
Active Calculus 1.0
Matthew Boelkins, David Austin, and Steven Schlicker
Active Calculus is different from most existing calculus texts in at least the following ways: the text is free for download by students and instructors in .pdf format; in the electronic format, graphics are in full color and there are live html links to java applets; the text is open source, and interested instructors can gain access to the original source files upon request; the style of the text requires students to be active learners — there are very few worked examples in the text, with there instead being 34 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus concepts; each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class; the exercises are few in number and challenging in nature.

Active Calculus 2.0
Matthew Boelkins, David Austin, and Steven Schlicker
Active Calculus is different from most existing calculus texts in at least the following ways: the text is freely readable online in HTML format and is also available for in PDF; in the electronic format, graphics are in full color and there are live links to java applets; version 2.0 now contains WeBWorK exercises in each chapter, which are fully interactive in the HTML format and included in print in the PDF; the text is open source, and interested users can gain access to the original source files on GitHub; the style of the text requires students to be active learners — there are very few worked examples in the text, with there instead being 34 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus concepts; each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class; following the WeBWorK exercises in each section, there are several challenging problems that require students to connect key ideas and write to communicate their understanding. For more information, see the author's website and blog.

Active Calculus Multivariable
Steven Schlicker, David Austin, and Matthew Boelkins
Active Calculus Multivariable is the continuation of Active Calculus to multivariable functions. The Active Calculus texts are different from most existing calculus texts in at least the following ways: the texts are free for download by students and instructors in .pdf format; in the electronic format, graphics are in full color and there are live html links to java applets; the texts are open source, and interested instructors can gain access to the original source files upon request; the style of the texts requires students to be active learners — there are very few worked examples in the texts, with there instead being 34 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus concepts; each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class; the exercises are few in number and challenging in nature.

Bent Not Broken: A Family Remembers the War in Liberia and Sierra Leone
Robert Rozema, Matilda Davies, Amie Tucker, Kadie Seiwoh, Kadie Tucker, Josephine Tucker, and Holly Hoover
This interactive story follows the life of a family trying to survive a brutal war in West Africa. The war took place in in Liberia and Sierra Leone during the 1990s. All wars are cruel, but this one was particularly brutal—fought by warlords and their death squads of child soldiers, the war saw the deliberate targeting of civilians. Murder, rape, torture, and abduction were common tactics used by all factions, and the signature atrocity of the war, amputation, left thousands without hands and legs.
Through a rich multimedia presentation that includes personal testimonies, images, maps, found artifacts, video, audio, and animations, Bent not Broken shows how one family survived the war and came to America in 2005.
More than just an ebook, this highly interactive and compelling account of human endurance and cultural adaptation will appeal to young adult and adult readers who are willing to enter into the life of a family under the extreme duress of war.

Beyond Lean: Simulation in Practice
Charles R. Standridge Ph.D.
Lean thinking, as well as associated processes and tools, have involved into a ubiquitous perspective for improving systems particularly in the manufacturing arena. With application experience has come an understanding of the boundaries of lean capabilities and the benefits of getting beyond these boundaries to further improve performance. Discrete event simulation is recognized as one beyondtheboundaries of lean technique. Thus, the fundamental goal of this text is to show how discrete event simulation can be used in addition to lean thinking to achieve greater benefits in system improvement than with lean alone. Realizing this goal requires learning the problems that simulation solves as well as the methods required to solve them. The problems that simulation solves are captured in a collection of case studies. These studies serve as metaphors for industrial problems that are commonly addressed using lean and simulation.

Beyond Lean: Simulation in Practice, Second Edition
Charles R. Standridge Ph.D.
Lean thinking, as well as associated processes and tools, have involved into a ubiquitous perspective for improving systems particularly in the manufacturing arena. With application experience has come an understanding of the boundaries of lean capabilities and the benefits of getting beyond these boundaries to further improve performance. Discrete event simulation is recognized as one beyondtheboundaries of lean technique. Thus, the fundamental goal of this text is to show how discrete event simulation can be used in addition to lean thinking to achieve greater benefits in system improvement than with lean alone. Realizing this goal requires learning the problems that simulation solves as well as the methods required to solve them. The problems that simulation solves are captured in a collection of case studies. These studies serve as metaphors for industrial problems that are commonly addressed using lean and simulation.

Business Communication for Success  GVSU Edition
Unnamed Author, Mark Schaub, Jenniffer Eckert, Anessa Fehsenfeld, Rhonda R. Hoffman, Adam Krusniak, Tami McCoy, Rachel Jean Norman, and Julian Toscano
About the GVSU Edition
This text is an adaption of Business Communication for Success, an open textbook produced by the University of Minnesota Libraries Publishing in 2015.
Chapters 9, 18, and 20 of Business Communication for Success: GVSU Edition were revised and rewritten by student authors in 2017, as part of a course in the Writing Department at Grand Valley State University. All other chapters retain the content and formatting of previous editions.
Note about the 2015 edition:
The edition produced by the University of Minnesota Libraries Publishing University of Minnesota Libraries Publishing was itself adapted from a work distributed under a Creative Commons license (CC BYNCSA) in 2010 by a publisher who requested that they and the original author not receive attribution.
This adaptation reformatted the original text, and replaced some images and figures to make the resulting whole more shareable. The 2015 adaptation did not significantly alter or update the original 2010 text.

Home Range Creation and Analysis using Geospatial Modeling Environment and ArcGIS Software
Alexandra Locher and Matt Lindenberg
Many analyses in natural resources or ecologyrelated fields, specifically wildlifefocused disciplines, investigate wildlife habitat use and movement patterns for population and habitat management. Kernel density estimates and home range analysis are commonly used by wildlife biologists for such investigations. Methods to conduct home range analyses are often complex and require use of multiple software programs. In the literature and on the web, it is difficult to find comprehensive instructions on how to create home ranges and proceed with analyses. The purpose of this manual is to describe the process of synthesizing raw location point location data, creating home ranges (kernel density estimates), and begin initial analyses involving habitat selection

Introduction to Human Osteology
Roberta Hall, Kenneth Beals, Holm Neumann, Georg Neumann, and Gwyn Madden
This text was designed for use in the human osteology laboratory classroom. Bones are described to aid in identification of skeletonized remains in either an archaeological or forensic anthropology setting. Basic techniques for siding, aging, sexing, and stature estimation are described. Both images of bone and drawings are included which may be used for study purposes outside of the classroom. The text represents work that has been developed over more than 30 years by its various authors and is meant to present students with the basic analytical tools for the study of human osteology.

Mathematical Reasoning: Writing and Proof
Ted Sundstrom
Mathematical Reasoning: Writing and Proof is designed to be a text for the ﬁrst course in the college mathematics curriculum that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics. The primary goals of the text are to help students:
• Develop logical thinking skills and to develop the ability to think more abstractly in a proof oriented setting.
• Develop the ability to construct and write mathematical proofs using standard methods of mathematical proof including direct proofs, proof by contradiction, mathematical induction, case analysis, and counterexamples.
• Develop the ability to read and understand written mathematical proofs.
• Develop talents for creative thinking and problem solving.
• Improve their quality of communication in mathematics. This includes improving writing techniques, reading comprehension, and oral communication in mathematics.
• Better understand the nature of mathematics and its language.
Another important goal of this text is to provide students with material that will be needed for their further study of mathematics.
This type of course has now become a standard part of the mathematics major at many colleges and universities. It is often referred to as a “transition course” from the calculus sequence to the upperlevel courses in the major. The transition is from the problemsolving orientation of calculus to the more abstract and theoretical upperlevel courses. This is needed today because many students complete their study of calculus without seeing a formal proof or having constructed a proof of their own. This is in contrast to many upperlevel mathematics courses, where the emphasis is on the formal development of abstract mathematical ideas, and the expectations are that students will be able to read and understand proofs and be able to construct and write coherent, understandable mathematical proofs. Students should be able to use this text with a background of one semester of calculus.

Mathematical Reasoning: Writing and Proof, Version 2.1
Ted Sundstrom
Mathematical Reasoning: Writing and Proof is designed to be a text for the ﬁrst course in the college mathematics curriculum that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics. The primary goals of the text are to help students:
· Develop logical thinking skills and to develop the ability to think more abstractly in a proof oriented setting.
· Develop the ability to construct and write mathematical proofs using standard methods of mathematical proof including direct proofs, proof by contradiction, mathematical induction, case analysis, and counterexamples.
· Develop the ability to read and understand written mathematical proofs.
· Develop talents for creative thinking and problem solving.
· Improve their quality of communication in mathematics. This includes improving writing techniques, reading comprehension, and oral communication in mathematics.
· Better understand the nature of mathematics and its language.
This text also provides students with material that will be needed for their further study of mathematics.

Trigonometry
Ted Sundstrom and Steven Schlicker
This trigonometry textbook is different than other trigonometry books in that it is free to download, and the reader is expected to do more than read the book and is expected to study the material in the book by working out examples rather than just reading about them. So this book is not just about mathematical content but is also about the process of learning and doing mathematics. That is, this book is designed not to be just casually read but rather to be engaged.
Since this can be a difficult task, there are several features of the book designed to assist students in this endeavor. In particular, most sections of the book start with a beginning activity that review prior mathematical work that is necessary for the new section or introduce new concepts and definitions that will be used later in that section. Each section also contains several progress checks that are short exercises or activities designed to help readers determine if they are understanding the material. In addition, the text contains links to several interactive Geogebra applets or worksheets. These applets are usually part of a beginning activity or a progress check and are intended to be used as part of the textbook.
The authors are very interested in constructive criticism of the textbook from the users of the book, especially students, who are using or have used the book. Please send any comments you have to trigtext@gmail.com.

Writing Spaces: Readings on Writing, Volume 1
Charles Lowe and Pavel Zemliansky
Volumes in Writing Spaces: Readings on Writing offer multiple perspectives on a widerange of topics about writing, much like the model made famous by Wendy Bishop’s “The Subject Is . . .” series. In each chapter, authors present their unique views, insights, and strategies for writing by addressing the undergraduate reader directly. Drawing on their own experiences, these teachersaswriters invite students to join in the larger conversation about developing nearly every aspect of the craft of writing. Consequently, each essay functions as a standalone text that can easily complement other selected readings in writing or writingintensive courses across the disciplines at any level.

Writing Spaces: Readings on Writing, Volume 2
Charles Lowe and Pavel Zemliansky
Volumes in Writing Spaces: Readings on Writing offer multiple perspectives on a widerange of topics about writing. In each chapter, authors present their unique views, insights, and strategies for writing by addressing the undergraduate reader directly. Drawing on their own experiences, these teachersaswriters invite students to join in the larger conversation about the craft of writing. Consequently, each essay functions as a standalone text that can easily complement other selected readings in writing or writingintensive courses across the disciplines at any level.

Writing Spaces Web Writing Style Guide Version 1.0
Matt Barton, James Kalmbach, and Charles Lowe
The Writing Spaces Web Writing Style Guide was created as a crowdsourcing project of Collaborvention 2011: A Computers and Writing Unconference. College writing teachers from around the web joined together to create this guide (see our Contributors list). The advice within it is based on contemporary theories and best practices. While the text was originally written for students in undergraduate writing classes, it can also be a suitable resource for other writers interested in learning more about writing for the web. This document is available as a web text for reading online, a printerfriendly PDF, and an EPUB ereader versions. Visit http://writingspaces.org/wwsg to learn more.
Printing is not supported at the primary Gallery Thumbnail page. Please first navigate to a specific Image before printing.