Mechanical Foundations of the Second Law of Thermodynamics
Presentation Type
Poster/Portfolio
Presenter Major(s)
Physics
Mentor Information
Milun Rakovic, rakovicm@gvsu.edu
Department
Physics
Location
Kirkhof Center KC38
Start Date
13-4-2011 11:00 AM
End Date
13-4-2011 12:00 PM
Keywords
Mathematical Science, Physical Science
Abstract
Coffee creamer is readily seen to diffuse into coffee, but once mixed, never observed to separate back. The 2nd law of Thermodynamics describes this nonreversible event by stating a closed system not in equilibrium will evolve until it approaches its maximum value of entropy in which case the system has reached equilibriumand its macrostate will not change. Interestingly, the dynamical equations used to describe all macroscopic systems' microscopic constituents are time symmetric, implying the time reversed evolution of any process should also be physically possible. This study analyzes the works of Boltzmann, Gibbs, and others who have sought to derive or qualify the 2nd law in terms of the underlying time reversible microscopic dynamics. A poster will be exhibited to illustrate the foundations and paradoxes of Boltzmann's H-theorem, and to distill the literature regarding the pursuits of nonequilibrium statistical mechanics to describe entropy increase of irreversible processes.
Mechanical Foundations of the Second Law of Thermodynamics
Kirkhof Center KC38
Coffee creamer is readily seen to diffuse into coffee, but once mixed, never observed to separate back. The 2nd law of Thermodynamics describes this nonreversible event by stating a closed system not in equilibrium will evolve until it approaches its maximum value of entropy in which case the system has reached equilibriumand its macrostate will not change. Interestingly, the dynamical equations used to describe all macroscopic systems' microscopic constituents are time symmetric, implying the time reversed evolution of any process should also be physically possible. This study analyzes the works of Boltzmann, Gibbs, and others who have sought to derive or qualify the 2nd law in terms of the underlying time reversible microscopic dynamics. A poster will be exhibited to illustrate the foundations and paradoxes of Boltzmann's H-theorem, and to distill the literature regarding the pursuits of nonequilibrium statistical mechanics to describe entropy increase of irreversible processes.