Keywords

fat quantification, obesity, quantitative biomarker, Hounsfield units, fat signal fraction

Disciplines

Physiology

Abstract

Beyond estimation of depot volumes, quantitative analysis of adipose tissue properties could improve understanding of how adipose tissue correlates with metabolic risk factors. We investigated whether the fat signal fraction (FSF) derived from quantitative fat–water magnetic resonance imaging (MRI) scans at 3.0 T correlates to CT Hounsfield units (HU) of the same tissue. These measures were acquired in the subcutaneous white adipose tissue (WAT) at the umbilical level of 21 healthy adult subjects. A moderate correlation exists between MRI- and CT-derived WAT values for all subjects, R2=0.54, p<0.0001, with a slope of −2.6, (95% CI [−3.3,−1.8]), indicating that a decrease of 1 HU equals a mean increase of 0.38% FSF. We demonstrate that FSF estimates obtained using quantitative fat–water MRI techniques correlate with CT HU values in subcutaneous WAT, and therefore, MRI-based FSF could be used as an alternative to CT HU for assessing metabolic risk factors.

Comments

Copyright 2015 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.

Original Citation

Gifford, A., Walker, R. C., Towse, T. F., & Welch, E. B. (2015). Correlations between quantitative fat-water magnetic resonance imaging and computed tomography in human subcutaneous white adipose tissue. Journal of Medical Imaging (Bellingham, Wash.), 2(4), 046001. https://doi.org/10.1117/1.JMI.2.4.046001

Included in

Physiology Commons

Share

COinS