Discovering Residential Electric Usage Patterns: A Data Mining Approach
Document Type
Thesis
Advisors
Dr. Jamal Alsabbagh, alsabbaj@gvsu.edu
Committee Members
Dr. Yonglei Tao, taoy@gvsu.edu; Dr. Jerry Scripps, scrippsj@gvsu.edu
Embargo Period
12-9-2010
Abstract
The goal of this research was to discover patterns in hourly residential electricity usage. Understanding such patterns will allow management at the utility to design and offer appropriate incentives to its customers to influence their usage habits and, consequently, reduce the costs associated with providing electricity. Hourly electric consumption data was acquired for a subset of residential customers within the Holland Board of Public Works’ (Holland BPW) service territory in Holland, Michigan. SQL Server 2005 was used for data compilation and pre-processing. Machine learning algorithms were applied using R, a free software environment for statistical computing and graphics, with Kohonen Self Organizing Maps (SOMs) employed for discovering usage patterns within the time-series data. The resulting discoveries offered useful insight to management at the Holland BPW and form a solid foundation for further investigation
ScholarWorks Citation
Hendershot, Mary, "Discovering Residential Electric Usage Patterns: A Data Mining Approach" (2010). Technical Library. 138.
https://scholarworks.gvsu.edu/cistechlib/138