First Advisor

David L Geenen

Keywords

Stem cell therapy, myocardial infarction, mBM-MSCs, connexin-43, gap junction, gap junction intercellular communication

Disciplines

Cardiology | Cardiovascular System | Cells

Share

COinS
 

Abstract

Stem cell therapy can be beneficial following myocardial infarction. However, when murine bone marrow-derived mesenchymal stem cells (mBM-MSCs) are injected into the ischemic area, a large percentage of these cells undergo apoptosis resulting in decreased therapeutic benefits. We hypothesize that the loss of these mBM-MSCs is regulated by intercellular channels or gap junctions (GJs) that provide apoptotic signals passed between ischemic cardiomyocytes and mBM-MSCs. Our research aims to attenuate these GJs by suppressing Connexin-43 (Cx43) expression, the predominant channel-forming protein. We will accomplish this by transiently transfecting a Cx43 siRNA into mBM-MSCs. Our data demonstrate that intracellular fluorescent dyes and FACS analysis can quantify cell-cell coupling between mBM-MSCs in co-culture. Disrupting Cx43 expression will identify a potential therapeutic target for increasing the retention of mBM-MSCs following myocardial infarction.