Medical Sciences


Heterochrony has been invoked to explain differences in the morphology of modern humans as compared to other great apes. The distal femur is one area where heterochrony has been hypothesized to explain morphological differentiation among Plio-Pleistocene hominins. This hypothesis is evaluated here using geometric morphometric data to describe the ontogenetic shape trajectories of extant hominine distal femora and place Plio-Pleistocene hominins within that context. Results of multivariate statistical analyses showed that in both Homo and Gorilla, the shape of the distal femur changes significantly over the course of development, whereas that of Pan changes very little. Development of the distal femur of Homo is characterized by an elongation of the condyles, and a greater degree of enlargement of the medial condyle relative to the lateral condyle, whereas Gorilla are characterized by a greater degree of enlargement of the lateral condyle, relative to the medial. Early Homo and Australopithecus africanus fossils fell on the modern human ontogenetic shape trajectory and were most similar to either adult or adolescent modern humans while specimens of Australopithecus afarensis were more similar to Gorilla/Pan. These results indicate that shape differences among the distal femora of Plio-Pleistocene hominins and humans cannot be accounted for by heterochrony alone; heterochrony could explain a transition from the distal femoral shape of early Homo/A. africanus to modern Homo, but not a transition from A. afarensis to Homo. That change could be the result of genetic or epigenetic factors.

Original Citation

Tallman, M. (2016). Shape Ontogeny of the Distal Femur in the Hominidae with Implications for the Evolution of Bipedality. PLOS ONE, 11(2), e0148371. https://doi.org/10.1371/journal.pone.0148371