are several avenues for future exploration and 

development that can build upon the findings of this research. First, ignoring the many privacy 

concerns regarding speech-recognizing consumer electronics, the implementation of the real-

time KWS system on the PYNQ-Z2 could be extended to operate in streaming mode with 

“always on” or “always listening” behavior similar to the application in Figure 26.  

 

Figure 26: Streaming KWS Application 

This thesis implemented the real-time system with a button that is pressed before 

recording and classifying a one-second audio file. This portion of the implementation can be 

modified to perform streaming KWS which continuously takes in new audio information and 

performs inference on overlapping segments of it to detect keywords as they are uttered in the 

environment instead of only on button presses. In this approach, topics like thresholding and 

refractory periods on the classification outputs are expected to be important in having a 

meaningful streaming KWS system. KWS models that operate on the actual hardware can be 



73 
 

exempt from concerns about speech recognition privacy in “always on” systems because, other 

than the buffering needed to perform inference, there is no true storage or transmission of the 

user’s speech. 

Another separate extension of the work done in this thesis would be to add voice activity 

detection (VAD) to the real-time implementation as shown in Figure 27. 

 

Figure 27: Voice Activity Detection for KWS 

 VAD allows a KWS system to only perform classifications when it is likely that voice 

activity is present in the audio stream. This mitigates excessive energy use and unnecessary 

keyword classifications when there is no speech in the environment. This type of extension 

would be particularly important for low-energy embedded systems and for wake word 

applications. 

 One final recommended extension of the research done in this thesis is to combine the 

MFCC feature extraction pipeline and the KWS neural network into a singular FPGA IP block as 

shown in Figure 28. 



74 
 

 

Figure 28: End-to-End KWS System 

 Combing both portions of the entire KWS system would provide an end-to-end KWS 

system and achieve even faster overall inference latencies by accelerating both KWS inference 

and feature extraction at the same time. There are many other avenues that could be explored to 

build off the work done in this thesis, too, but these examples serve as a good starting point to 

gain a better understanding of other issues that revolve around implementing real-time KWS 

systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

Chapter 7: Conclusion 

 

 This thesis described a lightweight keyword spotting (KWS) model that achieved a 

baseline accuracy of 91.48% with only 7,772 weights, or 30.36 KB of storage with 32-it floating 

point parameters. The model, trained using Google Speech Commands V2 dataset, used a 1-D 

CNN architecture to extract short-term temporal dependencies in the MFCC input features. Class 

balancing and weighting techniques were used to achieve the greatest training performance and 

accurately model a realistic KWS system. Furthermore, an optimized and compressed version of 

the model was developed using quantization and pruning techniques which reduced the model’s 

bit-widths to 12-bits resulting in model that was 48.88% sparse with only a minor accuracy 

degradation of 1.32%. These metrics compared well with high-performance light-weight 

recurrent models in literature with up to a 62.5% reduction in model size of the largest 8-bit 

models that were evaluated. 

In addition, FPGAs were utilized as the target deployment platform to evaluate their 

effectiveness in accelerating the inference of KWS models. The models were converted into an 

FPGA digital circuit with the hls4ml package, and deploying it demonstrated average inference 

latencies of 178µs. This corresponded with large speedups of up to 11.6 times and 5.86 times 

over CPU and GPU latencies, respectively. These metrics show that FPGAs are very effective in 

accelerating CNN-based neural network architectures and KWS models, and that they can 

achieve latencies much faster than GPUs with purpose-built digital circuits. 

This thesis demonstrated that accurate and fast KWS models can be achieved with very 

few parameters. It utilized promising evidence in literature of neural network techniques for the 

KWS task and accelerating them with FPGAs and furthered research in the areas. Doing so 

provided a basis for utilizing FPGAs as a precursor to KWS ASICs that can be dropped onto any 



76 
 

embedded system to provide speech recognition capabilities. Additionally, this thesis improved 

the overall effectiveness of these technologies in recognizing keywords, thereby contributing to 

advancements in the field of speech recognition and enhancing the applicability of KWS models 

in various real-world scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 



77 
 

Appendices 

 

Appendix A – Code 

A.1 Defining Mel-Filterbank 

 

def save_mel_filterbank(): 

    mel_filterbank = tf.signal.linear_to_mel_weight_matrix( 

        num_mel_bins=24, 

        num_spectrogram_bins=128, 

        sample_rate=16000, 

        lower_edge_hertz=20, 

        upper_edge_hertz=7400) 

 

    np.save("tf_mel_filterbank24.npy", mel_filterbank) 

 

A.2 FPGA Conversion of Quantized TensorFlow Model with hls4ml 

 

import hls4ml 

 

### For Synth 

from pathlib import Path 

import pprint 

import os 

import time 

import tensorflow as tf 

from matplotlib import pyplot as plt 

import numpy as np 

from qkeras.utils import _add_supported_quantized_objects 

 

# Add quantization layers so hls4ml can use them 

co = {} 

_add_supported_quantized_objects(co) 

 

# Load the TensorFlow Keras model and convert it into an HLS configuration 

model = tf.keras.models.load_model('TrainedModels/30kb_kws_model.h5', 

custom_objects=co) 

hls_config = hls4ml.utils.config_from_keras_model(model, granularity='name') 

 

# Set the precision and reuse factor for the full model 

hls_config['Model']['Precision'] = 'ap_fixed<12,6>' 

hls_config['Model']['ReuseFactor'] = 1 

hls_config['Model']['Strategy'] = 'Resource'                # 'Resource' or 

'Latency' 

for Layer in hls_config['LayerName'].keys(): 

    hls_config['LayerName'][Layer]['Strategy'] = 'Resource' # 'Resource' or 

'Latency' 

    hls_config['LayerName'][Layer]['ReuseFactor'] = 36 

 

cfg = hls4ml.converters.create_config(backend='VivadoAccelerator') 

cfg['IOType'] = 'io_stream'     # Must set this to 'io_stream' if using CNNs 



78 
 

cfg['HLSConfig'] = hls_config 

cfg['KerasModel'] = model 

cfg['ProjectName'] = '30kb_kws_model' 

cfg['OutputDir'] = '30kb_kws_model_hls4ml/30kb_kws_model' 

cfg['Part'] = 'xc7z020clg400-1'  # 'xc7z020clg400-1' for the Zynq-7020 

cfg['Board'] = 'pynq-z2' 

hls_model = hls4ml.converters.keras_to_hls(cfg) 

 

# Compile, synthesize, implement, and generate the bitstream 

hls_model.compile() 

hls_model.build(csim=False, export=True, bitfile=True) 

 

 

A.3 Real-Time KWS Deployment Jupyter Notebook 

 

classes = [ 

    'Down', 

    'Go', 

    'Left', 

    'No', 

    'Off', 

    'On', 

    'Right', 

    'Silence', 

    'Stop', 

    'Unknown', 

    'Up', 

    'Yes' 

] 

 

# Initially download overlays for speedier downloads later 

print("Downloading overlays") 

base = BaseOverlay("base.bit") 

 

# Prepare initial audio recording 

pAudio = base.audio 

pAudio.set_volume(45) 

pAudio.select_microphone() 

 

# Turn off all LEDs 

for led in base.leds: 

    led.off()   

     

blue_led_on() 

     

print("Ready!") 

while(1): 

    if(base.buttons[3].read()==1): 

         

        blue_led_off() 

        green_led_on() 

        pAudio.record(1) 

        pAudio.save("recorded_keyword.wav") 

        green_led_off() 

         

        pAudio.load("recorded_keyword.wav") 

        pAudio.play() 



79 
 

         

        # Clear Jupyter Notebook output 

        clear_output(wait=True) 

         

        rate, data = wavfile.read("recorded_keyword.wav") 

 

        # Convert from stereo to mono 

        left_chan = data[:, 0] 

        right_chan = data[:, 1] 

        data = (left_chan + right_chan) / 2.0 

         

        # Downconvert from 48kHz to 16kHz audio 

        data = pad_audio(data, 48000) # Pad to ensure final audio length is 16,000 

        data = data / 16777216.0      # Normalize data for 24-bit width 

        data = data[::3]              # Resample 48 kHz audio to 16 kHz by taking 

every 3rd sample 

         

        mfccs = get_mfccs(data) 

        plot_audio_waveform(data, 16000) 

        plot_mfcc(mfccs) 

         

        mfccs = np.expand_dims(mfccs, axis=0) 

         

        # Download KWS overlay 

        kws = NeuralNetworkOverlay("kws_model.bit", (2,127,24), (2,12)) 

         

        # Predict recorded audio 

        t_start = time.time() 

        y_hw = kws.predict(np.ascontiguousarray(mfccs), profile=False) 

        t_end = time.time() 

         

        prediction = get_prediction(y_hw[0].tolist()) 

     

        # Display prediction as highest scoring keyword 

        print(f"Predicted Keyword '{prediction}' in {((t_end - t_start) * 

1000000):.4f} us") 

        plot_bar(y_hw[0].tolist(), prediction, classes)  

         

        # Redownload base overlay for I/O usage 

        base.download() 

        print("Ready!") 

        blue_led_on()     

 

 

 

 

 

 

 

 



80 
 

References 

 

[1] I. López-Espejo, Z. H. Tan, J. H. L. Hansen and J. Jensen, "Deep Spoken Keyword 

Spotting: An Overview," in IEEE Access, vol. 10, pp. 4169-4199, 2022, 

doi:10.1109/ACCESS.2021.3139508 

 

[2] S. Li, G. Li, J. Han and T. Zhi, “Overview of Speech Keyword Recognition Technology,” 

in J. Phys.: Conf. Ser. Vol. 1827, 6th ICETIS, Harbin, China, 2021, doi: 10.1088/1742-

6596/1827/1/012013 

 

[3] G. S. Nikolić, B. R. Dimitrijević, T. R. Nikolić and M. K. Stojcev, "A Survey of Three 

Types of Processing Units: CPU, GPU and TPU," 2022 57th International Scientific 

Conference on Information, Communication and Energy Systems and Technologies 

(ICEST), Ohrid, North Macedonia, 2022, pp. 1-6, doi: 

10.1109/ICEST55168.2022.9828625 

 

[4] C. Wang and Z. Luo, “A Review of the Optimal Design of Neural Networks Based on 

FPGA,” in Appl. Sci. vol. 12, no. 58, Sept. 2022, doi: 

https://doi.org/10.3390/app122110771 

 

[5] P. Vitolo, R. Liguori, L. D. Benedetto, A. Rubino and G. D. Licciardo, "Automatic Audio 

Feature Extraction for Keyword Spotting," in IEEE Signal Processing Letters, vol. 31, 

pp. 161-165, 2024, doi: 10.1109/LSP.2023.3346280 

 

[6]  M. N. Kunchur, “The human auditory system and audio,” Applied Acoustics vol. 211, 

2023, doi: https://doi.org/10.1016/j.apacoust.2023.109507 

 

[7] Gourisaria, M.K., R. Agrawal, M. Sahni and P. K. Singh, “Comparative analysis of audio 

classification with MFCC and STFT features using machine learning techniques.” in 

Discover Internet of Things, vol. 4, no. 1, 2024, doi: https://doi.org/10.1007/s43926-023-

00049-y 

 

[8] Z. K. Abdul and A. K. Al-Talabani, "Mel Frequency Cepstral Coefficient and its 

Applications: A Review," in IEEE Access, vol. 10, pp. 122136-122158, 2022, doi: 

10.1109/ACCESS.2022.3223444 

 

[9] A. Shenfield and M. Howarth, “A Novel Deep Learning Model for the Detection and 

Identification of Rolling Element-Bearing Faults,” in Sensors, vol. 20. no. 5112, doi: 

10.3390/s20185112 

 

[10] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj and D. J. Inman, “1D 

convolutional neural networks and applications: A survey,” in Mech. Systems and Signal 

Process., vol. 151, 2021, doi: https://doi.org/10.1016/j.ymssp.2020.107398 

 



81 
 

[11] T. Choudhary, V. Mishra, A. Goswami and J. Sarangapani, “A comprehensive survey on 

model compression and acceleration,” in Artif. Intell. Review, vol. 53, pp. 5113-5115, 

Feb. 2022, doi: https://doi.org/10.1007/s10462-020-09816-7 

 

[12] Y. Guo, “A Survey on Methods and Theories of Quantized Neural Networks,” 2018, 

arXiv:1808.04752 

 

[13] J. Bushur and C. Chen, “Neural Network Exploration for Keyword Spotting on Edge 

Devices,” in Future Internet, vol. 15, no. 6, 2023, doi: https://doi.org/10.3390/fi15060219 

 

[14] S. K. Yeom et al., “ Pruning by explaining: A novel criterion for deep neural network 

pruning,” in Pattern Recognition, vol. 155, July 2021, doi: 

https://doi.org/10.1016/j.patcog.2021.107899 

 

[15] A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression," in IEEE 

Circuits and Sys. Mag., vol. 21, no. 2, pp. 4-29, Secondquarter 2021, doi: 

10.1109/MCAS.2021.3071607 

 

[16] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for particle physics,” 

in JINST, vol. 13, July 2018, doi: 10.1088/1748-0221/13/07/P07027 

 

[17] T. N. Sainath and C. Parada, “Convolutional neural networks for small-footprint keyword 

spotting,” in Proc. Interspeech 2015, pp. 1478-1482, doi: 10.21437/Interspeech.2015-352 

 

[18] P.M. Sørensen, B. Epp and T. May, “A depthwise separable convolutional neural 

network for keyword spotting on an embedded system,” in EURASIP J. on Audio, 

Speech, and Music, vol. 10, 2022, doi: https://doi.org/10.1186/s13636-020-00176-2 

 

[19] Y. Zhang, S, Naveen, L. Lai and V. Chandra, “Hello Edge: Keyword Spotting on 

Microcontrollers,” 2018, arXiv:1711.07128v3 

 

[20] S. Bae, H. Kim, S. Lee and Y. Jung, “FPGA Implementation of Keyword Spotting 

System Using Depthwise Separable Binarized and Ternarized Neural Networks,” in 

Sensors, vol. 23, no. 12, 2023, doi: https://doi.org/10.3390/s23125701 

 

[21] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary Speech 

Recognition,” 2018, arXiv:1804.03209 

 

[22] “PYNQ-Z2 Product Page.” AMD.com. Accessed: Jul. 18, 2024. [Online.] Available: 

https://www.amd.com/en/corporate/university-program/aup-boards/pynq-z2.html 


	Development and Optimization of a 1-Dimensional Convolutional Neural Network-Based Keyword Spotting Model for FPGA Acceleration
	ScholarWorks Citation

	tmp.1722876099.pdf.xXHAc

